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Zusammenfassung
Die vorliegende Arbeit beschreibt Untersuchungen an CVD Diamanten zur Spurbestim-

mung elektrisch geladener Teilchen (CVD ist die Abkürzung für chemical vapor deposition).
Die Strahlenhärte ist Voraussetzung für Detektoren, die nahe am Wechselwirkungsbereich
der Experimente ATLAS und CMS am Large Hadron Collider am CERN arbeiten sollen.
Detektoren auf Diamantbasis könnten eine strahlenharte Option für Pixel und Streifendetek-
toren in diesem Bereich sein.

Die Arbeit enthält vier wesentliche Resultate. Erstens wurde die Detektorqualität der
Diamantproben eines Herstellers von 30 μm charge collection distance auf 200 μm verbessert.
Zweitens wurden zum ersten mal Mikrosteifendetektoren auf Diamantbasis betrieben: Dia-
mantstreifendetektoren erreichten ein Signal-Rauschverhältnis von 50-zu-1 am Scheitelpunkt
der Signalverteilung bei einem wahrscheinlichsten Ladungssignal von 5000 e. Der Fehler in
der Spurvorhersage lag zwischen 12 μm und 16 μm. Die Detektoreffizienz lag typischer-
weise nahe 100 % für Signalschwellen unter 1000 e. Als drittes Resultat wurde festgestellt,
daß Inhomogenitäten in den CVD Diamanten die Signalverteilung verbreitern. Das ist nicht
verwunderlich, da CVD Diamanten polykristallin sind. Der vierte wichtige Punkt sind die Be-
strahlungen von CVD Diamanten, die zum ersten Mal mit Protonen, Neutronen und Pionen
mit einer Dosis zum Teil oberhalb der am LHC zu erwartenden Dosis durchgeführt wurden.
Die hier untersuchten Diamantproben sind je nach Teilchensorte und Dosis strahlenhart. Ich
habe diese Arbeit als Mitglied in der ATLAS/SCT Gruppe am CERN innerhalb des Detektor
Forschungsprojekts RD42 durchgeführt.

Stichworte: Diamant, Chemical Vapor Deposition, Kristall, Silizium, Detektor, Streifende-
tektor, Teilchenspur, Teleskop, Ladungssammlung, RD42, LHC, ATLAS, CMS, Elektronik,
Strahlenhärte

Abstract
This thesis describes recent research aimed at developing chemical vapor deposition

(CVD) diamonds for charged particle detection and tracking. Radiation hardness is required
for detectors located near the beam interaction region at the future experiments, ATLAS and
CMS, at the Large Hadron Collider at CERN. Detectors based on CVD diamond could be a
radiation hard option for pixel and strip detectors very close to the interaction region.

There are four important results of this work. Firstly the CVD diamond sensor quality
was improved in samples produced by one manufacturer from 30 μm charge collection distance
to now typically 200 μm charge collection distance. Secondly a large number of CVD diamond
microstrip sensors were operated for the first time under beam test conditions. The diamond
strip sensors reached a most probable signal to noise ratio of 50-to-1 at a typical most probable
signal charge of 5000 e. The spatial track resolution was between 12 μm and 16 μm. The
hit finding efficiency was typically close to 100 % for thresholds below 1000 e. The third
important result is that the material uniformity contributes to the width of the observed
charge distribution. This is not surprising since CVD diamond is polycrystalline in nature.
Fourthly for the first time CVD diamond samples have been irradiated with pions, protons
and neutrons with fluences above those expected at LHC. The samples under study here were
radiation hard depending on the particle type and fluence. I performed this work as a member
of the ATLAS/SCT group at CERN together with the detector research and development
project RD42.

Keywords: diamond, chemical vapor deposition, crystal, silicon, detector, strip detector,
particle track, telescope, charge collection, RD42, LHC, ATLAS, CMS, radiation hardness
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verwunderlich, da CVD Diamanten polykristallin sind. Der vierte wichtige Punkt sind die Be-
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This thesis describes recent research aimed at developing chemical vapor deposition

(CVD) diamonds for charged particle detection and tracking. Radiation hardness is required
for detectors located near the beam interaction region at the future experiments, ATLAS and
CMS, at the Large Hadron Collider at CERN. Detectors based on CVD diamond could be a
radiation hard option for pixel and strip detectors very close to the interaction region.
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microstrip sensors were operated for the first time under beam test conditions. The diamond
strip sensors reached a most probable signal to noise ratio of 50-to-1 at a typical most probable
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Chapter 1

Introduction

Solid state tracking devices have become one of the mainstays of general pur-
pose high energy physics detectors. Fig. 1.1 shows the DELPHI silicon vertex
detector as an example. Detectors in future high energy collider experiments
will be exposed to high radiation levels. In experiments at the Large Hadron
Collider (LHC) at the European Laboratory for Particle Physics (CERN) de-
tectors very close to the beam interaction region are expected to receive a
fluence above 1015 particles/cm2 during 10 years of operation. Few detector
materials are able to survive this radiation level. Strip or pixel devices based
on CVD diamond are a possible choice for radiation hard tracking detectors.

Figure 1.1: Photograph of the DELPHI vertex detector. The purpose of this vertex detector
is to measure particle tracks from e+e− collisions at LEP. In particular production- and
decay-vertices are reconstructed from the hit measurements in the silicon sensor planes.
The detector consists of three layers of silicon strip sensors which detect the passage of
charged particles. The layers encircle the colliding beams at radii of 6.6 cm, 9.2 cm and
10.6 cm. The outer layer can be seen in this photo. The track position is determined with
a precision of 8 μm in each plane perpendicular to the beam axis [1].
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1.1 Introduction to CVD Diamond Sensors

This thesis describes the properties of chemical vapor deposition (CVD) di-
amond sensors for particle detection and tracking. An introduction to CVD
diamond is given below. The order of the subsections in this introduction
reflects the structure of the thesis. The radiation hardness of CVD diamond
and particle tracking with CVD diamond strip sensors are the most important
sections in this thesis. The foundations for these sections include the applica-
tions at LHC experiments and basic material and electrical properties of CVD
diamond.

1.1.1 Material Properties of CVD Diamond

Diamond is a crystal that can be found in nature as well as produced under certain con-
ditions in laboratories and industry. A diamond consists of carbon atoms in a diamond lattice
structure. It is interesting to note that the carbon atoms in the diamond lattice structure
have the highest atomic number density of any matter on earth: the atomic number density
of diamond is 1.75×1023 atoms/cm3 corresponding to a molar volume 1 of 3.44 cm3/mol. For
comparison, a silicon crystal has an atomic number density of about 5×1022 atoms/cm3 cor-
responding to 12.05 cm3/mol. The nucleon density in diamond is 2.11 × 1024 nucleons/cm3.
Carbon is a relatively light atom. Its proton number is 6 and the nucleon number is 12. The
weight of the carbon atom is 12.011 u. In fact the atomic mass unit is defined by the weight
of carbon isotopes with atomic number 12 (2). The mass density of diamond is 3.515 g/cm3.
Therefore a diamond sensor with a size of 2× 4 cm2 and a thickness of 500 μm would weigh
1.4 g corresponding to 7 ct (3). In the periodic table of elements carbon (126 C) is located
next to boron (115 B) and nitrogen (147 N) which are common impurities in natural diamond.
Elements in the same group of the periodic table include silicon (2814Si) and germanium (7332Ge)
which are commonly used in electronic devices and sensors. A unique feature of carbon
atoms in the diamond lattice is the strength of their bonds. The cohesive energy in diamond
is 5.8×10−19 J/bond, corresponding to 3.62 eV/bond or 7.24 eV/atom [2] 4. The strength of
bonds is important in applications of diamond for machine tools, but it is also the reason for
the relatively high energy necessary to displace an atom from its lattice site under particle
irradiation.

The work described in this thesis uses diamonds produced by industry in the low pressure,
low temperature chemical vapor deposition process. It is amazing that diamond can be
produced under low pressure and low temperature conditions considering the natural process
of formation which results in diamonds being found in vulcanic residues. A few of the
principles of the diamond synthesis are reviewed in Sec. 2.1. The morphology of the CVD
diamond samples used was studied by scanning electron microscopy verifying the interesting
result that the grain size increases during growth. Other work using X-ray diffraction and
Raman spectroscopy in Sec. 2.3 and Sec. 2.4 investigates the crystal structure, the orientation
of crystal growth and the material quality 5.

1The unit mol: 1 mol = 6.0221367 × 1023 atoms.
2The unit unified atomic mass: 1 u = m(12C)/12 = 1.6603 × 10−27 kg.
3The unit karat: 1 ct = 200 mg, (do not confuse with 24 carat gold = 100 % gold in alloy).
4The unit electron volt: 1 eV = 1.602 × 10−19 J, unit of energy.
5In this thesis we distinguish the material quality (determined by impurities, defects and stress) from the

electrical quality (determined by the mobility, lifetime, signal charge).
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1.1.2 Charged Particle Detection using CVD Diamond

Charged particle detection in its most general sense means obtaining a response in a
sensor during or after illumination with charged particles. An easy experiment to perform
(10 minutes long) is the ‘glooming experiment’: A CVD diamond 6 is exposed in darkness
to ionizing radiation from a β-source. A dose of 10 rad is sufficient 7. At the same time one
heats an iron plate to a temperature of about 300 ◦C. The procedure has to be performed in
darkness and the eye of the observer should be well adapted to the darkness. The diamond is
removed from the β-source and put on the heated iron plate to heat the diamond to 300 ◦C. As
the diamond heats one observes the emission of green light from the diamond. The diamond
glooms (emits luminescence light) after exposure to the ionizing radiation. The intensity of
the luminescence light decreases with time and lasts approximately five to ten seconds. This
effect, thermoluminescence, is known 8 and is used with other materials (for example with
lithium) in dosimetry.

Particle detection in this thesis means the measurement of the induced charge on the
electrodes of a diamond sensor due to the motion of charge carriers after traversal of a
charged particle. The energy necessary for creation of an electron-hole pair in diamond is
13 eV. This energy determines the ionization yield for a given amount of energy deposited
by a particle. The electrical properties of diamond, namely the charge carrier mobility and
the charge carrier lifetime, are most important for single particle detection. The mobility
of electrons and holes in diamond is high and, in particular, for holes is 2.5 times higher
than in silicon. A high carrier mobility enables faster charge collection in diamond sensors
than in silicon. The mobility depends only on the bending of the energy bands and the time
between electron-phonon scattering. We will see in Sec. 3.1 that the lifetime depends mainly
on defects and impurities. It is shown in Sec. 3.3 that the average charge collection distance
in an inhomogenous diamond crystal is proportional to the mobility and the lifetime and
that it is the important quantity that determines the induced charge on the electrodes of the
sensor. The typical current voltage characteristic, the charge signal readout and the response
to ionizing radiation from a β-source are discussed in Sec. 3.2 and Sec. 3.4. The measurements
in CVD diamond show a very low bulk leakage current of the order of 0.2 pA/mm2 at room
temperature and a mean signal charge of the order of 8000 e corresponding to a charge
collection distance of 222 μm. An important result is that the charge collection distance
increases along the direction of growth from the nucleation side to the growth side.

The properties of natural diamond and silicon which are of interest for sensor applications
are listed in Table 1.1.

1.1.3 Tracking with CVD Diamond Detectors

One of the main goals of this work was to investigate the ability of CVD diamond sensors
to measure charged particle tracks. A track is the interpolation of hit positions as measured
by several sensors. The position precision of a hit measurement is an important characteristic
of a position sensitive device. A small position error can be achieved by a device with the
highest possible signal charge and the lowest possible noise. CVD diamond microstrip sensors
were therefore tested in pion beams for their charge signal response on strips, their noise and

6This experiment was specifically performed with CVD diamonds described in this thesis, but any CVD
diamond will do.

7The unit rad: 100 rad ≡ 1 Gy = 1 J/kg, unit of the absorbed dose.
8Reported by Sir Robert Boyle on October 28, 1663 to the Royal Society in London: “I also brought it [the

diamond] to some kind of glimmering light by taking it into bed with me, and holding it a good while upon a
warm part of my naked body..”.
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spatial resolution. The detailed description of the experimental method using a silicon beam
telescope for track prediction and the results on diamond sensors are reported in Chapter 4.

1.1.4 Radiation Hardness of CVD Diamond

Results on the radiation hardness of CVD diamond samples are given in Chapter 5.
CVD diamond samples were irradiated with 300 MeV/c pions, 1 MeV neutrons and 24 GeV/c
protons. These irradiations are a continuation of a series of irradiations performed by the
RD42 collaboration 9 in the past [3, 4, 5]: CVD diamond sensors were irradiated in 1993
with photons using a 60Co gamma source at the Argonne National Laboratory. The samples
were irradiated up to an absorbed dose of 10 Mrad [6]. No decrease in charge collection
distance was observed. In an electron irradiation in 1995 at Société AERIAL with 2.2 MeV
electrons from a Van de Graaf accelerator CVD diamond samples absorbed a dose of up to
100 Mrad [7]. No decrease in charge collection distance was observed. Proton irradiations
were performed on CVD diamond samples in 1994 and 1995 at TRIUMF, Vancouver, Canada
using protons with a kinetic energy of 500 MeV reaching a fluence of 1 × 1014 p/cm2 at a
maximum flux of 8 × 108 p/cm2/s [8]. As in electron and gamma irradiations no decrease in
charge collection distance was observed.

The results in Chapter 5 try to establish where the limits in radiation hardness of CVD
diamond sensors may be. A decrease of charge collection distance was observed after several
1014 neutrons/cm2, after several 1014 pions/cm2 and after several 1015 protons/cm2. If CVD
diamond sensors prove to be sufficiently radiation hard and if the signal charge is sufficiently
high then CVD diamond sensors will be of interest for high luminosity experiments at the
LHC since radiation hard sensors will better serve to achieve the physics goals set for the
LHC.

Before describing CVD diamond sensors it is of interest to review the physics goals at
LHC and the conditions relating to the radiation environment close to the region of proton-
proton collisions.

9The members of the RD42 collaboration are given in the acknowledgements on page 234.
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silicon a natural

diamond b

proton number [ ] 14 6

atomic number [ ] 28.0855 [9] 12.011 [9]

lattice constant [Å] 5.4310 [10] 3.5668 [10]

mass density
[
g cm−3

]
2.329 [10] 3.515 [10]

cohesive energy [eV/atom] 4.63 [11] 7.37 [11]

melting point [K] 1685 [10] 4100 (c) [10]

band gap [eV] 1.124 [10] 5.48 [10]

relative dielectric constant d [ ] 11.9 [10] 5.7 [10]

resistivity [Ωcm] 20 × 103 (e) > 1013 [11]

[Ωcm] 5 × 1011 (f) [3.2.3] > 1014 (g) [3.2.3]

breakdown field [V/μm] 30 1000

electron mobility
[
cm2 V−1 s−1

]
1500.. [12]

1450 [10] ..2400 [13]

hole mobility
[
cm2 V−1 s−1

]
1000.. [12]

≈ 440 [10] ..2100 [13]

electron saturation velocity [cm/s] 2 × 107 [13]

hole saturation velocity [cm/s] 107 [13]

thermal expansion coefficient
[
10−6K−1

]
2.59 [10] 0.8..1.0 [14]

thermal conductivity
[
W cm−1 K−1

]
1.4 20..23 [14]

energy to create eh-pair [eV] 3.6 [15, 16] 13 [13, 17]

radiation length [cm] 9.4 [9] 12.03 [3.75]

specific ionization loss [MeV/cm] 3.9 [3.3.1] 6.2 [3.3.1]

ave. no. of eh-pairs/mip [pairs/100 μm] 9000 [3.3.5] 3600 [11]

ave. no. of eh-pairs/mip [pairs/300 μm] 27000 [3.3.5] 11850 [3.3.5]

Table 1.1: Properties of silicon and natural diamond that are of interest when consid-
ering the material for use as a particle detector. The properties depend on temperature
and pressure. The values are valid under normal conditions: for temperature around
298 K and a pressure of 1 atm. A reference to an entry in the bibliography or to a
section or an equation in this thesis is given in rectangular brackets.

aThe column gives values for single crystal silicon.
bSelected natural diamond, type IIa, see footnote on page 96.
cDiamond melts at 4100 K and 12.5 GPa., it graphitizes at ≈ 1200 K and 1 atm under oxygen [2].
dVacuum has the dielectric constant (permittivity) ε0 = 8.854 pF/m [9].
eThis is the intrinsic resistivity of silicon.
fThis is the resistance of a reversed biased silicon diode.
gThis is the resistivity of a CVD diamond.
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1.2 The Large Hadron Collider (LHC)

The study of particle interactions and particle decay behaviour is one the fun-
damental goals of high energy phyiscs. The creation of new particles at high
energies with high production rate is necessary to attain this goal. The aim of
a particle collider is to accelerate particles to energies necessary for the produc-
tion of new particles. Another goal is to have a sufficient number of particles
in the beam in order to attain a high interaction rate. A collider accelerates
charged particles by means of alternating electric fields. Acceleration increases
the kinetic energy of the particles. The particles move in opposite directions
inside the ring guided by magnetic fields. The ring is made of one beam pipe
or two separate beam pipes, depending on the type of particles used. The
particles are brought into collision at certain locations around the ring. The
LHC is a collider that will accelerate ‘bunches’ of protons or heavy ions in two
separate circular beams. It will be built inside the existing LEP tunnel 10 and
will become operational for physics experiments in the year 2005. One of the
major challenges of the LHC project is the cryogenics system along the beam
line designed to keep the temperature at 1.9 K necessary to cool the super-
conducting beam bending magnets. Another challenge is to realize the high
particle energy and luminosity required by the physics goals.

1.2.1 Beam Luminosity

Inelastic interaction of two beam particles causes the production of particles. One aims
for a high particle rate of inelastic proton-proton interactions. Given the energy dependent
inelastic cross section, σ, and the beam luminosity, L, the particle production rate is [18]

dN

dt
= σL. (1.1)

High luminosity is required to obtain a high interaction rate. The luminosity L is the number
of interactions per area A and time. In a circular collider it is [18]

L = ν n
N1 N2

A
and L

def=
∫

L dt. (1.2)

The LHC accelerates n = 2835 bunches along the ring, with a revolution frequency ν =
11.2455 kHz. Each bunch contains N1 = N2 ≈ 1011 particles [19]. In past and present
colliders the luminosity culminates around L = 1032/cm2/s. During the first 3 years the
LHC will operate at a luminosity of L = L0

def= 1033/cm2/s (referred to as ‘low’ luminosity).
Later the LHC will operate at a luminosity of L = 10 × L0 = 1034/cm2/s = 107 /mb/s
(referred to as ‘high’ luminosity) 12. The time separation between bunches is 25 ns which
is very short relative to a beam cross over (BCO) of approximatively 5 μs at LEP. From
these values it follows that the transverse area A is about 50 μm × 50 μm corresponding
to a Gaussian standard deviation of 15 μm in both directions. The interaction area can be
measured by displacing the beams with respect to each other, while monitoring the proton-
proton interaction rate. Eq. 1.2 gives the definition of the integrated luminosity L. The
annual luminosity for continuous running would be 3.15 × 104 /pb in the ‘low’ luminosity
period. The LHC will be on for about 8 months a year of which 2 months will be dedicated to

10LEP: Large Electron Positron Collider, circumference of 26.66 km [9], first particle injection in 1989.
12The unit barn: 1 b = 10−28 m2 =⇒ 1 mb = 10−27 cm2.
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machine studies and 6 months for physics data taking. Effectively about 4 months at 100 %
optimal beam conditions are considered for physics. This gives about 116 days (=107 s) [20,
21] of continuous running. The effective ‘annual’ luminosity is then 107 · 1033/cm2 = 1 ×
104/pb for the ‘low’ luminosity period and 1 × 105/pb for the ‘high’ luminosity of 10 ×
L0. The accumulated annual luminosity during 10 years of operation starting with a low
luminosity period of 3 years followed by a high luminosity period of 7 years yields 7.3×105/pb.
Calculations by the LHC experiments, ATLAS and CMS, assume an integrated fluence of
5 × 105/pb in 10 years of LHC operation [21, 22].

1.2.2 Beam Energy

The beam energy for an accelerator is (ideally) based on two physics principles. The
first one is the mass scale of particles under study. In order to create new particles with mass
M , a sufficient kinetic energy has to be provided for their production:

√
s ≥ M c2. (1.3)

The center of mass energy,
√

s, of two colliding beam particles (i = 1, 2) with four momenta
pi = (Ei, �pi) is [23]

√
s =

√
(p1 + p2)2

see text=⇒ √
s = 2Ebeam. (1.4)

In case of two collinear colliding relativistic particles with the same rest mass and same
energy Ebeam = E1 = E2 one obtains the second expression for the center of mass energy.
The production of the Z0-Boson, for example, requires a center of mass energy exceeding the
rest mass mZ0 which means that Ebeam ≥ 1

2mZ0c2 (13).
The second principle is the length scale which one wants to explore. The ‘accessible’

length scale, λ, in an experiment is related to the momentum, �p, of the probing (beam)
particle by de Broglie’s equation

λ =
2π h̄ c

|�p| c
, (1.5)

where h̄ c = 197.327 MeV fm. The momentum in Eq. 1.5 is given by the rest mass, m0, and
the energy, E, of the beam particles:

E2 = �p 2 c2 + m2
0 c4. (1.6)

A typical energy for probing the nucleus on a length scale of femtometers (fermi 14) is therefore
several 100 million electron volts. Probing nucleons requires much higher energies. LEP
operated at various energies between

√
s = 70 GeV and

√
s ≈ 190 GeV, necessary for Z0 or

W± pair production (mZ0 = 91.187 GeV/c2 and mW± = 80.22 GeV/c2 [9]) which probed
a distance scale of the order of 1 × 10−2 fm. The proton beam energy at the LHC will
reach 7 TeV which implies from Eq. 1.4 a center of mass energy of 14 TeV. The length scale
attainable at the LHC is more complex to describe than at LEP since the energy of 7 TeV
is that of the beam protons. Protons are composed of quarks/partons. A parton carries
≈ 1/10 of the energy of the proton. Eq. 1.5 and Eq. 1.3 apply to the quarks/partons in the
proton. This implies that the LHC will reach a length scale of 10−4 fm and a mass scale of
1.4 TeV/c2. This is just the region where new physics is expected to occur.

13The Z0 has a line width of several GeV such that production occurs already below mZ0c2. The production
probability peaks at mZ0c2.

14The unit fermi: 1 fm = 10−15 m.
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1.3 High Luminosity Experiments (ATLAS and CMS)

ATLAS 15 and CMS 16 are general-purpose experiments for recording proton-
proton collisions at the LHC. The detectors have been designed to answer “one
of the most fundamental questions in physics: what is the origin of the different
particle masses?” [24].

1.3.1 Common Physics Goals

The interaction of electrically charged particles is described in quantum electrodynamics
by photon exchange. The photon is massless and has infinite range (the potential decreases
like 1/distance). Transition probabilities of electrons in the atomic shell or electromagnetic
cross sections between two scattering charges can be calculated using the model of photon
exchange between both objects. The cross section for photon absorption is proportional
to the fine structure constant α = e2/(4πε0 h̄c) ≈ 1/137. Cross sections for single photon
exchange are proportional to α2. The probability for the next higher order process (for
example Bremsstrahlung) is proportional to α3.

The interaction of neutrinos with electrons requires a different model, as given by Fermi’s
theory of the weak interaction [25]. This model was first applied to the β-decay of the neutron.
In analogy with photon exchange, Fermi assumed the exchange of charge via a ‘charged weak
field’ with a very short range (point-like interaction). Fermi postulated a contact interaction
which described the decay probability of neutrons. The probability is proportional to the
constant G2

F = (1.02 × 10−5 h̄c (h̄/(mpc))2)2 [18] and was measured in β-decays 17, where
mp = 938.27 MeV/c2 is the rest mass of the proton. However, Fermi’s theory predicts a
linearly increasing cross section for neutrino-electron scattering (that is the inverse of the
β-decay) as the center of mass energy,

√
s, increases. Such behaviour of cross sections is not

observed in nature. In addition processes like neutrino-neutrino scattering require a ‘neutral
weak field’ which also would give infinite cross section for a point-like description of their
interaction. The limits of cross sections are given by partial wave theory. In an elastic
scattering one finds that the intensity of the scattered wave can not exceed the intensity of
the incoming wave, an observation, which is called the principle of unitarity. The principle
of unitarity sets an upper limit to Fermi’s cross section for the weak interaction. One finds
that for energies √

sW,Z < 700 GeV, Fermi’s cross section is smaller than the maximum
possible value as obtained from wave theory [18]. This argument was used to limit the
maximum possible mass of the W,Z to be 350 GeV/c2. In order to limit the cross sections
of weak interactions one redefines GF such that it depends on the momentum transfer of the
interacting particles (like for the electromagnetic interaction). In addition one introduces a
mass for the ‘weak field’. This is a technical ‘trick’ which limits the cross section for weak
interaction to a finite value.

The unification of the electromagnetic and weak interaction was developed by Glashow,
Salam and Weinberg in 1961 to 1968 and is today known as the standard model of the
electroweak interaction [26, 27]. The model unified the electro-magnetic and weak interactions
by four gauge bosons. Mixed states of these gauge bosons are the photon, Fermi’s ‘charged
weak fields’,W± , and the ‘neutral weak field’, Z0. The standard model predicted the masses
of W± and Z0 bosons [18]

15ATLAS abbreviation for A Toroidal LHC Apparatus.
16CMS abbreviation for Compact Muon Solenoid.
17The probability also depends on the number of possible angular momentum states of the decay prod-

ucts [18].
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mW,Z ≈ 4πα√
GF

≈ 90 GeV/c2. (1.7)

This prediction allowed the design of experiments which then measured the mass of W± and
Z0 and their decay channels at the SPS at CERN in 1983. However, the introduction of
masses has no explanation in the standard model. Technically one can explain the masses of
W± and Z0 by introducing new particles, namely the Higgs bosons [18] (Higgs-mechanism).
The Higgs mechanism gives mass to W± and Z0. The standard model predicts a single
mixing state of the Higgs as a real particle with mass mH. An upper limit to the Higgs mass
is given by the unitarity limit [18]:

mH <
√

4π
√

2/GF = 1.2 TeV/c2. (1.8)

A lower mass limit of 120 GeV/c2 for the Higgs is given by the measurements of the Z0 and
W± masses at LEP.

ATLAS and CMS are going to look for Higgs particles. In the mass range from mH =
(80 GeV/c2 to 150 GeV/c2) one expects to observe Higgs decaying to photons or to bottom
quarks. At the higher mass range 130 GeV/c2 < mH < 600 GeV/c2 the most appropriate
search would focus on leptonic or hadronic decays:

H → γγ or H → bb̄ or H → 4 charged leptons (1.9)

where the last decay may go via ZZ, ZZ∗, WW or directly. Several other Higgs decay
channels are possible within the Standard Model. Other decay channels are predicted by the
Minimal Super-symmetric Standard Model (MSSM in SUSY); they are essentially the same
as for the standard model, though with different production rates. ATLAS and CMS are
designed to search for one (or more) Higgs bosons in the predicted mass range.

Both experiments will also study symmetry-breaking mechanisms: the symmetries C
(particle-antiparticle interchange) and P (space inversion) hold for strong and electro-magnetic
interactions. Originally the P symmetry was believed to be conserved by the weak interaction
as well but was experimentally observed to be violated. The combination of C and P symme-
try is the CP symmetry. CP symmetry is observed to be violated (broken) in kaon decays to
pions via the weak interaction. CP symmetry breaking is anticipated for B0 decays as well,
but requires experimental confirmation [9]. Also high-precision measurements of the third
quark family such as the top-quark mass and decay properties will be performed [28]. The
program also includes searches for super-symmetric particles, new gauge bosons, leptoquarks,
and quark and lepton compositeness indicating extensions to the Standard Model and new
physics beyond it [29].

The inelastic proton-proton cross section at 14 TeV is about 70 mb [9]18. Using Eq. 1.1
one obtains for the nominal luminosity of 10 × L0 a primary particle interaction rate of
7×108/s which imply on average nBCO = (18±5) interactions per bunch (the error is the 1 σ
variation of the number of interactions per bunch crossing as given in ATLAS [28]). Estimates
from the standard model for Higgs production give total cross sections ranging from 0.2 pb
to 1 pb depending on the Higgs mass and the decay channels [24]. Such cross sections are 11
to 12 orders of magnitude smaller than the total proton-proton cross section and lead to a
rough production rate of less than 1 Higgs in 10 minutes at the LHC. Such estimates depend
on many assumptions described in references [24, 22]. The actual number of Higgs particles

18The non-diffractive cross section at
√

s = 14 TeV should be between 65 mb and 70 mb. More conservative
calculations for expected radiation levels assume 80 mb [22].



1.3 High Luminosity Experiments (ATLAS and CMS) 13

which will be detected is lower and depends on the efficiency and acceptance of the detector
for the decay channel and the associated background.

1.3.2 The Radiation Environment

Proton-proton interactions have been simulated based on the inelastic cross section and
the proton beam energy [24, 22]. The simulation predicts the primary multiplicities per event
and the scattering of particles into a specific interval of the solid angle. A particle emerges
at the angle Θ from the interaction point. Θ depends on the energy, E, of the particle and
its momentum, pz, in direction of the beam as given by the approximation

1
2

ln
(

E + pz

E − pz

)
≈ − ln

(
tan

Θ
2

)
def= η. (1.10)

The left side is the rapidity and the right side defines the pseudo-rapidity, η, [9]. The
pseudo-rapidity can be measured for any particle according to Eq. 1.10 by measuring Θ
with the tracking system. For particles with Θ → 0 one finds η → ∞ and for Θ = 90 ◦

one finds η = 0. Fig. 1.2 shows the distribution of η for charged particles as simulated by
ATLAS and CMS for a single inelastic proton-proton interaction (overlayed from the ref-
erences [28, 22]). The total number (multiplicity) of charged particles can be read from
the figure as the sum of entries in the distribution. The multiplicity is ≈ 92 charged par-
ticles (mainly hadrons) and ≈ 60 neutral particles per event. The number of entries in
each bin varies by a maximum of 0.5 entries depending on the event generator used (DTU-
JET, DPMJET-II or PHYTIA-5.7). The curves from ATLAS and CMS agree within this
error. It should be noted that this distribution does not depend on the luminosity. In or-
der to normalize to the number of proton-proton interactions interactions per bunch, each
entry would have to be multiplied by nBCO = 18 which then depends on the luminosity.
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Simulation: Charged Particles per Event

Figure 1.2: Distribution of the pseudo-
rapidity of charged particles in a single in-
elastic proton-proton collision as simulated
by ATLAS and CMS. The data are taken
from references [28, 22].

particle type multiplicity/event
π± 71.7
p,p̄ 9.0
K± 7.1
other charged 3.8
total charged 91.6
π0 40.7
n,n̄ 8.4
photon 1.3
other neutral 10.6
total neutral 61.0
total 152.6

Table 1.2: Average particle multiplicities
from the primary proton-proton interac-
tion as simulated by CMS in reference [22].
The same values can be assumed for AT-
LAS.

The mean number of different particle types in an inelastic interaction is listed in Ta-
ble 1.2 [22]. The majority of charged particles are pions which amount for 78 % of the
total number of charged hadrons. Protons (p and p̄) amount for 10 % of the total number of
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charged hadrons. The multiplicity would increase significantly above the mean values when
jets are produced.

The simulated distribution [Fig. 1.2] allows a ‘naive’ [22] estimate of the primary charged
particle flux. The flux is the number dN c of charged particles in the area of size dA in the
time dt,

φc ≡ dN c

dAdt
≈ N c

η

2π r2 cos Θ
2

nBCO

τBCO
. (1.11)

The primary flux near the interaction region can be estimated using N c
η ≈ 7 for |η| < 2.5 as

read from Fig. 1.2 and the beam cross over time τBCO = 25 ns. Eq. 1.11 is an estimate for
the primary flux since it does not account for secondary particle production as it occurs via
decay or by interaction or showering in material of the detector and the beam pipe. Results
of this calculation are shown for four different radii and angles, Θ, in Table 1.3.

‘annual’ fluence (= 107 s)
radius angle charged flux charged primary neutral total
r r⊥ Θ φc ± 28 % Φc ± 28 % Φn ± 28 % Φt ± 28 %

[cm] [cm] [◦] [106/cm2/s] [1013/cm2] [1013/cm2] [1013/cm2]
4.0 2.8 45.0 54.4 54.4 36.3 90.7
4.0 4.0 90.0 70.2 70.2 46.8 117.0
11.0 7.8 45.0 7.2 7.2 4.8 12.0
11.0 11.0 90.0 9.4 9.4 6.3 15.7
20.0 20.0 90.0 2.8 2.8 1.9 4.7
50.0 50.0 90.0 0.5 0.5 0.3 0.8

Table 1.3: Results of the ‘naive’ model for the primary charged hadron flux φc close
to the beam interaction point at nominal luminosity of 1034/cm2/s. The fluence for
charged particles is derived from the flux by multiplication with 107 s. The primary
neutral fluence is 2/3 of the charged fluence [Table 1.2]. The sum of the charged fluence
and the primary neutral fluence gives the total fluence. The values were obtained using
Eq. 1.11. The error is the statistical 1 σ variation of 28 % in the uncertainty of nBCO.

The neutral flux is assumed to be 2/3 of the charged flux as demonstrated by the simulation
of CMS in Table 1.2. The calculation from the ‘naive model’ gives a charged hadron flux of
9.4 × 106/cm2/s under Θ = 90◦ at r = 11 cm. Assuming an effective annual period of 107 s
running at a luminosity of 10×L0 one obtains the charged hadron fluence of 0.9× 1014/cm2

at 11 cm.
Another way to obtain fluences is a full detector simulation which takes into account the

different materials, secondary particle interactions, secondary particle production and the
magnetic field. Such simulations were done in ATLAS and CMS. Simulated charged particle
fluences from CMS are shown in Fig. 1.3. The figure shows charged hadron fluences as a
function of z along the beam axis at different radii r⊥ = r sin Θ. It is important to note that
the year is defined as the time until the integrated luminosity reaches 1 × 105/pb [22] which
corresponds to 107 s of running at nominal luminosity of 10×L0 as described in Sec. 1.2.1. The
CMS simulation was performed for a continuous beam luminosity of 1034/cm2 and inelastic
proton-proton cross section of 80 mb. This simulation finds at a distance of 11 cm parallel
to the beam an annual fluence of 1.1 × 1014 charged hadrons/cm2 which agrees with the
fluence of 0.9 × 1014 charged hadrons/cm2 from the naive model. No significant difference is
expected for ATLAS at the same luminosity. The simulated data might be slightly higher
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than the data obtained by the naive model since the simulation takes into account decays
and interactions and also low energy particles which loop several times through the detector
due to the magnetic field. The flux for neutral particles and neutrons in particular is not
shown here. The neutral flux also depends on the experimental setup as discussed in [20, 30].

The naive calculation and the simulation demonstrate that flux and fluence will be
extremely high and in excess of any value seen in the past in other experiments (though
the number of tracks will be comparable to ‘heavy ion events’ in present experiments such
as NA49). This situation is of great concern, since silicon detectors and readout electronics
degrade and eventually stop working due to radiation damage (see Sec. 5.4).

mean= 0.51
r.m.s.= 0.49

most probable
250 MeV/c

PT (GeV/c)

Figure 1.3: Simulation of the annual charged
hadron fluence (1 ‘year’ = 100 days) from
proton-proton interaction at a luminosity of
1034/cm2/s. z is the coordinate along the
beam axis. The simulation was prepared for
the inner tracking region of CMS, however,
same radiation levels apply for ATLAS as well.
This figure was prepared by CMS [22].

Figure 1.4: Distribution of the transverse
momentum, pT, of charged particles from an
inelastic proton-proton collision as simulated
by CMS [31].

The pT momentum distribution of primary charged particles is relevant from the radi-
ation point of view: scattered or created particles emerging from the interaction have the
transverse momentum pT =

√
p2

x + p2
y, where px and py are the momentum components along

�ex and �ey which are perpendicular to the beam axis (rφ-plane). Fig. 1.4 shows the distribution
of the transverse momentum for charged hadrons in inelastic proton-proton events. It is im-
portant to notice that the transverse momentum peaks between 200 MeV/c and 300 MeV/c.
The total momentum of charge particles is therefore between 200 MeV/c and 400 MeV/c in
the central region for |η| < 1. Radiation damage due to 300 MeV/c charged pions is known
to be particularly severe since pions of that momentum interact in resonance with nucleons.

The momentum distribution is also of interest for particle tracking. A charged particle
traversing a detector plane is scattered by many small-angle scatters, mainly in the Coulomb
potential of nuclei. The effect is called multiple Coulomb scattering. The distribution of
(outgoing) track angles projected into a plane relative to the incident tracks depends on the
detector thickness, x, its radiation length, X0 (given in Eq. 3.75), and the particle energy
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and momentum. This angle distribution has a standard deviation of [9]

ΔΘ = 0.0136 GeV/c2 E

p2
z

√
x

X0

[
1 + 0.038 ln

(
x

X0

)]
(1.12)

with the energy, E, the momentum, p, and the charge number, z, of the incident particles.
Particles with low momentum are likely scattered in larger angles than particles with high
momentum. It is important to note that Eq. 1.12 gives the standard deviation of the scattering
angles projected into a plane. The standard deviation in space is higher by a factor

√
2 [9].

Fig. 1.5 shows ΔΘ evaluated for pions traversing 300 μm thick silicon, diamond and G10
printed circuit board as a function of the pion momentum. Pions with momenta between
200 MeV/c and 300 MeV/c scatter on average with 0.1 mrad which causes a 10 μm error
at a 10 cm distance. The standard deviation in space is 14 μm at a 10 cm distance. The
experiments will have several layers of detectors and support mechanics which causes multiple
scattering. It is therefore important to reduce the amount of material with short radiation
length (that means high proton number).
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Figure 1.5: Variation (root mean square,
rms) of the track angles due to multiple
(Coulomb) scattering for pions in 300 μm
thick silicon, diamond and G10 (printed cir-
cuit board) as a function of the pion momen-
tum. The standard deviation is given for the
projection of scattering angles into a plane
perpendicular to the detector plane.

1.4 The ATLAS Spectrometer

ATLAS is the acronym for A Toroidal LHC Apparatus. It is outlined in the
proposal [24] and described in detail in the technical design reports of the
various detector components. A brief overview and essentials of the silicon
strip and pixel tracker are given below.

1.4.1 Overview

The ATLAS detector is a spectrometer, containing detector components for calorimetry,
particle identification and particle tracking. The overall detector will have a length of 50 m,
a diameter of 25 m and a weight of 7000 tons. The ATLAS detector includes an inner
tracking detector inside a super-conducting solenoid which generates a 2 T magnetic field
along the beam axis 19 , 20, electro-magnetic and hadronic calorimeters outside the solenoid
and muon spectrometers in the forward, barrel and end-cap regions. A spectrometer measures

19For comparison, the magnetic field of the super-conducting solenoid in DELPHI is 1.23 T [32].
20The unit tesla: 1 T = 1 kg/As2.
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momentum and energy. The particle energy is measured in calorimeters. The momentum is
measured from the bending radius r in the magnetic field. The particle tracking system must
measure at least three points in order to determine the radius. The transverse momentum of
a particle with charge, q, is measured from its bending radius, r, in the beam axial magnetic
field �B:

pT = q r | �B| =⇒ r [m] ≈ 10
3

pT [GeV/c]
| �B| [T]

, (1.13)

where the radius r is obtained by the particle tracking system. Eq. 1.13 is solved for r which
allows one to quickly calculate the bending radius at given pT: a particle with a momentum
of 300 MeV/c (or 8 GeV/c) would curl in a magnetic field of 2 T with a radius of 0.5 m (or
13.3 m).

The ATLAS inner detector from the outside to the inside consists of a transition radiation
tracker (TRT), the semi-conductor tracker (SCT, barrel and forward direction) and an inner
pixel detector for tracking. Fig.1.6 shows a simulated event in the ATLAS barrel inner
detector with the view along the beam axis. The outer radius of the inner detector is 115 cm
(limited by the surrounding cryostat), the total length is 7 m limited by the position of the
end-cap calorimetry. The TRT is made of straw-tubes (a straw-tube has a diameter of 4 mm,
length 150 cm). It identifies electrons and rejects hadrons from their different ionization
loss and transition radiation in the Xe/CF4/CO2 gas filling. A straw-tube has a central
anode wire which collects electrons from ionizations by traversing particles. The TRT has a
characteristic position resolution of 170 μm for pT = 10 GeV/c muons. The inner detector
will be cooled with coolant at a temperature of −15 ◦C in order to keep the semi-conductor
tracker at −7 ◦C.

ATLAS Barrel Inner Detector
H → ZZ* → e+e-e+e- ( mH = 130 GeV )

e+

e-

e+

e-
Figure 1.6: Display of a simu-
lated event in the ATLAS bar-
rel inner detector with the view
along the beam axis. The simu-
lated process is the Higgs decay
H → ZZ∗ → e+e−e+e− for a
Higgs mass mH = 130 GeV/c2

at the nominal luminosity of
1034/cm2/s. Hits are shown for
0 < η < 0.7; TRT hits are shown
in the barrel for z > 0; Fitted
tracks, with pT > 5 GeV/c and
0 < η < 0.7, are shown just in
the precision tracker so as not to
obscure the TRT hits. The pic-
ture is taken from reference [28].
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1.4.2 ATLAS Semi-conductor Tracker (SCT)

The SCT is composed of 4 barrel layers of silicon (total area 34.4 m2) and 9 end-cap
wheels (total area 26.7 m2) on each side. The barrel layers will have a radial spacing of
10 cm with the innermost layer at a radius of 30 cm. The four layers are visible in the
event display Fig. 1.6. The total number of readout channels will be 6.2× 106. Using a strip
pitch of 80 μm the spatial resolution will be ≈ 16 μm in the rϕ coordinate and ≈ 580 μm
in the z-coordinate [28]. The detector acceptance depends on the angle, Θ, between the
outgoing particle and the beam axis. This angle is commonly converted to pseudo-rapidity
using Eq. 1.10. The SCT barrel part will cover the interval |η| < 1.4 and together with the
end-cap wheels up to |η| < 2.5 which corresponds to an angle coverage of Θ ≈ 9 ◦ to 171 ◦

(for comparison, the DELPHI detector covers 15 ◦ to 165 ◦ [32]). The barrel silicon tracker
is designed to reconstruct isolated lepton tracks with pT > 5 GeV/c (>1 GeV/c) with an
efficiency better than 95 % (90 %) in the range |η| < 2.5. The number of reconstructed
fake tracks should be below 1 % (10 %) which means looping tracks, such as low momentum
(< 1 GeV/c) leptons which circulate around the magnetic field lines and pass the barrel
several times, have to be reconstructed in three dimensions in order to be suppressed in the
analysis [28]. The spatial resolution of the barrel layers has to be better than 20 μm, in
order to measure tracks with ΔpT/pT < 0.3 at pT = 500 GeV/c. In practice one combines
the track predictions from all detectors to form an overall track fit. Exact specifications for
pattern recognition, particle identification and errors for the secondary vertex measurements
are listed in reference [28].

1.4.3 ATLAS Pixel System

The ATLAS pixel system consists of 3 barrel layers and 8 disk layers (four on each side
of the barrel). The barrel layers (as visible in Fig. 1.6) will be located between the radii from
4.15 cm to 13.75 cm, the four disks are planned from |z| = 49 cm to |z| = 103.5 cm. The
innermost radius is limited by the beam pipe which will have a radius between 2.5 cm and
3.0 cm. The total number of channels to be read out will be 140× 106 channels exceeding by
more than one order of magnitude the number of channels of the SCT. The nominal spatial
resolution is given as 12 μm in rφ direction and 66 μm in z direction. The pixel system will
be sensitive for tracks with |η| < 2.5. Pixels are favored in the high flux regions very near to
the beam pipe, since their hit occupacy is lower than that of strips at this location. The hit
occupancy is defined as

o
def= φ τ AD ; AD = Pu · Pv (1.14)

where τ is the single strip/pixel deadtime before it can receive a new hit and AD the sensitive
area. The particle flux, φ, can be the primary flux as defined in Eq. 1.11 or the flux including
particle interaction and decays. The sensitive area, AD, is assumed as given in Eq. 1.14 with
the pixel pitch Pu and Pv along both directions in the detector plane. For strip detectors,
Pv is the length of the strip. Typical strips of the SCT barrel will have a pitch Pu = 80 μm
and a length Pv = 12 cm whereas typical pixels will have a pitch Pu = 50 μm and Pv =
400 μm. Assuming both sensors would be exposed to the same particle flux, having the
same deadtime, one obtains an occupancy 220 times higher for the strips compared to the
pixels. The deadtime for a single pixel must stay below 0.5 μs (2.5 μs) in the B-layer (pixel
barrel) as specified in reference [28]. Assuming τ ≈ 0.5 μs one obtains for the B-layer at
4 cm with the charged hadron flux given in Table 1.3 a single pixel occupancy of 0.7 % and
1.4 % for the case of tracks that cause response on two pixels. The occupancy decreases
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with decreasing flux for increasing η. The occupancy should stay below several percent since
otherwise trackfinding becomes too complex to separate real tracks from fake tracks. The
purpose of the pixel system is to increase the precision of impact parameter measurements of
secondary vertices very close to the interaction region. The pixel system improves b-tagging
and allows rejection of light-quark jets. Also tagging of other relatively heavy particles (τ
or charm containing hadrons) is improved with an efficient pixel system. The error on the
impact parameter measurements of secondary vertices decreases by a factor of 2 with the
B-layer included compared to a situation without B-layer and demonstrates its importance
for physics [28]. The innermost barrel layer (B-layer at 4.15 cm) will be removable since it
may need replacement because of radiation damage.

1.5 The CMS Spectrometer

CMS is the acronym for Compact Muon Spectrometer. The experiment is
outlined in the proposal [22] and described in detail in the technical design
reports of the various detector components. A brief overview and informations
about the silicon strip and pixel tracker are given below.

1.5.1 Overview

CMS is a general purpose detector with emphasis on muon identification and muon
momentum measurement, precise photon and electron identification and calorimetry and
central tracking for momentum measurement and vertex finding of charged particles. The
overall detector will have a length of ≈ 22 m, a height of ≈ 15 m and a weight of 11500 tons.
A muon sees four muon stations over most of the solid angle. Each of the four barrel muon
stations consists of 12 planes of aluminum drift tubes. Efficient muon tracking will be possible
up to |η| = 2.4 for pT > 4 GeV/c. CMS has a superconducting solenoid with a beam axial
magnetic field of 4 T. The magnet iron yoke is part of the muon system. CMS will have
high (energy) resolution crystal electromagnetic calorimeters (ECAL, made of PbWO4) in
the barrel and endcap regions. The ECAL is sourrounded by the barrel and endcap hadron
calorimeter (HCAL, made of copper/scintillator layers). A very forward (iron/gas) hadron
sampling calorimeter extends the coverage up to |η| = 5. The CMS central tracking is based
on pixels, silicon strips (SST) and microstrip gas chambers. Fig. 1.7 shows the CMS central
tracking region (sideview) together with the ECAL in a GEANT event simulation. The
physics event (leptonic Higgs decay H → ZZ∗ → 2e+2e−) is the same as in the ATLAS
simulation in Fig. 1.6 and illustrates the huge amount of tracks.

1.5.2 CMS Silicon Strip Tracker (SST)

The CMS silicon strip tracker is based on microstrip-silicon sensors (all 300 μm thick, sin-
gle sided, p+ in n bulk, total area of ≈ 70 m2) in 5 barrel layers from r⊥ = (22 cm to 60 cm),
3 silicon mini-disks and 10 end-cap disks on either side. The SST has a length of 5.6 m
and covers the pseudo-rapidity range of |η| < 2.5. Isolated tracks are expected to be re-
constructed with efficiencies greater than 98 % and fake tracks below 1 % at a momentum
resolution better than ΔpT < 0.15 GeV/c over |η| < 2.5. Non-isolated tracks with pT inside
jets are required to be identified with an efficiency better than 90 % at a fake rate below
1 %. As in ATLAS the relevant constraints are the radiation environment and aim to reduce
material in order to avoid unwanted interactions and multiple scattering.



20 CHAPTER 1. INTRODUCTION

Figure 1.7: GEANT simulation of H → ZZ∗ → e+e−e+e− at mH = 150 GeV/c2

in the CMS tracker. From inside to outside: silicon pixel and silicon strip detectors,
microstrip gas chambers and crystal electromagnetic calorimeter. The event is taken
from CMS, reference [22].

1.5.3 CMS Pixel System

The CMS pixel system will consist of 3 barrel layers and 4 disk layers (two on each side of
the barrel). The barrel layers will be located between the radii from ≈ 4.0 cm to 11.5 cm, the
two disks are planned at |z| = 32.5 cm and |z| = 46.5 cm [31]. The purpose of the pixel system
is the same as for ATLAS: exact determination of the vertex and rejection of background from
jets and beam beam interaction. Pixels make it possible to extrapolate track candidates from
the outer layers to the vertex. The main issues appart from high resolution, large efficiency,
acceptance and occupancy are mechanical constrains (complete coverage, lowest amount of
material), electronics design of suitable fast and lowest possible noise readout electronics and
radiation hardness of the whole system (electronics and detectors). It is anticipated that the
innermost layer will need replacement at least once during the experiment.



Chapter 2

CVD Diamond

The material aspects of chemical vapor deposition (CVD) diamond will be
presented in this chapter. Standard characterization techniques for crystals,
scanning electron microscopy, X-ray diffraction and Raman spectroscopy were
used, in order to obtain information about the material quality of the CVD di-
amond samples. The diamond samples presented in this chapter were obtained
from two manufacturers [33, 34] and results may be different for other manufac-
turers. The figure below shows the image from the surface of a CVD diamond
as seen through a scanning electron microscope. The surface is unprocessed
and shows crystal grains.

            

Figure 2.1: Scanning electron micrograph from the growth side of a CVD diamond sample
(CDS-1, one of the first diamond samples obtained for characterization as a sensor for
charged particles [34]). The picture shows a corner of the unprocessed surface.
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2.1 Diamond Synthesis

The practical use of diamond as a detector material has been made possible by
advances in the chemical vapor deposition (CVD) growth process. This process
allows diamond to be produced economically over a large area and with high
purity. A description of the diamond lattice and a production method is given
below.

2.1.1 The Diamond Lattice

A diamond crystal is formed of carbon atoms in a diamond lattice structure. The
diamond lattice consists of two face centered cubic lattices, displaced along the diagonal of
the (cubic) unit cell by one quarter the length of the diagonal [35]. In an equivalent definition
one can say: the diamond structure is one face centered cubic lattice (fcc) with two atoms
per primitive unit cell [36]. A face centered cubic lattice can be described by a four point
basis

fcc : four point basis
{
�0,�a1,�a2,�a3

}
def=
{
�0, a

2 (�e1 + �e2), a
2 (�e2 + �e3), a

2 (�e1 + �e3)
}
(2.1)

where �ei, i = 1, 2, 3, are the orthogonal unit vectors along the corners of the cubic cell.
Each atom of the fcc structure can therefore be reached by a linear combination of primitive
vectors:

�R = mi �ai ; mi ∈ N. (2.2)

Fig. 2.2 shows a unit cell of the diamond crystal structure and one way to describe the
positions of atoms in the unit cell: one carbon atom of the primitive cell is placed at the
origin, �0, of an orthogonal coordinate system, {�e1, �e2, �e3}. The second atom of the primitive
cell is situated at (�e1 + �e2 + �e3) a/4 along the body diagonal of the unit cell at a distance of
one quarter of the diagonal length. The diamond lattice is therefore described as

diamond : fcc and two point basis
{

�d1, �d2

}
def=
{
�0 , (�e1 + �e2 + �e3) a/4

}
. (2.3)

The primitive cell chosen here has the volume V = �a1 ◦ (�a2 × �a3) = a3/4, one quarter of
the volume of the unit cell. One could choose other primitives cells to describe the diamond
lattice (for example the Wigner Seitz cell). The lattice constant, a = 3.56 Å, is the corner
length of the cubic cell. The distance from one atom to its nearest neighbour, which is drawn
as a line between the carbon atoms, is |�d2| = a

√
3/4 = 1.54 Å.

For the description of X-ray diffraction, Raman spectra and electric conduction it is
useful to define the reciprocal lattice. The basis vectors of a primitive cell in the reciprocal
lattice are

�bi ≡ π

V
εijk �aj × �ak , V =

1
6

�ai ◦ (εijk �aj × �ak) =
1
4

a3 ; i, j, k ∈ {1, 2, 3} (2.4)

where the �ai span the primitive cell in the unit cell of the direct lattice, as defined in Eq. 2.1.
A primitive cell in the reciprocal lattice is called a Brillouin zone. In general one distinguishes
the first Brillouin zone from higher Brillouin zones. The first Brillouin zone is the Wigner
Seitz cell of the primitive lattice. The Brillouin zone used here is a higher order primitive



24 CHAPTER 2. CVD DIAMOND

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���

���
���
���
���

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������

2e

3e

1e

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

a

����������
����������
����������
����������

����������
����������
����������
����������

����������������
����������������
����������������

����������������
����������������
����������������

�������
�������
�������
�������

�������
�������
�������
�������

a

a

Figure 2.2: The cubic unit cell of the dia-
mond lattice. The corner atoms of the prim-
itive cell are marked with small circles on a
light gray background. Those atoms of the
diamond lattice which are missing in a face
centered cubic lattice are shaded with dashed
lines on a dark gray background. The four
nearest neighbour bonds for each atom are
drawn with solid lines. The origin of the co-
ordinate system {�e1, �e2, �e3} is located at one
corner atom of the unit cell. The unit cell
has corner lengths a. The distance to nearest
neighbours is a

√
3/4.

cell. A vector, �G, of the reciprocal lattice is then a linear combination of reciprocal basis
vectors

�G = ni
�bi with ni ∈ N. (2.5)

The ni are called the Miller indices.

2.1.2 Diamond Phase Diagram

Synthetic diamond can be formed by two techniques, one using a high-temperature
(> 1000 ◦C), high-pressure (> 105 atm) liquid and the other using a gas at lower temperature
(< 1000 ◦C) and low pressures (≈ 0.1 atm)1. The high-pressure process takes advantage of
the phase diagram of carbon, shown in Fig. 2.3. At 1 atm, graphite is the most stable form
of carbon, but as the pressure is increased, the diamond phase becomes more stable [37]. At
298 K and 1 atm pressure, the difference in free energy between diamond and graphite is
0.03 eV per atom, which is of the order of kBT = (1/40) eV at room temperature. However,
there is a large activation barrier inhibiting the transformation of graphite to diamond [38].
Since graphite (2.26 g/cm3) is less dense than diamond (3.5 g/cm3) [from Table 1.1] the ‘first’
phase of carbon formation out of a super-saturated carbon gas is graphite and not diamond.
The transformation of graphite into diamond is a slow process due to the activation barrier;
high temperatures and catalysts (nickel, iron or cobalt) are usually required [37].
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Figure 2.3: Pressure versus temper-
ature phase diagram for carbon [37].
The line labeled with nickel and car-
bon denotes the conditions utilized for
diamond growth using metallic cata-
lysts [39]. More precise pressure ver-
sus temperature phase diagrams can be
found in reference [40].

1The unit atmospheric pressure: 1 atm = 760 mmHg = 760 Torr = 1.013× 105 N/m2, 1 bar = 105 N/m2 =
105 Pa.
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2.1.3 Chemical Vapor Deposition of Diamond

The second production technique uses a non-equilibrium process to form diamond. The
diamond is grown in a mixture of gases containing carbon, hydrogen, and oxygen. Fig. 2.4
shows the principle of a hot filament chemical vapour deposition reactor. Carbon deposits in
the form of graphite and diamond on a heated (600 ◦C to 1000 ◦C) surface (substrate) from
decomposition of carbon containing gases (for example methane, CH4). Graphite usually de-
posits much faster than diamond, however, graphite is etched by hydrogen and oxygen atoms
and OH radicals while diamond is comparatively inert. Under the best possible conditions
any deposited graphite will be etched while diamond continues to be deposited [37]. The
main difficulty in the synthesis of diamond by the CVD method is preventing the deposition
of carbon in its stable form (graphite). Therefore all studies of the growth of large or thick
diamond films are essentially developments of methods of removing graphite or preventing
its formation.

Chemical vapor deposition can be separated into two steps: nucleation and growth. The
exact process of nucleation in the CVD process is difficult to model and it is an active field of
research [38]. The nucleation is thought to begin by adsorption of carbon from the gas phase
on the substrate material. This is difficult since it requires a suitable atomic site for the carbon
atom on the substrate surface. The nucleation can be achieved on non-diamond substrates
like silicon or metals (for example molybdenum) which can form a carbide. The nucleation
process is usually enhanced by providing nucleation centers on the substrate. Nucleation
centers can be defects on the substrate which can be obtained by polishing the substrate
using grit materials such as silicon carbide, alumina or diamond powder [41]. Nucleation
may involve the intermediate formation of graphite. The electron structure of a carbon atom
on the surface can be an sp2-hybrid or an sp3-hybrid. The sp2-bonded carbon can be etched
by atomic hydrogen, desorb or eventually convert from an sp2-hybrid to an sp3-hybrid. In
graphite, the carbon atoms are arranged in parallel hexagonal layers, having strong sp2-bonds
within each layer and only weak Van der Waals bonds between layers. The cohesion between
layers is relatively low. Once an sp2-bond is broken carbon atoms on the surface can be
hydrogenated by atomic hydrogen and then act as a site for diamond growth [38].

Diamond growth requires large amounts of atomic hydrogen provided by the decomposi-
tion of molecular hydrogen in the heated reaction region. The hydrogen serves two functions.
Firstly the atomic hydrogen can remove (etch) sp2-bonded carbon (graphite). Secondly hy-
drogen can terminate the surface of an existing diamond or graphite structure. A hydrogen
terminated diamond surface itself is stable. A carbon radical can replace a hydrogen ter-
mination on the surface. Diamond growth is then a competition between the formation of
graphite and the etching of graphite. The growth of diamond requires tuning of the growth
parameters in order to obtain the correct rate between the breaking of sp2-bonded carbon
(graphite) and making of sp3-bonded carbon (diamond).

The possible reaction processes are summarized in reference [38]. Fig. 2.5 shows the
triangular diagram with atomic hydrogen, oxygen and carbon at each corner. Mixtures with
certain ratios of these elements are located inside the triangle. The diamond growth is only
possible for ratios in the narrow region from hydrogen to CO (along the carbon monoxide
line, ‘CO-line’). This information was obtained by analysis of C-O-H gas compositions and is
independent of the particular CVD growth method [42]. The triangular diagram contains no
information about the temperature or pressure. However, substrate temperature and pressure
are important parameters. It was found that the region of possible diamond growth narrows
with increasing substrate temperature [42].

Diamond from a CVD process is polycrystalline in nature with a columnar structure of



26 CHAPTER 2. CVD DIAMOND

C, H, O 

AC

gas out

gas in

substrate

hot filament

graphite, diamond

CO

H O2

2

2

2 2

4

0.1

0.10.9

0.9

0.90.1 0.5

4

6

C H

C H

C H

C H

C/(C+O)

H O

C

no growth 

non-diamond
carbon

diamond
growth
region

O/(O+H)

H/(H+C)

Figure 2.4: Schematic diagram of
a hot-filament chemical vapour de-
position reactor [38].

Figure 2.5: Diagram for diamond deposition
from hydrogen-oxygen-carbon gas mixtures.
Diamond growth is possible in the narrow re-
gion from hydrogen to CO. Taken from refer-
ence [42].

grains. The columns typically increase in size from the nucleation side to the growth side.
Polycrystalline CVD diamond has grain boundaries between columns. Once nucleation has
been established the orientation of crystal growth can be controlled by the growth conditions
(gas composition, density of nucleation sites, temperature and pressure) in the reactor. Dif-
ferent combinations of growth parameters produce diamond. CVD diamond can be grown
with texture which means that its crystal planes are oriented with respect to a fixed direction.

2.1.4 History of Diamond CVD

Diamond synthesis by chemical vapour deposition was first achieved at Union Carbide
in 1952 [43] using a methane flow over a heated diamond grid. The growth rate was low
and significant amount of graphite was present. This first chemical vapor deposition was
achieved before the first high-pressure high-temperature diamond synthesis in 1953. Without
knowledge of the first CVD synthesis new efforts started in 1956 and 1961 and were later
documented in references [44, 45]. An important step was the synthesis of CVD diamond on
non-diamond substrates in 1976 [46], 1981 [47, 48] together with new production techniques
in microwave plasma reactors in 1983 [49].

2.1.5 Example of Diamond CVD

A relatively simple experimental setup of a diamond synthesis by a DC plasma chemical
vapour deposition can be found in reference [50]. Inside a metallic chamber (pressure ≈
200 Torr), decomposition of the gas (methane/hydrogen, 0.9 % to 3.8 %) and partial ionization
(plasma) was achieved between two electrodes which were at a voltage of ≈ 1000 V. No hot
filament was necessary in this configuration. The electrical current at plasma glow was 2.5 A.
Polycrystalline diamond of several 100 μm thickness was deposited at the anode on a time
scale of several hours. Both anode and cathode were water cooled and the anode (substrate)
temperature was typically 1000 ◦C. A good overview of other diamond synthesis techniques
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can be found in reference [41].

2.2 Scanning Electron Micrographs

A scanning electron microscope (SEM) was used to obtain magnified topo-
graphical images of CVD diamond surfaces. The SEM can produce images
from surfaces with greater magnification and greater depth of focus than op-
tical microscopes due to the short de Broglie wave length of electrons. The
magnifications used here, were between ×50 and ×5000. The polycrystalline
structure of CVD diamond was studied under various view angles. The micro-
graphs allowed the measurement of grain sizes on the nucleation side and on
the growth side.

2.2.1 Principle of the Electron Microscope

In an SEM, an electron beam is generated and scans the sample. Electrons are emitted
from a cathode and accelerate in a vacuum to the anode. They pass the anode and travel
with a typical kinetic energy of 15 keV to the sample (specimen). Magnetic fields focus and
steer the electron beam over the specimen. Electrons interact with the atoms on the surface
of the specimen. The relevant interactions for topographic images are electron backscattering
and secondary electron production (other interactions like X-rays emission, Auger electron
emission or cathodoluminescence occur and can be used to obtain information about atomic
surface composition or electrical surface characteristics). The smallest distance which can be
resolved by an electron microscope is given by [51]

d = 0.61
λ

sin α0
(2.6)

where α0 ≈ 0.34 ◦ is a realistic value for the aperture angle and λ the de Broglie wave length
for electrons (see Eq. 1.5). A typical electron energy of 15 keV, corresponding to a wave
length of λ = 0.01 nm, gives the resolution of d ≈ 1 nm which is smaller by 3 orders of
magnitude than the resolution of optical light microscopes.

The yield of electrons emitted from the specimen surface depends on the incident angle
between the beam and the specimen surface. Lateral topographic changes on the surface are
therefore detected as a change in electron yield from the surface as the beam scans over the
specimen. The electron yield from the surface is typically measured using a scintillator read
out by a photomultiplier, mounted next to the sample. The electron beam scans over the
sample while the yield is measured. The topographic image of the surface is the yield as a
function of the position on the surface.

2.2.2 Experimental Method

The CVD diamond samples had a size of 1 × 1 cm2 and thickness between 400 μm
to 650 μm. They had electrical contacts of 5 mm in diameter on both sides (from electrical
characterizations described in Chapter 3), the remaining area had the bare ‘as grown’ surface.
A small amount of conductive plasticine, containing graphite, was used in order to electrically
connect the one contact with the other contact. The plasticine also conducted charges from
the sample to the grounded sample holder preventing charging of the sample. Non-conductive
samples tend to accumulate charges in the electron beam which would deflect the scattered
electrons and cause image distortion (charging effect). The charging effect was observed
several times. Moving the plasticine or changing the view angle helped and good images
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were obtained. The micrographs where taken using the scanning electron microscope at the
department of biology at the University of Florence [52].

2.2.3 Observations and Results

Fig. 2.6 shows an electron micrograph from growth and nucleation side of a CVD dia-
mond. This sample was produced by reference [33]. Diamond grains are visible on both sides
and illustrate the polycrystalline morphology of CVD diamond. The growth side contains
grains with a size up to 100 μm, while the nucleation side shows smaller grains of the order
of 1 μm. The nucleation side has small gaps in between grains, while no gaps are observed
on the growth side. Small reflecting contaminations, with a size smaller than 5 μm, appear
on the growth side. They were only observed on this sample and could not be removed by
cleaning. They may be remainders of gold from the electrical contact fabrication.

Fig. 2.7 shows the electron micrographs from the growth and the nucleation side of a
CVD diamond sample produced by reference [34]. The growth side shows grains on the same
scale as Fig. 2.6 with typical grain sizes up to 100 μm. The grains are striated compared to
grains in Fig. 2.6 an observation which was made on CDS samples in general. The nucleation
side of CDS-1 is shown on a ten micron scale. No grains can be observed but rather a curled
structure on a ten micron scale.

                        

Figure 2.6: Electron micrographs from the growth side (left, scale 100 μm) and the
nucleation side (right, scale 2 μm) of the CVD diamond sample TD1150-Y12. The
sample was grown by reference [33].

The average grain size on the nucleation and growth side can be obtained from SEM
images. The method used here was suggested by the American Society of Material Testing
and described in reference [11]. One counts the number, N , of grains in the area, A, of the
image. In case of gaps between grains one estimates the gap area, A′, inside the area A. The
average grain size is then given by

g⊥ =

√
A − A′

N
. (2.7)

Table 2.1 lists samples and their average grain size on the growth and nucleation side. The
average grain size on the growth side ranges from 50 μm to 100 μm. The grain size on the
nucleation side was measured on the sample Y12, with clearly visible grains. The grain size
on the nucleation side of CDS samples could not be estimated because of the curly structure.

Fig. 2.8 shows the grain size from the growth side versus the thickness of the CDS
samples. It can be seen that the grain size increases linearly in the measured thickness
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Figure 2.7: Electron micrograph from the growth side (left, scale 100 μm) and the
nucleation side (right, scale 10 μm) of the CVD diamond sample CDS-1. This sample
was grown by reference [34].

sample thickness g⊥growth g⊥nucleation

[μm] [μm] [μm]
CDS-1 450 49 ± 8 -
CDS-2 485 77 ± 8 -
CDS-7 593 98 ± 10 -
CDS-8 645 94 ± 10 -
CDS-9 608 88 ± 11 -
CDS-10 469 61 ± 7 -

TD1150-Y12 415 70 ± 8 1.4 ± 0.2

Table 2.1: Average grain-sizes, g⊥growth

and g⊥nucleation, on growth and nucleation
side of CVD diamond samples measured
by electron microscopy using the method
explained by Eq. 2.7. The ‘-’ means that
no grain size could be measured.

interval from 450 μm to 645 μm for these samples. It was observed in the past that the grain
size on the nucleation side is of the order of a few microns [11]. The SEM from the nucleation
side of TD1150-Y12 confirms this observation. It is therefore reasonable to approximate the
measured data by a function that intersects zero and the line fit to the data is forced to
intersect 0. The linear fit (solid line) has a slope of 0.14. It has been shown on other samples
that the grain size increases linearly with thickness [11]. The slope of the linear increase
depends on the growth conditions as found by studying the slope for multiple growths. The
number of measured data points here is too sparse in order to obtain information about
multiple growths. The measured data is consistent with a linear increase of grain size for a
single growth condition.

Fig. 2.9 shows a typical cross-section of a CVD diamond. The upper edge is the growth
side of the diamond, the lower edge is close to the nucleation side. The columnar structure
of diamond growth can be recognized. This cross section is free of voids.

2.2.4 Summary and Discussion

The increase of grain size from the nucleation side to the growth side was observed on
CVD diamond samples from three other manufacturers as presented by S. Zhao in refer-
ence [11]. The increase of grain size from the nucleation side to the growth side seems to be
a general property of diamond produced by chemical vapour deposition. In reference [11],
the grain size on the nucleation side was observed to be between 1 μm to 3 μm with gaps of
similar size in between grains. The nucleation side of sample Y12 agrees with this observa-
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Figure 2.9: Typical cross-section of high
quality CVD diamond optical material, (cour-
tesy of De Beers Industrial Diamond Division
(UK) Ltd) [53].

tion. The nucleation side of CDS samples shows no single grains. Their nucleation side may
consist of grains with a size below the scale of the pictures taken on these samples. It also
could be that the nucleation side contains a non-diamond structure or that the structure con-
tains defects due to the surface of the substrate on which it was produced. The observation
is plausible since different manufacturers initiate the nucleation on different substrates (for
example tungsten, molybdenum or silicon) and use different growing techniques. The grain
size on the growth side of these CDS samples is larger than on those samples in reference [11]
which may reflect the progress made by the manufacturers.

The observation of gaps and curly non-diamond structures on the nucleation side suggests
material removal (polishing or lapping) before electrical contacts are prepared. Gaps could
cause charge loss and non-diamond regions on the nucleation side have different electrical
properties than the bulk. As a result samples for diamond strip or pixel detectors were
normally lapped on the nucleation side before metallization. Also the growth side was lapped
for tracker preparation in order to obtain a smooth surface. Visual inspection (using a light
microscope) showed normally very few remaining gaps on both sides after lapping.
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2.3 X-Ray Diffraction

Crystals have a lattice structure with inter-atomic distances, ranging from sev-
eral Angstroms to several tens of Angstroms. X-rays have typical wave lengths
of inter-atomic distances and have been used to measure lattice orientations in
CVD diamond samples. Orientations of lattice planes in polycrystalline CVD
diamond samples (the texture) have been quantified. Other parameters like
the lattice constant of diamond or the mass density were verified from the
measurements.

2.3.1 The Principle of X-ray Diffraction

Fig. 2.10 shows two lattice planes a distance, d, apart with X-rays incident with wave
vector, �k, and outgoing waves with wave vector, �k′. Incoming waves are elastically scattered

d

α

lattice planes

α’

k k’ Figure 2.10: Principle of X-ray diffraction.
An X-ray wave front is incident with wave vec-
tor �k under the Bragg angle α onto two lat-
tice planes. The lattice planes are a distance
d apart. The incident wave is elastically de-
flected into the outgoing wave with wave vec-
tor �k′.

such that |�k| = |�k′|. The wavelength, λ, of the incident and outgoing waves is then λ =
2π/|�k| ≡ 2π/|�k′|. Constructive interference of elastically scattered waves is possible if the
path length difference from all scatters is an integral number of the wavelength:

nλ = d sin α + d sin α′. (2.8)

Using the condition of elastic scattering and constructive interference one derives the magni-
tude of the difference between the outgoing and the incoming wave vectors 2

|�k′ − �k| =
2π n

d cos([α′ − α] /2)
. (2.9)

Under the experimental condition of α′ = α one obtains the Laue condition for X-ray diffrac-
tion

|�k′ − �k| =
2π n

d
. (2.10)

An alternative formulation, the Bragg condition, can be read from Eq. 2.8, again using the
experimental condition α′ = α:

sin α =
n

d
· λ

2
. (2.11)

Using the definition �K
def= �k′ − �k one can generalize the Laue condition: for constructive

interference the ‘momentum transfer’, �K, has to be equal to a reciprocal lattice vector, �G,

2The following relations are useful to proof Eq. 2.9: sin

(
α′ + α

2

)
= ±

√
1 − cos (α′ + α)

2
and

sin α + sin α′ = 2 sin

(
α + α′

2

)
cos

(
α − α′

2

)
.
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�K = �G ≡ ni
�bi with ni = (h, k, l)i ∈ N. (2.12)

The reciprocal lattice vector is defined in Eq. 2.5 with Miller indices, ni and the basis vectors,
�bi, of the Brillouin zone [Eq. 2.4]. The general Laue condition, Eq. 2.12, can be formed into
the general Bragg condition

sinα =
√

h2 + k2 + l2

a
· λ

2
. (2.13)

The number of combinations for Miller indices is finite since the sine on the left side is
bounded by one. The intensity, I, of scattered X-rays is proportional to the square of the
scattering amplitude from the primitive cell

I( �K) ∝ |S( �K)|2. (2.14)

The scattering amplitude, S( �K), is called the geometrical structure factor. It is the sum over
amplitudes from the scatterers in the primitive cell

S =
∑

j: dj in fcc

Sd e+i �K·�dj = Sd · Sfcc. (2.15)

The primitive cell of the fcc contains 8 atoms, at locations which were shown in Fig. 2.2.
These atoms are the centers for scattering and contribute to the scattering amplitude of the
fcc lattice. The primitive cell of the fcc has one carbon atom inside which gives a structure
to the primitive cell. This structure is described by the structure factor, Sd, in the sum of
Eq. 2.15. If a primitive cell contains different types of atoms one would require an atomic
form factor. Such factor is not necessary in the mono-atomic diamond lattice. The scattering
amplitude can be calculated for the diamond lattice using Eq. 2.4, Eq. 2.12 and the locations
of scatterers from Eq. 2.3. One finds

Sfcc =
∑

j: dj in fcc

e+i �K·�dj

= 2 + eiπ(h+k) + eiπ(h+l) + eiπ(k+l) +
(
eiπh + eiπk + eiπl

)
·
(
eiπ(h+k+l)

) (2.16)

and

Sd =
∑

j: dj in diamond

e+i �K·�dj = 1 + ei π
2
(h+k+l). (2.17)

The peak intensities for the possible combinations of Miller indices can then be calculated
using Eq. 2.14. Fig. 2.11 shows the result of this calculation: it gives the intensities as a
function of 2α, where α is obtained from Eq. 2.13 for the wave length λ = 1.5406 Å and the
lattice constant a = 3.5668 Å. The wave length is the Kα1 transition wave length for copper
as it will be used in the measurement below. The open circles give the calculated intensities
for the fcc structure only. The solid circles are the calculated intensities for diamond. The
figure contains all combinations of Miller indices which are possible at this wave length for
diamond. Only a few combinations show constructive diffraction: diamond peaks appear at
(111), (220), (311), (400), and (331). They exist already for the fcc structure. All other
combinations are suppressed in diamond. Some of them are already suppressed by the fcc
structure (like (100), (110), (210), ...). Others are still present for a fcc structure but are
suppressed by the additional atom inside the primitive diamond cell ((200), (222) and (420)).
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Figure 2.11: Calculated intensities and
angles for Bragg peaks in the mono-
atomic diamond lattice (solid circles) and
for a face centered cubic lattice, fcc (open
circles). The calculation was done with
the lattice constant a = 3.5668 Å and
the Kα1 X-ray wave length of copper.
The Miller indices (hkl) are given for each
angle. The Bragg angles and intensi-
ties were calculated using Eq. 2.13 and
Eq. 2.14.

It is important to note that the scattering amplitude is not the only source of �K depen-
dence to the intensity. Further dependence comes from ordinary angular dependence of any
electromagnetic scattering and also on angular dependent absorption of X-rays in the dia-
mond. Therefore the structure factor alone can not predict the absolute intensity in a Bragg
peak. However, it can serve as a selection rule for diffraction angles. At the calculated angle
with non-vanishing intensity one therefore expects to observe peaks in the X-ray diffraction
measurement. Where the calculation predicts zero intensity one can not measure a peak.

Table 2.2 lists the lattice orientations and the corresponding Bragg angles from diamond
powder taken from reference [54]. The diamond powder contains small grains (of the order
of 10 μm in diameter) in a randomly distributed orientation. One therefore expects to see
diffraction at all angles which are allowed by the selection rule [Eq. 2.15]. A comparison
between the calculated Bragg angles in Fig. 2.11 and the angles in the table verifies that the
given selection rule and the calculated angles are correct. The table also lists the diffraction
intensities, Ipowder

hkl , for the peaks. The intensities are different for different peaks although
the powder can be assumed to contain equal amounts from all orientations. The peaks are
not equal since the acceptance of the diffractometer is different for different angles.

(hkl) (111) (220) (311) (400) (331)
2α1 [◦] 43.92 75.30 91.50 119.53 140.60
Ipowder
hkl [a.u.] 100 25 16 8 16

Table 2.2: The intensities, Ipowder
hkl , and Bragg angles, 2α1, of X-ray diffraction peaks

from diamond powder. The angles are given for the incident wave length of 1.5405 Å
(Kα1 transition in copper). The values are taken from the measurement in refer-
ence [54].

2.3.2 Experimental Method

An X-ray diffractometer contains an electron tube that accelerates electrons towards an
anode. The electron beam strikes the anode and ionizes atoms of the anode material and
a vacant electron state remains in the atomic ‘shell’. The probability for ionization of the
innermost atomic shell, the K-shell, is higher compared to outer shells. The vacant electron
state in the K-shell will be re-occupied from an outer shell electron, this transition causes X-
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ray emission. The X-ray energy is the difference between electron binding energies before and
after transition. The shell energies are split due to the angular momentum of electrons in the
electric field of the nucleus. The L shell generally splits into three energy levels: LI, LII, LIII.
Two transitions with photon emission are possible between the L- and the K-shell: Kα1

between K and LIII and Kα2 between K and LII. In copper, the Kα1-transition emits X-
rays with a wave length of λα1 = 1.540562 Å. The Kα2-transition emits a wave length of
λα2 = 1.544390 Å.

Fig. 2.12 shows a schematic of the setup for the X-ray diffraction measurement. The setup
contained an X-ray source, a goniometer and an X-ray scintillation counter for measuring the
intensity of scattered X-rays. X-rays were produced by an electron beam from a fixed copper
(Cu) anode with the wave lengths, λα1 and λα2 , as given above. The electron beam had
an energy of 40 keV and an electron current of 20 mA. The goniometer was mounted next
to the X-ray tube. It contained the sample holder that could be turned by a motor around
one axis with respect to the incident X-rays. The angle between the sample holder and
the axis of incident X-rays is the Bragg angle, α. The X-ray detector rotated around the
same axis as the sample holder. The detector was rotated with twice the angular velocity
of the sample holder such that its angle was always 2α with respect to the incident X-rays.
The angle reproducibility in 2α was ±0.001◦ over the entire angular range, as given by the
manufacturer of the diffractometer. A continuous angle scan covered the 2α range from
17.5◦ to 72.5◦. The measurements were carried out using the X-ray diffraction setup at the
department of mechanics at the University of Florence [55].

α ’’ α +=
anode

goniometer
X-ray detector

2α 

α

α

e-beam

X-rays

sample

collimator Figure 2.12: Schematic of the diffractometer
setup. A sample was mounted in the center
inside the goniometer (not drawn to scale).
The sample was turned slowly by a motor
such that its surface was always in the turn-
ing axis. The intensity of scattered X-rays was
measured by an X-ray detector. The experi-
mental condition forced the observation under
the angle α′ = α.

The calibration of the diffractometer was verified using a silicon pellet that was delivered
by the manufacturer. The silicon pellet consisted of silicon grains. The Bragg peak position
in silicon was calculated, as described above for diamond, using the lattice constant aSi =
5.43102 Å and was compared with the measurement of Bragg angles. Fig. 2.13 shows the
intensity from a calibration angle scan with the silicon pellet in the diffractometer. The peak
with the highest intensity is at (111) and is normalized to 100 arbitrary units. The exact peak
positions were determined from magnifications of the peaks as shown for the (331) orientation
in Fig. 2.14. Each peak is in fact a doublet since the X-rays contain both wave lengths from
the Kα1 and the Kα2 transitions. The intensities of each peak are Gaussian distributed. The
exact maxima were found from a Gaussian fit to the measured intensity

Î(2α) = Î0 + Î1 e(2α−2 α1)2/(2σ2
1) + Î2 e(2α−2 α2)2/(2σ2

2) (2.18)

where Î0 is the background intensity and Î1, Î2 are the intensities at the peaks. Each orienta-
tion peaks at the Bragg angles 2α1 and 2α2. The width of each peak is given by the standard
deviations σ1 and σ2. The widths of the (331) peak in silicon [Fig. 2.14] are σ1 = 0.048 ◦ and
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Figure 2.13: Intensities of X-ray diffraction
peaks from a silicon pellet versus the angle
2α. The orientation of planes are character-
ized by their Miller indices (hkl). The silicon
pellet was provided by the manufacturer of the
diffractometer as a standard and was used to
verify the correct calibration of the setup.

Figure 2.14: Measured Bragg peak of the
(331) orientation in silicon. The peak is a
doublet since the X-rays consist of two wave
lengths from Kα1 and Kα1 transitions. The
measured data is fitted with the sum of two
Gaussian functions.

σ2 = 0.057 ◦. The widths determine the error of the measured Bragg angles

√〈
(2αi)

2
〉

=
√

σi√
2πÎi

; i = 1, 2. (2.19)

The intensity, Î, as measured in the diffractometer is in fact a spectral intensity

dI

d(2α)
(2α) = Î(2α). (2.20)

Integration of the spectral intensity gives the intensity of X-rays scattered by grains with the
lattice orientation (hkl)

Ihkl =
∫ 2αupper

2αlower

Î(2α) d(2α). (2.21)

The limits 2αlower ≈ 2α1 − 3σ1 and 2αupper ≈ 2α2 + 3σ2 were used for measuring Ihkl .
Table 2.3 gives the result of the calibration and compares the measured Bragg angles and the
intensities with the values given by the manufacturer. The calibrated angles agree within the
errors with the angles given by the manufacturer. Also the measured intensities, Ihkl , agree
within 10 % with the values given by the manufacturer.

The CVD diamond samples were mounted like silicon in the sample holder. They were
aligned in plasticine with their surface parallel to the sample holder and in the turning axis.
The fixation with plasticine insured that the surface under study was in the turning axis even
though the samples had different thicknesses.

2.3.3 Results: Orientations of Lattice Planes

Fig. 2.15 shows X-ray diffraction peaks from the growth and nucleation side of the CVD
diamond sample CDS-7. On the nucleation side four diamond peaks are visible: (111), (220),
(311) and (331). The angles were predicted from Fig. 2.11. The relative intensities from
the nucleation side are close to those for diamond powder [Table 2.2]. The (400) orientation
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from manufacturer measured here

(hkl) 2α1 [◦] Ihkl [a.u.]
(

2α1 ±
√〈

(2αi)
2
〉)

[◦] Ihkl ± 10% [a.u.]

(111) 28.443 100.0 28.445± 0.004 100.0 ± 10

(220) 47.304 55.0 47.292± 0.005 54.7 ± 5

(311) 56.122 39.4 56.126± 0.005 40.2 ± 4

(400) 69.132 7.1 69.114± 0.02 8.4 ± 1

(331) 76.380 12.5 76.355± 0.02 13.5 ± 1

Table 2.3: Calibration: Bragg angles, 2α1, from the silicon powder pellet using the
Cu Kα1 X-ray wave length and intensities, Ihkl , in the Bragg peaks. The values in the
left column were given by the manufacturer of the diffractometer. The values in the
right column are the result of the calibration measurement.

is not observed. The peak below 40 ◦ is due to diffraction from the gold contact. Low
intensity gold diffraction peaks were observed at various Bragg angles since the diamond
samples had gold contacts on both sides. The growth side has one principal peak for the
(220) orientation. The other diffraction peaks are negligibly small and nearly invisible on
this scale. The presence of only one peak means that the corresponding crystal orientation
dominates over other orientations. The dominance of one orientation is called texture. The
change from the powder-like orientations on the nucleation side to the (220) orientation on
the growth side indicates a prefered direction of growth for this sample and a strong texture.

sample side measured Ihkl ±10%
name (111) (220) (311) (400) (331)
Di-powder - 100 25.0 16.0 8.0 16.0
CDS-1 g 100 7.3 18.6 1.6 23.8

n 100 19.7 11.7 1.1 12.5
CDS-2 g 100 254.0 9.4 15.7 254.0

n 100 178.5 11.2 4.0 68.6
CDS-7 g 100 1244.5 24.2 5.2 37.9

n 100 32.2 7.7 0.6 11.9
CDS-8 g 100 7000.0 25.3 13.0 266.6

n 100 184.9 10.5 2.8 113.1
CDS-10 g 100 742.5 27.6 4.8 147.9

n 100 82.0 8.9 0.8 18.6
TD1150-Y12 g 100 3.9 12.1 1.4 5.1

n 100 4.2 9.0 1.7 9.5

Table 2.4: Measured X-ray intensities Ihkl at the Bragg peak in diamond powder and
CVD diamond samples. The intensities are normalized to the intensity in the (111)
orientation. The lattice orientations are characterized by their Miller indizes (hkl).

Table 2.4 gives the intensities, Ihkl , of Bragg peaks from all samples measured. The
intensity for the (111) orientation is normalized to be 100 arbitrary units. It is not yet
possible to extract the abundance of orientations from this table since the intensities given
are not corrected for the acceptance of the diffractometer. By normalizing to the abundance
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Figure 2.15: Measured X-ray diffraction peaks from the growth (middle) and nucle-
ation side (bottom) of the CVD diamond sample CDS-7. The peaks from diamond
powder (top), as taken from reference [54], are given for comparison.

of orientations in the diamond powder one obtains the percentage of oriented grains [56]

phkl =
ICVD
hkl

ItotalI
powder
hkl

with Itotal =
∑
hkl

ICVD
hkl /Ipowder

hkl , (2.22)

where ICVD
hkl is the intensity in the Bragg peak of the CVD diamond sample at (hkl) and

Ipowder
hkl the intensity from the diamond powder in Table 2.2. The summation for the total

intensity is performed over the five orientations with Miller indices (111), (220), (311), (400)
and (331). The intensity for the orientation (400) is included here since a Bragg peak is
expected for this orientation. However it does not significantly contribute since the intensity
of the (400) peak was measured to be relatively small. Table 2.5 gives the percentage of
oriented grains. All samples are textured on the growth side. On the nulceation side of CDS-
1 and CDS-7 the relative intensities are similar to the powder diffraction peaks which means
no texture. The samples CDS-2 and CDS-8 nucleate mainly with the orientation (220). The
samples CDS-1 and Y12 are textured but they do not change the direction of growth from
the nulceation to the growth side.

2.3.4 Results: Lattice Constants of CVD Diamond

Fig. 2.16 shows the Bragg peaks for the (111) and (220) planes from the nucleation and
growth side of CDS-7. As in silicon the Bragg peaks of the CVD diamond samples are split
in two Gaussian distributions as described by Eq. 2.18. The peak from the (111) growth
side is shifted with respect to the nucleation side. The cause of this shift requires further
investigation. Alternatively one could fit for three peaks instead of two. Two peaks can be
seen on the growth side and nucleation side at the same angles. The third peak appears at
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sample side measured phkl [%] ±10%
name (111) (220) (311) (400) (331)
Di-powder - 20 20 20 20 20
CDS-1 g 24 7 28 5 36

n 29 23 21 4 23
CDS-2 g 3 34 2 7 54

n 7 52 5 4 32
CDS-7 g 2 90 3 1 4

n 28 36 13 2 21
CDS-8 g 3 93 0.5 0.5 6

n 6 45 4 2 43
CDS-10 g 2 70 4 1 22

n 16 54 9 2 19
TD1150-Y12 g 42 7 31 7 13

n 40 6 22 8 23

Table 2.5: Percentage, phkl , of oriented grains in diamond powder and CVD diamond
samples.

43.7 ◦ and 75.1 ◦ which is 0.2 ◦ smaller than the Kα1 peak. The assumption of three peaks
removes the difficulty of explaining the peak shift but raises the question of the cause of the
third peak. The data measured here was fitted with two peaks only where the positions were
free parameters of the fit (not fixed). The fit function allowed the extraction of the peak
positions at 2α1 and at 2α2 and the lattice constant using Eq. 2.13. The separation between
the two peaks was normally larger for the (220) orientation compared to the (111) orientation
which indicates a higher angular resolution for the measurment at the (220) orientation. The
measurement of the lattice constant is therefore preferrably done using the (220) orientation.
The measurements using (111) were also done for completeness but one has to consider their
possible systematic error due to a shift in the peak position or due to a poor fit for the case
of three peaks.

Table 2.6 summarizes the measured lattice constants. The statistical error of the lattice
constant measurement is obtained from Eq. 2.13 as the derivative of a with respect to 2α

σai ≡
∂a

2 ∂α

√〈
(2αi)

2
〉

=
1

2 tan αi

√〈
(2αi)

2
〉
. (2.23)

The measurement on the growth side of CDS-8 has the smallest error. The measured lattice
constant is (3.56604±0.0006) Å in good agreement with the value of 3.5668 Å from a natural
sample [10].

The Bragg peaks have the width σ1 and σ2. The width is due to instrumental broadening,
finite grain size and structural defects [11]. The peak widths in the CVD diamond samples as
obtained from the average of σ1 and σ2 are listed in Table 2.6 as well. The width is, within
variation, equal to the width obtained from the silicon pellet. It is likely that the width is
dominated by the instrumental broadening.

The mass density of diamond can be calculated from the measured lattice constant.
With n = 8 atoms per unit cell, the relative atomic mass of carbon, mC̄ = 12.011 u, and the
measured lattice constant, a = 3.56604 Å, one obtains the mass density of diamond

	 =
n mC̄

a3
= (3.518 ± 0.002) g/cm3. (2.24)
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Figure 2.16: X-ray diffraction peaks of the (111) and (220) lattice plane from the
growth and from the nucleation side of CVD diamond sample (CDS-7).

The measured mass density agrees with the density of 3.515 g/cm3 as given in reference [10].

2.3.5 Summary and Discussion

The crystal structure of CVD diamond samples has been studied using X-ray diffraction.
The Bragg angles with non-vanishing Bragg peaks were calculated under the assumption of
the position of atoms in the diamond cubic cell [Fig. 2.2]. Diffraction peaks were found at
the expected Bragg angles. No diffraction peak was seen for the plane orientation (400).
The diffraction on a natural diamond type IIa was measured for comparison. The natural
diamond used was cut with the goal to obtain a lattice orientation of (400). No diffraction
peak was observed from the natural diamond. The missing (400) orientation is therefore not
specific to the CVD diamonds measured here. The measurement of the (400) orientation
may require further tests. Grains on the nucleation side are oriented differently from the
equal distribution of oriented grains in a powder. The preferred orientation on the nucleation
side on these samples was (111) or (220). As the diamond grows a certain orientation may
decrease in favor of another orientation. The growth side shows typically one single peak for
the (111) or (220) lattice planes. The diamond growth side is highly oriented and textured.

The CVD diamond lattice constant was measured to be (3.5660± 0.0006) Å which gives
the mass density of (3.518 ± 0.002) g/cm3. The mass density is of relevance for charged
particle detection since the energy loss of particles in matter is proportional to the mass
density.

The effect of X-ray absorption in diamond was not discussed here. However, it would
be important to confirm that X-ray diffraction only probes the diamond surface up to a
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(111) plane (220) plane
sample side lattice constant width lattice constant width

(a ±σa) [Å] σ [◦] (a ±σa) [Å] σ [◦]
CDS-1 g 3.57575±0.005 0.0955 3.57275±0.007 0.0522

n 3.56846±0.002 0.0448 3.56622±0.015 0.0566
CDS-2 g 3.57515±0.024 0.0830 3.56994±0.003 0.0830

n 3.56729±0.007 0.0425 3.56766±0.002 0.0572
CDS-7 g 3.57534±0.010 0.0718 3.56790±0.0009 0.0545

n 3.56842±0.002 0.0409 3.56850±0.003 0.0667
CDS-8 g no peak 3.56604±0.0006 0.0518

n 3.56475±0.005 0.0432 3.56809±0.002 0.0697
CDS-10 g 3.60262±0.063 0.8 3.56800±0.001 0.0551

n 3.56919±0.003 0.0416 3.57024±0.003 0.0838
TD1150-Y12 g 3.57257±0.003 0.0804 3.57408±0.025 0.1901

n 3.57590±0.002 0.0305 3.57083±0.011 0.0794

Table 2.6: Measured lattice contants and peak width from the growth (g) and nucle-
ation (n) side of CVD diamond samples. The lattice constants were calculated from
the (111) or from the (220) diffraction peak. The peak width σ is the average of the
widths from the Kα1 and the Kα2 peaks.

several micrometers depth in order to draw conclusions on the texture on the surface. It was
shown in reference [11] that typical X-ray attenuation lengths in diamond range from 4 μm
to 33 μm depending on the diffraction peak. Therefore X-rays diffraction indeed only probes
the diamond surface and does not give bulk properties.
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2.4 Raman Spectroscopy

Elastic Rayleigh scattering of light from molecules or from solids leaves the
frequency of the scattered outgoing light unchanged compared to the incident
light. Besides the effect of elastic scattering, inelastic Raman scattering occurs
which changes the frequency of the scattered light compared to the incident
light. The probability for Raman scattering is typically 4 orders of magnitude
smaller than for Rayleigh scattering. The energy difference between the inci-
dent and the scattered light allows phonon creation or annihilation. From the
change of the energy of the scattered light the energy of the phonon can be mea-
sured. The phonon energy is characteristic for the diamond or non-diamond
structures. The lifetime of the phonon is limited by stress in the crystal where
the stress is determined by impurities, defects and dislocations in the lattice.
The later determine the crystal material quality. Raman spectroscopy is a
method to quantify the material quality of CVD diamond by measuring the
phonon lifetime. The material quality of several diamond samples has been
studied using Raman spectroscopy by measuring the phonon lifetime. Results
are reported below.

2.4.1 Principle of Raman Spectroscopy

Atoms in a crystal vibrate in an oscillating motion about the central atomic lattice site.
The motions of many atoms in a crystal are coupled. The collective motion is a vibration mode
of the lattice and can be described as a plane wave with frequency, ω/2π, and momentum h̄�q.
Its energy, h̄ω(�q), is quantized. The lattice vibration mode is called a phonon. Electrons or
photons interact with phonons and create or annihilate phonons. As an example, the finite
velocity of charge carriers in electrical conduction is explained by electron-phonon scattering
and the subsequent energy loss of electrons after a scattering event. If a crystal is illuminated
with light of energy, E, phonons can be created or annihilated as well under the condition of
energy conservation:

E′ − E = ±h̄ω(�q) (2.25)

where E and E′ are the energies of the photon before and after scattering. The positive
sign describes the case of phonon annihilation, the negative sign the case of phonon creation.
Fig. 2.17 illustrates the three types of photon scattering from a solid. The first is the elastic
Rayleigh scattering with E′ = E. The second type illustrates the creation of a phonon
under partial or full energy loss of the photon. Energy loss means that the frequency of the
scattered light is smaller then the frequency of the incident light. This type of scattering is
called the Stokes Raman scattering where Raman spectroscopy shows a spectral line at the
energy difference between the incident and the scattered light. This spectral line is called the
Stokes Raman line. The third type is the annihilation of the phonon under energy gain of the
photon, corresponding to a frequency gain, that is called the anti-Stokes Raman scattering.
The corresponding spectral line at the energy difference is called the anti-Stokes Raman line.
The difference, in energy, wave length or wave number, between the incident and the outgoing
light is called the Raman shift.

In addition to the energy conservation, momentum has to be conserved. Momentum
conservation is given in generalization of Eq. 2.12 as

h̄ �K = h̄ �G ± h̄�q. (2.26)
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Anti-Stokes

Stokes

Rayleigh

Figure 2.17: Three types of photon scatter-
ing are shown: Rayleigh scattering and Ra-
man scattering (Stokes and anti-Stokes). A
photon is incident from the left and excites
a phonon from a phonon-state to a virtual
phonon-state. Depending on the phonon de-
cay channel the outgoing photon has the same,
higher or lower frequency (energy). The pho-
ton energy gain or loss is called the Raman
shift [51].

where �K = �k′ − �k and �G = ni
�bi a vector of the reciprocal lattice in the conventions of

Sec. 2.3. The positive sign corresponds again to the phonon annihilation and the negative
sign to phonon creation.

As an example we consider the following: a typical photon energy of blue light is
2πh̄c/(400 nm) ≈ π eV that corresponds to a photon momentum of π eV/c. A typical
reciprocal lattice vector has the length corresponding to the size of the Brillouin zone that
gives h̄| �G| ≈ 2πh̄/a ≈ 3.5 keV/c which is 3 orders of magnitude larger than the photon mo-
mentum or any change of the photon momentum. Therefore the photon momentum transfer
can be neglected in Eq. 2.26 and on obtains the phonon selection rule

h̄ �G ≈ ∓h̄�q, (2.27)

that means that phonon creation or annihilation is only possible for phonon wavelengths
which match a reciprocal lattice vector.

An estimate of the phonon energy can be found from the phonon velocity, �v

�v ≡ ∂ω

∂�q

Eq. 2.27
=⇒ h̄ω ≈ h̄| �G||�v|. (2.28)

The approximation to the right assumes that �v does not depend too strongly on �q. The
phonon velocity is actually the velocity of sound which depends on the direction of the
phonon propagation in the crystal. The phonon velocity is of the order of 106 cm/s in natural
diamond [40]. Taking this value one estimates a phonon energy of h̄ω ≈ 0.13 eV. Eq. 2.25
allows one to calculate the frequency shift for Raman photon scattering from diamond that
is usually expressed as a wave length or wave number. One obtains the Raman shift for
diamond to be 2πch̄/h̄ω = ac/|�v| ≈ 10 μm corresponding to a wave number of ≈ 1000/cm.

The phonon probability amplitude, p(t), decreases exponentially in time. The spec-
tral probability amplitude, p̃(w), is given as the Fourier transform of the time dependent
probability amplitude

p(t) ∝ e−t/τ =⇒ p̃(w) ∝
∫ ∞

0
et/τ+iwt dt. (2.29)

The intensity of scattered light is therefore

I ∝ |p̃(w)|2 ∝ 1
τ−2 + w2

with w = E′ − E ∓ h̄ω. (2.30)
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Using the definition Γ def= 2h̄/τ one obtains the intensity of the scattered light as a function
of the phonon energy

I(h̄ω) ∝ 1
Γ2/4 + (E′ − E ∓ h̄ω)2

. (2.31)

The intensity has the shape of a Lorentz resonance curve that peaks at the phonon energy
±h̄ω = E′ − E. The intensity curve has a full width at half maximum (FWHM), Γ, that is
explained by the phonon lifetime: a narrow intensity curve indicates a longer lifetime than
a wide curve3. The phonon lifetime is naturally limited by phonon scattering. The width of
the intensity can be understood from the various scattering processes, k, which contribute
each with their specific width, Γk, such that the measured width of the Raman line becomes

Γ =
∑
k

Γk = 2h̄
∑
k

1
τk

. (2.32)

Possible processes which determine the Raman line width are impurities such as non-diamond
carbon compositions, graphite or amorphous carbon, structural defects, lattice distortions,
finite grain sizes, stress in the lattice and also chemical impurities.

In analogy to a resonance circuit one defines the material quality of the crystal

Q
def=

E′ − E

Γ
=

ωτ

2
. (2.33)

The material quality is proportional to the phonon energy and more importantly proportional
to the phonon lifetime. For a given crystal lattice structure the phonon energy is fixed. Hence
the material quality depends on the lifetime only. The phonon lifetime is limited by stress in
the lattice where the stress is caused by impurities, defects and dislocations.

On pure crystalline diamonds a Raman peak can be measured which is centered around
1332 cm−1 with FWHM typically between (2.5 to 3.2) cm−1 depending on the material quality
of the crystal [14]. Between (1400 to 1600) cm−1 CVD diamond broad Raman structures
have been reported in addition to the diamond Raman peak. This is attributed to double-
or triple bonded carbon [14].

The Raman line width and crystal material quality have been measured from the inten-
sity of the scattered light from CVD diamond and were compared to that of natural diamond
in order to verify the material quality of our diamond samples for detector applications.

2.4.2 Experimental Method

The measurements where carried out in one of the Raman laboratories at LENS in
Florence [58]. A micro-Raman setup was used which allows beside the ‘normal’ Raman
measurements to study the position resolved Raman response. The micro-Raman setup
contained three principal components: a light source, a microscope and a spectrometer.
Fig. 2.18 shows the schematic of the micro-Raman setup that was used to measure the
Raman line on diamond samples. The light source was a monochromatic 5 Watt argon laser.
An argon laser emits a green laser light with a wave length of λAr = 514.5 nm. A narrow,
monochromatic light from a laser is preferred compared to a wide-band light source since the
wave number of the Raman line can lie relatively close to the wave number of the incident
light. The laser light was guided via lenses and a mirror onto the diamond sample. The
laser beam was focused such that the illuminated region was below 1 mm in diameter. The

3Eq. 2.31 assumes a constant phonon dispersion curve. Otherwise it requires integration over all phonon
momenta, �q, in the Brillouin zone as explained in reference [57].
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Microscope

Laser

Spectrometer

Sample

Figure 2.18: Schematic of the Raman spec-
trometer for this measurement. Monochro-
matic laser light is directed onto the surface
of the sample. The scattered light is focused
into a spectrometer.

total laser power onto the sample was about 50 mW. The illuminated spot could be observed
through the microscope with a typical magnification of 50 and a spatial resolution of 0.5 μm.
The scattered light was deflected through the microscope into a grating spectrometer. The
grating inside the spectrometer could turn and gave a wave number resolution of 0.15/cm.
The spectrum could be measured either by a scintillator or by a liquid nitrogen cooled CCD-
camera.

The calibration of the spectrometer was performed using a mercury (Hg) lamp. The Hg-
lamp emits light from which two emission lines are at λHg,1 = 546.07348 nm and at λHg,2 =
576.95982 nm. The expected difference in wave numbers relative to the argon laser line is
therefore λ−1

Ar −λ−1
Hg,1 = 1123.789/cm and λ−1

Ar −λ−1
Hg,2 = 2104.116/cm. The spectrometer was

adjusted to match these shifts under illumination from the Hg-lamp. After calibration, the
spectrometer measured the line shift between argon and mercury at 1124.2/cm and 2104.5/cm
which indicates a systematic deviation of 0.4/cm towards higher wave numbers. The aperture
at the spectrometer entrance determined the spectral resolution: it was adjusted to give a
FWHM of 0.5/cm for both Hg-lines. Under the assumption that the Hg-line has ‘zero’ width,
the instrumental line broadening was given by the measured Hg-line width of 0.5/cm FWHM.

The diamond samples were put under the microscope in the focus of the laser beam and
the microscope. All measurements were made with the samples at room temperature 4. The
Raman line was measured on the growth and nucleation side of CVD diamonds and on one
natural diamond with the following results.

2.4.3 Results: Diamond Raman Line

Fig. 2.19(left) shows two diamond Raman lines from a natural diamond as measured on
both sides (1 and 2) of the sample. The line peaks for both sides at ≈ 1333.1/cm which gives
≈ 1332.7 after correction for the systematic shift. This result corresponds to the diamond
line of 1332/cm normally given in literature [14]. The statistical error from the number of
counts and the line width is 0.03/cm. An additional error of ≈ 0.15/cm is introduced due
to the stepping of the grating. The measured line width from the natural sample is 2.0/cm
which is large compared to the instrumental broadening. The measured width is therefore

4Temperature dependent Raman spectroscopy is reported in reference [59].
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Figure 2.19: Left: Diamond Raman lines from both sides of a natural diamond. Right:
Diamond Raman lines from the nucleation and from the growth side of CVD diamond
sample CDS-8. All measurements are fitted with the Lorentz function Eq. 2.31 and a
constant background term. No difference between the fits and the measured data are
observed on this scale.

the ‘true’ width of the natural diamond Raman line.
Fig. 2.19(right) shows two diamond Raman lines from CVD diamond sample CDS-8.

One line was measured from the nucleation side, the other line from the growth side. Both
lines peak within the error of ≈ 0.15/cm at the same wave number of 1332.6/cm (after
subtraction of 0.4/cm from the systematic shift). The line width is 2.7/cm on the nucleation
side and 2.9/cm on the growth side which is slightly wider than on the natural diamond.
The line width can be converted from a wave number to an energy using the phonon velocity
is 106 cm/s which then allows to estimate the phonon lifetime. A typical phonon lifetime is
then 0.1 μs.

Table 2.7 summarizes the line peak position and the line width from several CVD dia-
mond samples and the natural sample. The lines peak on average at 1332.7/cm which agrees
with the literature values of 1332/cm at room temperature. The systematic error of 0.4/cm
from the Hg-line calibration has been subtracted from the measured line position. The line
width of the natural diamond is about 2/cm. The line width of all measured CVD diamonds
is below 2.9/cm. The material quality can be read from the table as the ratio of the Raman
shift to the line width according to Eq. 2.33. The natural diamond has the highest material
quality of ≈ 666, followed by TD1150-Y12 and CDS-8 with ≈ 600. The most likely cause for
the higher material quality of natural diamond is the mono-crystalline lattice structure. CVD
diamond is polycrystalline with grain boundaries which may limit the phonon lifetime. Also
impurities limit the phonon lifetime. The most likely impurities in the natural diamond are
boron and nitrogen and different carbon isotopes. The phonon lifetime is apparently more
limited by the stress in the CVD diamond than by the impurities in the natural diamond.
The width of the Raman line from the nucleation side is slightly bigger than from the growth
side indicating a lower crystal material quality on the nucleation side compared to the growth
side.

The Raman shift 1/λdiamond allows an estimation for the velocity of sound

v =
a c

λdiamond
= 1.4 × 106 cm/s (2.34)
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sample side Raman shift width[
cm−1

] [
cm−1

]
name ±0.15 cm−1 ±0.1 cm−1

CDS-1 g 1332.40 2.899
n 1332.67 2.687

CDS-2 g 1332.68 2.260
n 1332.67 2.249

CDS-7 g 1332.70 2.514
n 1332.73 2.637

CDS-8 g 1332.70 2.096
n 1332.70 2.323

CDS-9 g 1332.90 2.279
n 1332.70 2.589

CDS-10 g 1332.68 2.765
n 1332.75 2.853

TD1150-Y12 g 1332.78 2.111
n 1332.70 2.296

DRDS-1 1 1332.65 1.947
(natural) 2 1332.74 1.991
Hg-line - - 0.5

Table 2.7: Width and position of the Raman line from CVD diamond samples and
a natural diamond sample. The values were measured on the growth (g) and on the
nucleation (n) side. The values for CDS-8 and the natural sample can also be read from
the fit parameters in Fig. 2.19. The Raman shifts in this table has been corrected for
the systematic offset of 0.4/cm as measured using a Hg-lamp. The ratio of the Raman
shift to the line width gives the diamond material quality, Q, according to Eq. 2.33.
The measurement was done at room temperature. The measured width of a mercury
line is given for comparison.

which is in good agreement to the values of 1.28×106 cm/s and 1.83×106 cm/s for transversal
and longitudinal acoustic waves given in reference [40].

2.4.4 Results: Extended Raman Spectra

Fig. 2.20 shows extended spectra from a natural diamond (to the left) and from two
CVD diamond samples CDS-1 and TD1150-Y12 (to the right, both samples are from different
manufacturers). The diamond Raman line is visible at ≈ 1332.7/cm relative to the argon laser
line. The range extends from 16700/cm to 18150/cm corresponding to a wave length range
from λstart = 598.8 nm to λstop = 550.9 nm and a light energy from 2πh̄cλ−1

start = 2.07 eV
to 2πh̄cλ−1

stop = 2.247 eV. The extended spectra were taken in order to investigate the range
where graphite impurities were reported. Graphite would cause a broad band in the range
from 1400/cm to 1600/cm [39]. Such band does not exist in the natural diamond and could
not be observed in the measured CVD diamonds here. The measurements show that the
diamond Raman peaks sit on a broad background. This background is constant for both
CVD diamonds. The constant background is 200 counts/bin in CDS-1 and 300 counts/bin
in TD1150-Y12. The measurement on the natural diamond shows a background as well.
The background in the natural diamond increases linearly from 200 counts/bin at 16800 /cm
to 300 counts/bin at 18100 /cm. The range above Raman shifts of 2000/cm (2000/cm
and higher, corresponding to -2000/cm and lower values in Fig. 2.20) was reported to emit
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Figure 2.20: Extended Raman spectra from a natural diamond (left) and from two
CVD diamonds (right). The abscissa is given in absolute wave numbers of light on the
bottom axis and as the Raman shift on the top axis. The Raman shift is labeled with
negative values because of technical reasons in the display.

photoluminescence light for some samples [11]. The background measured here is considered
to be low compared to photoluminescence background reported in literature.

2.4.5 Summary and Discussion

The diamond Raman line position and width have been measured on several CVD dia-
mond and one natural diamond. The diamond Raman line was observed close to the expected
wave number as estimated from the velocity of sound and the diamond lattice constant. The
measured diamond Raman shift was on average (1332.7 ± 0.15)/cm at room temperature
after correction for the systematic error. The width of the diamond Raman line is explained
by the phonon lifetime. The phonon lifetime is limited by stress and impurities in the crystal
which determine the material quality. The CVD diamonds had slightly wider line width than
the natural diamond. The natural diamond measured here had the highest material quality
compared to the CVD diamonds. The natural diamond had the least stress in the lattice
since it is a mono-crystal. The polycrystalline structure of CVD diamond introduces grain
boundaries, lattice defects and dislocations which could cause stress. The stress limits the
phonon lifetime. The line width from CVD diamond was wider on the nucleation side than
on the growth side which may be due to the smaller grain size on the nucleation side. The
CVD diamond material quality, according to the definition Eq. 2.33, was typically close to
that of natural diamond. The line on both sides of CDS-1 is wider than on other samples.
This may be due to a treatment with particles by the vendor.

The samples measured here did not show bands which could be associated with graphite.
The photoluminescence background was negligibly low in the range from 2450/cm to 1300/cm.
The peak from the natural diamond appeared to be on a light background whereas the
intensity from the CVD diamonds did not change over the measured range. The sensitivity of
the spectrometer was observed to be constant in this range. This was confirmed by measuring
the spectral intensity from a tungsten lamp and normalizing with the spectrum from a black
body at the same temperature. The background intensity may be due to luminescence from
impurities. The Raman measurements should be extended to a larger range in order to gain
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more information about luminescence emission and impurities. Extended Raman spectra
from 100 nm to 3000 nm can be found in reference [14] and show a silicon vacancy defect in
CVD diamond. The silicon Raman line appears at 520/cm [57]. Extending the measurement
in Fig. 2.20 to this Raman shift could give information about the substrate on which the
CVD diamonds were grown. The sensitivity to non-diamond phases could improve with
longer incident wave lengths from 633 nm to 1060 nm [14].

The line widths measured here should be compared to the Raman measurements by
S. Zhao in reference [11]: his work includes diamonds with line widths ranging from 2.4/cm
to 11.5/cm. The highest material quality diamonds available for his work are comparable to
the diamond material quality measured here. The lines measured here are typically equal or
narrower than lines from the samples available to him5.

Diamond characterization using Raman spectroscopy is of relevance for diamond detector
applications since the line width gives a ‘selection rule’ for sensors: samples with line widths
above ≈ 3.5/cm are likely bad sensors. On the other side, samples with narrow (< 3.5/cm)
Raman line width do not correlate with charge collection properties [11]. It is assumed that
the crystal material quality of the CVD diamond here is characteristic for other diamonds
which were delivered later from the same manufacturers.

5S. Zhao used a spectrometer resolution of 2/cm. The spectrometer resolution here was lower than 0.5/cm;
this may explain the different width for the natural diamond sample which is 0.4/cm higher in his work than
measured here.



Chapter 3

Particle Detection

A charged particle that traverses a CVD diamond sensor creates pairs of charge
carriers in the diamond bulk. These charge carriers move under the influence
of the applied external electric field and their movement induces a current on
the contact electrodes. This chapter introduces the charged particle detec-
tion properties of CVD diamond sensors. Fig. 3.1 shows five detector grade
CVD diamond samples and one silicon diode. The CVD diamond samples
are metallized with electrical contacts to study their bulk response to charged
particles.

Figure 3.1: Photo of five CVD diamond sensors and one silicon diode (bottom right).
The samples have a size of 5× 5 mm2 and 10× 10 mm2. The thickness of the diamond
samples ranges from 400 μm to 2.6 mm. The lower left sample is lapped on both sides
and is transparent. The other samples are unprocessed and have electrical contacts
with a variety of geometries. The sample to the very left stands vertically on one edge.
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3.1 Electrical Model of Diamond

The intrinsic electrical properties of a crystal are determined by the energy
band gap between the valence band and the conduction band and the band
bending. Diamond has a large band gap and no intrinsic conductivity is ex-
pected at room temperature. However, diamond is not completely insulating
due to the presence of defects and impurities. Defects and impurities introduce
additional energy levels in the band gap which may contribute to conduction.
The lifetime of charge carriers in the bands is then limited by re-trapping and
recombination. The following reviews the basic model of electric conduction
in a crystal.

3.1.1 Description of a Single Electron in the Crystal

Electrons are the ‘carriers’ of the electric current in solids. The description of electric
current therefore starts with a model for the electron transport. An electron in the crystal
is described as a wave with amplitude, Ψ. In the single electron approximation the electron
wave is the solution of Schrödinger’s equation

(
− h̄2

2m
∂2

�r + U(�r)

)
Ψ(�r) = EΨ(�r) (3.1)

where m is the rest mass and E the total energy of the electron 1. The waves are modulated
by the potential, U(�r). The periodicity of the lattice implies periodicity of the potential and
is expressed as

U(�r) = U(�r + �R) ; ∀ �R from Eq. 2.2. (3.2)

A solution of Schrödinger’s equation can be found by using the method of linear combination
of atomic orbitals (LCAO-method) [35]. The solutions of Schrödinger’s equation are plane
waves

Ψn(�r) = un(�r)ei�k◦�r (3.3)

where u(�r) is a periodic function of the position such that u(�r + �R) = u(�r) (2). An electron
state is characterized by the energy quantum number n and the wave vector �k. The wave
function has the form

Ψn(�r + �R) = ei�k◦�RΨn(�r) (3.4)

which is just Bloch’s theorem for electron waves in the crystal. This equation holds for any
�k′ = �k + �K under the condition that �K ◦ �R = 2π · integer [35]. This is possible, if �K is a
vector of the reciprocal lattice:

�K = �G (3.5)

where the reciprocal lattice vector, �G, is defined in Eq. 2.5. The electron energy levels in
the periodic potential are the eigenvalues of Schrödinger’s equation. Also the energy has
periodicity in the reciprocal lattice: En(�k + �G) = En(�k).

The single electron approximation in the periodic potential assumes no interactions of
the electron with the phonons or other electrons. This assumption is ‘good’ for the description

1The notation of the partial differentiation: ∂�r ≡ ∂/∂�r.
2The inner product : �a ◦�b = ai bi ≡

∑
i

ai bi.
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of electrical conductivity in crystals as long as the electron moves like a free particle. Under
the influence of interactions one can still assume that the electron moves like a free particle
in the time between interactions.

3.1.2 Electron Energy Bands

A free carbon atom has 2 core electrons in a helium configuration (two 1s orbitals written
as 1s2) and 4 valence electrons in the 2s2p2 configuration. The electrons in the atom have
discrete energy levels and are localized in atomic orbitals, where s and p denote the angular
momentum quantum numbers. The N separated carbon atoms have 2N electrons in 1s
orbitals, 2N electrons in 2s and 2N electrons in 2p orbitals.

Fig. 3.2 shows 4N energy levels of N carbon atoms as a function of the interatomic
distance. At large interatomic distance the 4N states degenerate into two energy levels, 2s
and 2p. As the carbon atoms get closer the degeneracy is removed due to the interaction of
the electrons with the nearby atoms. The interaction causes the energy levels to coagulate
in two quasi-continuous bands 3. The energy levels of the 2N core electrons form another
quasi-continuous band which is not shown in the figure. The highest energy band is called
the conduction band (CB) and the next lower band is called the valence band (VB). The
region between the bands is called the band gap (BG).
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Figure 3.2: Energy levels of the 2s and 2p
states in diamond as a function of the distance
(separation between atoms). The valence
band (VB) and the conduction band (CB) are
‘quasi’ continuous energy levels. They are sep-
arated by the band gap (BG) [60].

Figure 3.3: Electron energy levels along a
path of wave vectors in the Brioullin zone.
The upper graph represents the lowest ener-
gies of the conduction band (CB), the lower
graph represents the highest energies of the
valence band (VB). The point Γ corresponds
to �k = �0 in diamond. The highest point of the
VB is set arbitrarily to 0 eV [10].

Fig. 3.3 shows two dispersion curves of energies as a function of the wave vector obtained
from linear combination of atomic orbitals (LCAO) for the diamond crystal [10]. The upper
graph is the lowest energy branch of the CB, the lower graph is the highest energy branch
of the VB. Both energies are separated by the BG. The energy is periodic in �k, such that it

3One can also say that the energy levels in the crystal are split into bands.
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is sufficient to display an interval of wave vectors inside the Brioullin zone. The dispersion
curve is shown for wave vectors along a path in the Brioullin zone. Here the path is described
by the wave vectors L, Γ, X, U and K which are points in the Brioullin zone [10]. The wave
vector �0 corresponds to the point Γ in the center of the Brioullin zone. The energy of the
VB at Γ is the highest energy in the VB and arbitrarily assigned to be 0 eV. The energy
difference between the highest energy, E

(m)
v ≡ Ev(�k

(m)
v ), of the VB and the lowest energy,

E
(m)
c ≡ Ec(�k

(m)
c ), of the CB is the band gap energy, Eg. The energies are labeled as ‘m’ in

order to emphasize that they are fixed values (meaning ‘maximum’ or ‘minimum’). The wave
vectors, �k

(m)
v and �k

(m)
c , denote the wave vectors where the energy is a maximum in the VB

and a minimum in the CB. The band gap energy of natural diamond is Eg = 5.48 eV [10].
Fig. 3.3 only shows the N highest energies of the VB. There exist three more branches with
3N energy levels in the VB. The other three branches of the VB have lower energies and are
partially separated from the curve that is shown [10]. Also the CB has three more branches
with states above the one which is shown in the figure. The electrical properties of the
crystal are determined by the lowest energy levels of the CB and the highest levels of the
VB. Generally an energy transition of an electron from a state in the VB to the CB requires
that momentum is conserved. This is possible if the transition is ‘vertical’ corresponding to
no change in the wave vector of the electron. In diamond the highest energy level in the VB
is at a different wave vector than the lowest energy in CB: �k

(m)
v �= �k

(m)
c . A transition into

the lowest energy of the CB is only possible if the electron can acquire additional momentum
in order to reach the energy minimum in the CB. A phonon can transfer the additional
momentum to the electron in order to realize the transition. A transition which requires a
phonon is called an indirect transition and a vertical transition is called a direct transition.
Diamond and silicon are indirect semi-conductors whereas germanium for example is a direct
semi-conductor.

Solids are classified by the energy difference between the VB and the CB. Solids may
have a separation or an overlap between the bands. Fig. 3.4 shows three classes of solids: the
conductor, the semi-conductor and the insulator. The conductor has either overlap between
VB and CB or a partially filled CB. The insulator has a large band gap, Eg, of several electron
volts. The insulator has no partially filled bands. The semi-conductor also has a band gap
but electrons from the VB occupy levels in the CB. They leave the same number of vacancies
in the VB such that the sum of occupied levels in the CB is equal to the number of vacancies
in the VB. The vacancies in the VB are called holes.

g

VB

CB

semi-conductorconductor insulator

E

Figure 3.4: Schematic energy levels of the
conduction band (CB) and the valence band
(VB) of a conductor, a semi-conductor and
an insulator. The charge carriers in the VB
are marked with open circles, charge carriers
in the CB are solid circles. The energy bands
in the conductor overlap or are partially filled.
In the semi-conductor charge carriers from the
VB occupy states in the CB and leave vacan-
cies in the VB. The insulator has bands which
are completely occupied by the same type of
charge carriers in other words, the insulator
has no partially filled bands. The VB and the
CB are separated by the band gap (BG). The
energy difference between CB and the VB is
the band gap energy, Eg [61].
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An important property of a semi-conductor or of an insulator is the number, nc, of
electrons per unit volume in the CB and the number, pv, of vacancies per unit volume in the
VB:

nc =
∫ ∞

E
(m)
c

dE
gc(E)

e(E−EF)/(kBT ) + 1
; pv =

∫ E
(m)
v

−∞
dE

gv(E)
e(EF−E)/(kBT ) + 1

(3.6)

where gc and gv are the densities of energy states in the CB and the VB [35]. The integration
for electrons starts from the lowest energy, E

(m)
c , of the CB and the integration for vacancies

ends at the highest energy, E
(m)
v , of the VB. The integrand contains the temperature depen-

dent probability, the Fermi function or the Fermi statistical factor, of an energy state to be
occupied. The probability depends on the difference between the energy, E, and the Fermi
energy, EF. The energy EF is also called the chemical potential [35]. For the case of large
energy difference, (E −EF)/ (kBT ) � 1, the Fermi statistical factor can be approximated by
the Boltzmann factor such that

nc = Nc(T ) e
−
(

E
(m)
c −EF

)
/(kBT )

; pv = Pv(T ) e
−
(

EF−E
(m)
v

)
/(kBT )

(3.7)

where the concentrations Nc and Pv can be calculated under the assumption that the density
of states increases as the square root of the energy [35]:

Nc = 2
(

m∗
ckBT

2π h̄2

)3/2

; Pv = 2
(

m∗
vkBT

2π h̄2

)3/2

. (3.8)

The m∗
c and m∗

v are the effective masses of electrons in the conduction band and electrons in
the valence band (as explained below).

Electrons and holes are called intrinsic when the electrons in the CB have come from a
formerly occupied state in the VB and leave vacancies in the VB. The number of intrinsic
electrons and holes are equal and the number, ni, of intrinsic carriers per unit volume, the
intrinsic carrier concentration, is

pv = nc ≡ ni =⇒ ni(T ) =
√

Nc(T )Pv(T ) e−Eg/(2kBT ). (3.9)

The factors Nc and Pv are of the order of 1019 cm−3 at room temperature. They vary less
than the exponential factor as a function of temperature [35]. Using the band gap energy,
E

(di)
g = E

(m,di)
c −E

(m,di)
v = 5.48 eV, in diamond [Table 1.1] and the band gap energy, E

(si)
g =

E
(m,si)
c −E

(m,si)
v = 1.124 eV, in silicon [10] one obtains at room temperature, kBT = (1/40) eV,

the intrinsic concentrations of 10−29 cm−3 in diamond and 10+9 cm−3 in silicon. At room
temperature the intrinsic carrier concentration in diamond is negligibly small. This is the
reason why diamond is classified as an insulator at room temperature.

3.1.3 Charge Carrier Equation of Motion

Intrinsic charge carriers, as they abundantly exist in silicon at room temperature, can
move in the CB and in the VB 4. Here a charge carrier in a band is defined as the pair of an
occupied electron state and a vacant electron state. The model chosen here is that it is the
electron which moves. A vacant state is necessary to allow the motion.

4The same formalism that is described here will be used later in order to describe the motion of charge
carriers from excitation by ionizing radiation.



3.1 Electrical Model of Diamond 55

Predictions about the movement of a charge carrier in the crystal are made in the semi-
classical model of conduction [35]. No collisions between carriers or carriers and phonons are
assumed at this stage. Then the energy quantum number, n, is conserved. The velocities, �vc

and �vv, of a carrier with quantum number n and energy Ec(�k) in the CB and Ev(�k) in the
VB are [35]

�vc ≡ ∂Ec(�k)

h̄ ∂�k
and �vv ≡ ∂Ev(�k)

h̄ ∂�k
. (3.10)

In order to find the velocity for a carrier one expands its energy in a Taylor series around the
band extremum at �k = �0 (the Γ point in Fig. 3.3) [61]

E(�k) = E(�0) +
1
2

(
d2E

d�k2

)
�k=�0

· �k2 + ... (3.11)

Differentiation of Eq. 3.11 with respect to �k gives the velocities, �vc and �vv, for a carrier in
the CB and in the VB

�vc ≈ 1
h̄2

(
d2Ec

d�k2

)
�k=�0

· h̄�k
def= +

h̄�k

m∗
c

�vv ≈ 1
h̄2

(
d2Ev

d�k2

)
�k=�0

· h̄�k
def= − h̄�k

m∗
v

(3.12)

where the last expressions define the masses of a charge carrier in the CB and in the VB.
1/m∗

c and 1/m∗
v are tensors of effective masses. The coordinate system of the Brillouin zone

can be chosen such that the tensors are diagonal. The diagonal elements in the tensor can be
equal and then 1/m∗

c and 1/m∗
v are real numbers. The second derivative of the CB is bigger

than zero at the energy minimum and the sign for the effective mass of a charge carrier in the
CB is chosen to be positive. For the VB the second derivative is negative. The convention is
to choose the sign such that the effective masses of charge carriers are positive [35]. A charge
carrier has a non-zero velocity only in the case of partially filled bands since any change in
�k requires a free energy level in the band. An external electric field �E(�r, t) causes a force on
the charge −e of the charge carrier according to the equation of motion [35]

h̄ ∂t
�k = −e �E(�r, t). (3.13)

Both Eq. 3.12 and Eq. 3.13 are the equations of motion for charge carriers in the CB and
in the VB. It should be noted that the Taylor series in Eq. 3.11 is developed around �0. It
can be seen from Fig. 3.3 that in diamond the extremum of the VB is at �k

(m)
v = �0 and the

extremum of the CB is at �k
(m)
c �= �0. Hence one should develop Ec(�k) around �k

(m)
c for a precise

description of the electron transport.

3.1.4 Model of Electrical Conductivity

Integration of Eq. 3.13 and insertion in Eq. 3.12 gives the velocity which increases linearly
in time. Linear increase of carrier velocities is macroscopically not observed. Instead, charge
carriers scatter with phonons in the lattice. Continuous scattering limits the velocity of
charge carriers to a constant value. The motion of a charge carrier is therefore described as
an acceleration as a free particle for a certain path length by Eq. 3.13 and a deceleration
due to scattering. The equation of motion for charge carriers in the CB and in the VB are
then [61]
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m∗
c

(
∂t�vc +

�vc

τ
(S)
c

)
= −e �E ; m∗

v

(
∂t�vv − �vv

τ
(S)
v

)
= +e �E (3.14)

where m∗
c and m∗

v are the effective masses for charge carriers in CB and VB. The constants
τ

(S)
c and τ

(S)
v are the relaxation times for charge carriers between scattering events. The

superscript ‘S’ indicates that the time is taken between scattering events. The solutions to
Eq. 3.14 are constant drift velocities

�vc = −e τ
(S)
c

m∗
c

�E ; �vv = −e τ
(S)
v

m∗
v

�E. (3.15)

The terms with 1/τ (S)
c and 1/τ (S)

v in Eq. 3.14 are interpreted as a form of friction. If the
external force, −e �E, would be switched off, the drift velocities, �vc and �vv, would decline in time
like |�vc(t)| ∝ e−t/τ

(S)
c and |�vv(t)| ∝ e−t/τ

(S)
v . Eq. 3.15 describes the motion of charge carriers in

the VB and in the CB with positive masses and negative charge signs and the carriers in the
VB move the same direction as the carriers in the CB. An alternative interpretation would be
to imagine electrons (with negative charge, positive mass) in the CB and holes (with positive
charge and positive mass) in the VB. Then the electrons move in a direction opposite to
the direction of motion of the holes. Eq. 3.15 suggests that the mobilities of charge carriers
should be defined

μc
def=

e τ
(S)
c

m∗
c

; μv
def=

e τ
(S)
v

m∗
v

. (3.16)

The mobility for carriers in the CB differs from that of carriers in the VB since the effective
masses are different due to different bending of the energy bands in Eq. 3.12. Also the
scattering time for carriers in the CB can be different from that of carriers in the VB. The
mobilities can be tensors in a non-isotropic media where the direction of current flow deviates
from the direction of the electric field.

The current densities, �jc and �jv, for charge carriers in the CB and VB are given by the
number of electrons, d#c, in the CB and the number of vacancies, d#v, in the VB which
pass through an imaginary surface area d �A in the time interval dt. The charges have the
velocities �vc and �vv and are displaced by d�xc and d�xv in the time interval dt. The number of
charges in the displacement volumes, dVc = d�xc ◦ d �A and dVv = d�xv ◦ d �A, and the velocities
define the current densities for charge carriers

�jc = −e nc �vc ; nc
def=

d#c

dVc

�jv = −e pv �vv ; pv
def=

d#v

dVv
.

(3.17)

The current density is the sum of current densities from the CB and the VB

�j = �jc +�jv. (3.18)

Fig. 3.5 illustrates the transport of charge carriers in the VB and in the CB. The charge carri-
ers follow the force of the applied external electric field. An intrinsic charge carrier has come
from the dissociation of an electron and a vacancy. Therefore, the carrier concentrations in
the CB and in the VB are equal which allows one to define the intrinsic carrier concentration

nc = pv
def= ni (3.19)
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which then gives the intrinsic current density

�j = e ni (μv + μc) �E. (3.20)

The mobility sum is defined as

μ
def= μv + μc. (3.21)

The intrinsic current density depends on the temperature as the intrinsic carrier concentration
is temperature dependent according to Eq. 3.9. The current increases with temperature in
contrast to metals where the current decreases with temperature. The electrical conductivity
is defined as

σ
def= e niμ

Eq. 3.16= e2 ni

(
τ

(S)
c

m∗
c

+
τ

(S)
v

m∗
v

)
(3.22)

which allows one to rewrite the current density in the form of Ohm’s law:

�j = σ �E. (3.23)

Ohm’s law describes the magnitude of the current as linearly increasing with | �E|. In reality
the current increases up to a certain value corresponding to a saturation velocity, �vsat, at the
field strength, Esat. The reason is that the mobility decreases for high electric field above
Esat like 1/| �E| due to additional scattering with optical mode phonons.

b)

VB

CB

VB

CB

BG BG

E E

spacespace

a)

Figure 3.5: Model of intrinsic conduction in the valence band (VB) and in the con-
duction band (CB). Both bands are separated by the band gap (BG). The left figure
illustrates two charge carriers at a time t0. The right figure illustrates the charge
carriers at the time t > t0 [61].

The variation of carrier velocities at thermal equilibrium is [35, 62]

vth
def=
√
〈v2〉 =

√
3kBT/m∗ (3.24)

which determines the velocity where the drift velocity saturates

|�vsat| ≈ vth. (3.25)

The saturation of the drift velocity determines the saturation field strength

| �Esat| =
1
μ
|�vsat|. (3.26)



58 CHAPTER 3. PARTICLE DETECTION

Assuming an effective carrier mass of m∗ = 511 keV/c2, the electron rest mass, one obtains
the saturation velocity of 1.2 × 107 cm/s for charge carriers at room temperature which
agrees with measurements shown in reference [63]. Using the mobility of 2100 cm2V−1s−1

for carriers in the VB in diamond from Table 1.1 one finds the field strength of 0.5 V/μm
above which velocity saturation in the VB sets in 5. The velocity of charge carriers in the CB
saturates at about the same field strength since their mobility is 2400 cm2V−1s−1 [Table 1.1].
The typical transition time for a charge carrier to travel through a 400 μm thick diamond
sensor is then about 4 ns.

At this point one can summarize the following: the basic intrinsic electrical properties of a
(crystalline) semi-conductor or insulator are determined by the band gap and by the bending
of the energy bands. The band gap and the temperature determine the intrinsic carrier
concentration. The band bending determines the effective mass and therefore the carrier
velocity between scattering events. The scattering effect of charge carriers from phonons
introduces a (phenomenological) relaxation time between scattering events which limits the
velocity to a constant drift velocity.

3.1.5 Conductivity in the Presence of Charge Traps

The previous section describes the intrinsic semi-conductor which only contains electrons
and vacancies with energies in the VB or in the CB. However, real semi-conductors have
defects, either by nature or due to intentional doping. Defects introduce energy levels between
the VB and the CB. Fig. 3.6 illustrates a model of the BG [62]: active electron states (AES)
with concentration N , of which n are filled with electrons, are located at the energy Ec −En

below the CB energy. Deep electron states (DES) with concentration H, of which h are filled
with electrons, are located slightly above the middle of the BG. Deep vacancy states (DVS)
of concentration M , of which m are vacant states, are located slightly below the middle of
the BG. The Fermi energy is located near middle of the energy gap.

At a given temperature, there are electron transitions between the AES and the CB.
The transitions are indicated in Fig. 3.6 by arrows. A transition from the AES into the CB
is a de-trapping transition (DT), the transition back into the AES is a re-trapping transition
(RT). The transition into a deep state is a recombination (RC). The average transition times
are [65, 62]

τ (RT)
c =

1
(N − n) vthσn

; τ (RC)
c =

1
m vthσm

; τ (DT)
c =

e+(Ec−En)/kBT

Nc vthσn
. (3.27)

The transition times depend on the cross section, σn and σm, of an energy state and on
the concentration of states at the destination. The de-trapping transitions proceed at a
rate determined by the thermal energy and the energy, Ec − En, of the AES through the
Boltzmann factor. Similar transition times can be given for the transition between the VB
and the AVS. The transition times are generally much larger than the scattering times, τ

(S)
c

and τ
(S)
v . There are additional transitions between the CB and the DES and the VB and

the DVS which are not shown in Fig. 3.6. The rates of these transitions are negligibly small:
de-trapping transitions from deep levels are suppressed through the Boltzmann factor and

5The mobilities for charge carriers in the CB and VB depend on the carrier concentration. For carrier
concentrations below 1014/cm3 the mobility sum is about 4000 cm2V−1s−1 for carriers in the VB and CB in
diamond [64]. Typical carrier concentrations in diamond after ionization from a minimum ionizing particle are
of the order of (36/π)/μm3 ≈ 1013/cm3 where 36 electron-hole pairs are created per 1 μm distance travelled
by the minimum ionizing particle.
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Figure 3.6: Model of energy states between the valence band (VB) and the conduction
band (CB). Both bands are separated by the band gap (BG) with an energy difference
Eg. The active electron state (AES) and active vacancy state (AVC) are energetically
close to the CB and the VB. The deep electron state (DES) and deep vacancy states
(DVS) are close to the Fermi energy EF. After reference [62].

re-trapping transitions of electrons from the CB in the DES are suppressed since the DES is
filled with electrons. There are also no significant re-trapping transitions of vacancies from
the VB to the DVS since the DVS is filled with vacancies. The model presented in Fig. 3.6
only considered electron and vacancy states at a fixed energy. In reality there can be states
at various energies.

The following considers the CB and the AES only, but the method to derive the rate
equations for the VB and an AVS is the same. The change in the carrier concentration in
the CB due to the three transitions, DT, RT and RC, in an infinitesimal time, dt, is [35]

nc(t + dt) =

(
1 − dt

τ
(RT)
c

− dt

τ
(RC)
c

)
nc(t) +

dt

τ
(DT)
c

n(t). (3.28)

The first term on the right expresses the destruction of charge carriers in the CB through
re-trapping and recombinations by the fractions dt/τ

(RT)
c and dt/τ

(RC)
c . The second term on

the right expresses the creation through thermal de-trapping. The change of concentrations
in the AES due to the two transitions, DT and RT, is

n(t + dt) =

(
1 − dt

τ
(DT)
c

)
n(t) +

dt

τ
(RT)
c

nc(t) (3.29)

where the first term on the right expresses destruction of an electron in the AES through
de-trapping and the second term expresses creation due to re-trapping. Both Eq. 3.28 and
Eq. 3.29 can be rewritten in differentials dnc/dt ≡ [nc(t + dt)−nc(t)]/dt and dn/dt ≡ [n(t +
dt)−n(t)]/dt and one obtains the rate equation for re-trapping, de-trapping and recombination

dnc

dt
= −dn

dt
− nc

τ
(RC)
c

(3.30)

and

dn

dt
= − n

τ
(DT)
c

+
nc

τ
(RT)
c

. (3.31)
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The rate equations form a set of first-order, non-linear, coupled differential equations. It is
not possible to decouple them and give an analytical solution. In order to proceed one usually
assumes quasi-equilibrium [62]:

dnc

dt
� nc

τ
(RC)
c

(3.32)

which means that any change in the number of carriers is small compared to the number of
free charge carriers. It is difficult to justify the quasi-equilibrium assumption as discussed in
reference [62]. The transitions are then described by the rate equation of the quasi-equilibrium
approximation:

dn

dt
≈ − nc

τ
(RC)
c

and Eq. 3.31 (3.33)

which can be solved for the concentration of charge carriers in the CB

nc = n
τ

(R)
c

τ
(DT)
c

with
1

τ
(R)
c

=
1

τ
(RC)
c

+
1

τ
(RT)
c

. (3.34)

The right side depends on the concentration, n, of occupied AES. It also depends on the ratio
between the transition times for the destruction of a charge carrier, τ

(R)
c , and the creation

time τ
(DT)
c . In analogy one obtains for the concentration of charge carriers in the VB

pv = p
τ

(R)
v

τ
(DT)
v

with
1

τ
(R)
v

=
1

τ
(RC)
v

+
1

τ
(RT)
v

. (3.35)

The destruction and creation times of a charge carrier in the VB are obtained in analogy to
those for the CB from Fig. 3.6. The time for carrier destruction in the CB and the VB can
be generalized for the case of different processes where each process, k, is characterized by a
transition time τ

(k)
c and τ

(k)
v

1

τ
(R)
c

=
∑
k

1

τ
(k)
c

and
1

τ
(R)
v

=
∑
k

1

τ
(k)
v

. (3.36)

These relations are known as a ‘Matthiessen-like’6 sum-rule [35, 36].
The current densities from Eq. 3.17 can be rewritten

�jc = −e n
τ

(R)
c

τ
(DT)
c

�vc ; �jv = −e p
τ

(R)
v

τ
(DT)
v

�vv. (3.37)

Using the lifetime for de-trapping from Eq. 3.27 which contains the concentrations Nc and
Pv one can define the non-intrinsic carrier concentrations

ñc
def= Nc(T ) e−(E

(m)
c −En)/(kBT ) and p̃v

def= Pv(T ) e−(Ep−E
(m)
v )/(kBT ) (3.38)

and one arrives at the current densities

�jc = −e ñc vth σn τ (R)
c �vc and �jv = −e p̃v vth σp τ (R)

v �vv. (3.39)

6Precisely, the Matthiessen sum-rule expresses the reciprocal mobility as the sum over reciprocal mobilities
of independent processes, (see reference [35] for the limitations).
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The main dependence on the temperature is expressed through ñc and p̃v which depend on
the temperature through the exponential Boltzmann factor and which are proportional to
T 3/2 as given by Eq. 3.8. The product vthτ

(R)
c,v is independent of the temperature since the

thermal velocity cancels which can be seen from Eq. 3.27.

3.1.6 The Carrier Drift Length

The product of the drift velocity and the time for destruction defines the mean drift
lengths for charge carriers in the CB and in the VB

sc
def= τ (R)

c |�vc| and sv
def= τ (R)

v |�vv|. (3.40)

Using the expression Eq. 3.15 for the drift velocity and the carrier mobility one finds

sc = τ (R)
c μc | �E| and sv = τ (R)

v μv | �E|. (3.41)

The sum of the mean drift lengths is defined as the carrier drift length

s
def= sc + sv. (3.42)

The carrier drift length is the distance that charge carriers in the CB and in the VB drift
apart until they are trapped. Using the mobility sum, μ, from Eq. 3.21, one can define the
mobility weighted lifetime

τ
def=

τ
(R)
v μv + τ

(R)
c μc

μ
, (3.43)

and rewrite the carrier drift length as

s = τμ| �E|. (3.44)

The carrier drift length is proportional to the applied electric field when | �E| < Esat. The
carrier drift length saturates at the field strength Esat when the velocity, μ�E, saturates. An
alternative introduction of the carrier drift length via the lifetime weighted mobility can be
found in reference [12].

In practice the lifetime of charge carriers can depend on their position in the crystal.
This is normally the case in silicon devices where intentional doping concentrations change
along a pn-junction for example. In CVD diamond the lifetime depends on the position along
the direction of growth due to a decrease in impurities and defects from the nucleation to
the growth side. This may be explained by the increase in grain size from the nucleation
side to the growth side but does not have to. The lifetime may also depend laterally on the
position perpendicular to the columnar grains. It may also be that the lifetime depends on
the position relative to the grain boundaries. For the case that the lifetime only depends on
the position along the direction of growth, the lifetime may be parameterized as a function
τ(z) where z is the position parameter. The lifetime distribution is dA/dτ as a function of
τ , where dA is the number of lifetimes in the interval from τ to τ + dτ . The average lifetime
over the material thickness, D, is then the first moment of the lifetime distribution

τ̄ =
1
A

∫ +∞

−∞
τ

dA

dτ
(τ) dτ with A

def=
∫ +∞

−∞
dA

dτ
(τ) dτ (3.45)

using
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dA

dτ
=

dA

dz

dz

dτ
=

A

D

dz

dτ
(3.46)

one finds

τ̄ =
1
D

∫ +∞

−∞
τ(z) dz

Eq. 3.44=
1
D

∫ +∞

−∞
s(z)
μ | �E| dz. (3.47)

Under the assumption that the electric field does not depend on z one obtains the average
carrier drift length

s̄ = τ̄ μ | �E| with s̄ =
1
D

∫ +∞

−∞
s(z) dz. (3.48)

Fig. 3.7 illustrates s(z) as a function of the position in the material. Since s(z) is a property
of the material it is defined for all positions z between −D/2 and +D/2. Outside of the
material s is zero. The limits of the integration in Eq. 3.48 and Eq. 3.47 can therefore be
changed to −D/2 and +D/2.

s

+D/2-D/2 0 z

0

0

s(z)

s

Figure 3.7: Illustration of arbitrary carrier drift length, s, as a function of the position,
z, in the material.

3.1.7 Charge Carrier Excitation

Electromagnetic radiation can excite electrons from the VB into the CB leaving a vacant
state in the VB. Fig. 3.8 illustrates the excitation process of an electron from the VB to the
CB. The vacant state forms an excess carrier in the VB and the electron is an excess carrier in
the CB. Both carriers exist ‘in excess’ of the concentration of carriers at thermal equilibrium.
The generation rate of charge carriers in the CB and in the VB is

g(t) =
E

εD
f with f =

N (γ,q)

ΔAΔt
(3.49)

where E is the energy of the illuminating radiation and ε is the specific energy necessary for
the excitation of an electron from the VB to the CB. The flux, f , is the number, N (γ,q), of
photons or charged particles which illuminate a unit area, ΔA, per unit time Δt. It is assumed
that the energy transfer is sufficiently high (E > ε, see Sec. 3.3.5). The excitation creates
the concentration, n0 = N (γ,q)E/(εV ), of charge carriers in the CB and p0 = N (γ,q)E/(εV )
charge carriers in the VB where V = DΔA is the uniformly illuminated volume. One could
describe a short illumination at the time, t0, using a delta function or using a Gaussian
function [12]
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Figure 3.8: Model of charge carrier generation by particle excitation. The electromag-
netic radiation γ can be understood as the virtual photon from the traversing charged
particle. The virtual photon excites an electron from the VB to the CB leaving a
vacant state in the VB.

f(t) =
N (γ,q)

ΔA
δ(t − t0) or f(t) =

N (γ,q)

ΔA
√

2π σ2
t

e−(t−t0)2/(2σ2
t ). (3.50)

The standard deviation of the Gaussian function is given by the time of the illumination: for
charged particles traversing the material the standard deviation is few picoseconds. Excess
charge carriers can participate in the de-trapping and re-trapping process and can undergo
recombination with deep traps as it is shown in Fig. 3.6. The transitions for carrier destruction
limit the carrier lifetime. If nx is the concentration of excess carriers in the CB and px the
concentration of excess carriers in the VB, then one can write the rate equation for the excess
carriers [12]

dnx

dt
= − nx

τ
(R)
c

+ g(t) and
dpx

dt
= − px

τ
(R)
v

+ g(t) (3.51)

where τ
(R)
c and τ

(R)
v are the lifetimes as given in Eq. 3.36. The initial conditions at the time

t0 are nx(t0) = n0 and px(t0) = p0. For the case of an excitation by a delta function the
solutions are exponentially decreasing concentrations of excess carriers for the time t > t0

nx(t)
Eq. 3.51

= n0 e−(t−t0)/τ
(R)
c and px(t)

Eq. 3.51
= p0 e−(t−t0)/τ

(R)
v . (3.52)

These solutions need modification for the case of a Gaussian excitation as they can be found
in reference [12].

The lifetimes, τ
(R)
c and τ

(R)
v , are indeed the first moments (mean values) of the time

distributions |dnx/dt| and |dpx/dt|

1
n0

∫ ∞

t0
t

∣∣∣∣dnx

dt

∣∣∣∣ dt
Eq. 3.52= t0 + τ (R)

c and
1
p0

∫ ∞

t0
t

∣∣∣∣dpx

dt

∣∣∣∣ dt
Eq. 3.52= t0 + τ (R)

v . (3.53)
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where the normalization is

n0
Eq. 3.52

=
∫ ∞

t0

∣∣∣∣dnx

dt

∣∣∣∣ dt and p0
Eq. 3.52

=
∫ ∞

t0

∣∣∣∣dpx

dt

∣∣∣∣ dt. (3.54)

3.2 Conductivity

The dark current has been measured on CVD diamond samples. Typical
current-voltage curves are shown below.

3.2.1 Experimental Method: Sample Preparation

Fig. 3.1 and Fig. 3.9 show several CVD diamond samples and a silicon diode for compar-
ison. The samples were obtained from references [33] and [34]. The samples were cut from
CVD diamond disks (similar to the disk in Fig. 4.21) to a typical size between 5 × 5 mm2

and 10 × 10 mm2. The sample thickness was typically between 400 μm and 700 μm. The
diamond samples were metallized on both sides with ohmic contacts using chromium and
gold. Chromium and gold were evaporated onto the clean diamond surface. The chromium
had a typical thickness of 600 Å. The gold had a typical thickness of 2000 Å and covered
the chromium in order to avoid oxidation of the chromium. The contacts were annealed for
5 minutes at 400 ◦C in a N2 atmosphere in order to form chromium-carbide. The carbide
gives an ohmic contact between the metal and the diamond. The metallization technique is
described also in reference [11].

Figure 3.9: Photograph of
a silicon diode (left) and
of a CVD diamond sample
(right). The diamond sam-
ple is metallized with ohmic
contacts on both sides. The
nucleation side has a single
circular contact, the growth
side a circular contact and a
guard ring. The scale is in
millimeters.

3.2.2 Experimental Method: Current Measurement

Fig. 3.10 shows the setup for measuring electrical currents in CVD diamond samples.
The sample was mounted inside an electrically shielded and light tight aluminium box. A
voltage between -1100 V to +1100 V was applied to one contact on the diamond with respect
to the other contact using a voltage source (Keithley 237 or Keithley 6517 [66]). The current
was measured in series with the diamond bulk. For the case where the sample had a guard
structure (ring), the current was also measured in the guard ring. A guard ring around the
central contact allows one to measure the bulk current independent of the surface current.
Currents for the central contact and the guard ring were measured simultaneously as a func-
tion of the applied voltage. The currents were measured under normal conditions and in
darkness 7.

7normal conditions: here (298 ± 3) ◦K, atmospheric air pressure and humidity.
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current meter

zero
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(electrometer, Figure 3.10: Setup for measuring the
current in diamond samples with elec-
trical contacts on both sides. The dia-
mond sample was fixed inside an electri-
cally shielded and light tight box. The
current was measured using an electrom-
eter (Keithley 6517 [66]), as a function of
the high voltage which was supplied by
the same instrument.

The contacts on both sides form a plate capacitor with the diamond of thickness, D,
between. The electrical field strength between the contacts is

| �E| =
U

D
(3.55)

where U is the applied voltage. The field strength is assumed to be independent of the
position in the diamond between the contacts. The direction of the field lines is assumed to
be perpendicular to the electrical contacts. In a current measurement, the voltage was slowly
increased in steps starting at 0 V, stepping up to 1 V/μm and then decreasing to -1 V/μm
and back to 0 V. The voltage was increased with 100 V per step at a rate of one step in 120 s.
The current was measured at the end of each time interval, before changing to the next
voltage. The currents were acquired automatically using a PC with GPIB interface to the
voltage source and the current meter. The acquisition software was written in Labview [67].

3.2.3 Results: Typical Current-Voltage Characteristics

Fig. 3.11 shows the current measured in darkness from two 710 μm thick CVD diamond
samples. The current was measured on the central contact (solid markers) and simultaneously
on the guard ring (open markers). The smooth curve represents a fit to the average currents
and is provided to guide the eye. The current is symmetric for both polarities of the electric
field. The current from the center electrode is roughly linear in the electric field interval
from −1 V/μm to +1 V/μm. The measured current on the central contact was ±1 pA at
±1 V/μm in both samples. The central contact had a diameter of 3 mm which allows one to
deduce the current density of 0.14 pA/mm2. The bulk resistivity is

ρ ≡ 1
σ

Eq. 3.23=
| �E|
|�j| . (3.56)

Assuming a linear relation between the current and the electric field one obtains a resistivity
of ρ = 7×1014 Ωcm. The current on the guard ring is higher by about one order of magnitude.
For |E| > ±0.5 V/μm the guard ring current increases non-linearly with the electric field.

The current-voltage characteristic of a typical diamond sample can be compared with
the typical characteristic of a silicon diode. A diode has a pn-junction that works as a current
rectifier in contrast to the ohmic (linear) conduction considered so far. The current-voltage
characteristic of a diode has an exponential increase of the current in the forward direction
(with negative potential applied to the n-side). A typical reverse biased current-voltage
characteristic from a diode is shown in Fig. 5.30 in Sec. 5.3 (the diode has an implant area of
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Figure 3.11: Measured current in CVD diamond samples with central contact and
guard rings around the central contact. The measurement is shown for two different
samples with the full range of the guard current (left) and a magnification on the other
sample (right). The polynomial fits are given in order to guide the eye.

4 × 4 mm2 and a thickness of 350 μm). A silicon diode is normally operated with a reverse
bias voltage which means a positive potential on the n-side relative to the p-side. The current
in the reverse biased diode here is 0.5 nA at the depletion voltage of 50 V. The current in
this depleted silicon diode is higher than in a CVD diamond sample. It is generally correct
to say that CVD diamond samples have a much lower leakage current than silicon samples.
More importantly, a CVD diamond does not require a pn-junction like silicon. The junction
in a silicon sensor is required in order to raise the resistivity and limit the leakage current at
room temperature. A CVD diamond sensor does not need a junction since its resistivity is
inherently high and therefore the leakage current is negligibly small at room temperature.

3.2.4 Model of Current Hysteresis

The current-voltage curves from the central contact and from the guard ring generally
show hysteresis [Fig. 3.11]. Hysteresis means that the current measured at a given voltage
depends on the history of the applied voltage. Hysteresis may be explained by the follow-
ing model: the contacts on the diamond have a capacitance, C, of the order of the plate
capacitance of the contact geometry

C ≈ ε ε0
A

D
. (3.57)

A typical capacitance is 0.7 pF for a 500 μm thick CVD diamond sample with A=7 mm2

contacts. The dielectric constant of CVD diamond is 5.7 [Table 1.1] and ε0 is the permittivity
of free space 8. The current path through the bulk and over the surface can be modelled by
a resistor, Rl, in series with the capacitor and a resistor, Rp, in parallel to both, C and Rl,
as shown in Fig. 3.12. The relation between the current, I, and the voltage, U , expressed as
a differential equation, can be derived from the figure

C · (Rp + Rl)
Rp

U̇(t) +
U(t)
Rp

= C Rlİ(t) + I(t). (3.58)

Assuming a linear voltage source, U(t) = U0 + mt, the solution can be found analytically:

8The permittivity of free space is: ε0 = 107/(4πc2) As/(Vm) = 8.854 pF/m.
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Figure 3.12: Electrical model of a diamond
sensor with ohmic contacts on both sides. The
contacts have the capacitance C, the current
path through the bulk and over the surfaces
contains the resistances Rp and Rl.

Figure 3.13: Measurement of the current as
a function of voltage in diamond sample CDS-
8. The measured data is simulated with linear
voltage increase of 0.1 V/s using m = 1/δt in
Eq. 3.59.

I(U) = Î e−(U−U0)/(m τ) + m C +
Û

Rp
; τ ≡ RlC. (3.59)

The constants Î and Û have to be chosen to match the boundary conditions at the turning
points of the voltage.

Fig. 3.13 shows a measurement of the current on diamond sample CDS-8 in darkness
as a function of voltage. The sample had circular contacts with a size of 20 mm2 without
guard rings. The maximum voltage of ±100 V corresponds to an electric field strengths of
±0.16 V/μm. The same figure shows the calculated current from Eq. 3.59 for resistor values
Rp = 1.5 × 1014 Ω, Rl = 26.6 × 1012 Ω and C = 3 pF. The expected capacitance [Eq. 3.57]
for CDS-8 with a thickness of 645 μm and the contact size of 20 mm2 is 1.5 pF.

The resistance and the capacitance of the diamond sample determine the time constant,
τRC, on which the current, I(t), equilibrates after changing the external electric field

I(t) = I0 e−t/τ + Iinf with τ = CRl. (3.60)

The initial current, I0, after applying the voltage step U = U0Θ(t) and the current, Iinf , for
infinite time can be read from Fig. 3.12

I0 = U0

(
1

Rp
+

1
Rl

)
and Iinf =

U0

Rp
. (3.61)

For this diamond sample one finds τ (di) ≈ 80 s. This time scale is important to consider
when measuring the current in high resistivity CVD diamond samples in general. Silicon has
a much shorter time constant: the typical current is 0.5 nA per 16 mm2 at full depletion of
50 V. The depleted silicon diode [Fig. 3.1], has a capacitance of ≈ 3 pF. With the resistance
of 50 V/0.5 nA = 100 GΩ one finds the equilibration time constant τ (Si) ≈ 0.3 s which
is two orders of magnitude smaller than for diamond. This observation means that for
any measurement involving application of a voltage to diamond one has to wait until the
current equilibrates before taking the measurement. In order to reduce the error on a current
measurement below 10 % one finds
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Figure 3.14: Example for a possible
current-voltage curve from a CVD dia-
mond sample. This sample deviates from
the typical ohmic current-voltage charac-
teristic.

I(t) − Iinf

Iinf
< 0.1 =⇒ t > τ ln

[(
1 +

Rp

Rl

)
/0.1
]
. (3.62)

In order for the measurement to be within 10 % of the final value one must wait 330 s for the
case shown here before taking the measurement. In general the term 1 + Rp/Rl may vary
from 1 to 1000 which corresponds in Eq. 3.62 to a logarithmic factor between 3 and 9. The
time, t, to wait is then between 3τ and 9τ which is between 240 s and 720 s for the τ given
here.

3.2.5 Results: Diode-like Current-Voltage Curve

Some diamond samples were observed to deviate from the typical and preferred ohmic
curve. Fig. 3.14 shows an example of a diode-like current-voltage curve measured in a CVD
diamond. The current increases up to 400 nA for positive electric field but remains at a few
nanoampere at negative electric field. This is the IV curve of a current rectifier. Several
samples had a similar behaviour even after additional re-metallizations which indicates that
the rectification is not likely due to the contacts. However, the current-voltage curve always
characterizes both the contacts and the diamond sample. Rectifying contacts (Schottky
contacts) are possible and can give an asymmetric current-voltage characteristic [36]. It also
could be an effect on the surface of the diamond which could not be removed by the cleaning
procedure applied before contact preparation. Such samples were not possible to characterize
as a particle sensor since their current was too high for the readout amplifier used.

3.2.6 Summary and Discussion

Current-voltage curves were measured for CVD diamond samples with the intention of
excluding samples with atypical characteristics. The current-voltage characteristic was nor-
mally recorded during charge collection measurements as described in Sec. 3.4. The current
measurement described here allows one to quantify the bulk resistivity and the bulk con-
duction. It was found that a guard ring around a central contact reduces the current in
the central contact in comparison to a configuration without guard ring. This effect may be
explained by the non-negligible current flow from the contact on one side to the contact on
the other side over the diamond surface. A typical current in a CVD diamond sample was of
the order of picoamperes using the contact geometry described here. Table 3.1 summarizes
results from a typical CVD diamond.
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guarded not guarded
bulk current at 1 V/μm ≈ 1 pA (10..30) pA

bulk current density at 1 V/μm ≈ 0.2 pA/mm2 (1..3) pA/mm2

current slope at 0 V/μm ≈ 1 pAμm/V ≈ 20 pAμm/V

resistivity, ρ ≈ 7 × 1014Ωcm ≈ (0.1..2) × 1014Ωcm

Table 3.1: Typical values of the bulk current from CVD diamond samples tested here.
The bulk current is given for a contact size of 7 mm2 with a biasing field of 1 V/μm.
The current slope is given at 0 V/μm and the resistivity, ρ, using Eq. 3.56. The data
of the sample with guard ring can be read from Fig. 3.11, the data without guard ring
can be read from Fig. 5.36.

The observation that there is a bulk current implies that CVD diamond is not a pure
insulator, as might be infered by only considering the large band gap of 5.48 eV. The current
can be explained by defects or impurities which act as energy states for de-trapping (DT)
and re-trapping (RT) as described in Sec. 3.1.5. The transition rates depend on the defect
and impurity concentrations and on the energy level with respect to the VB or to the CB.
The measured currents are therefore specific for the class of samples which were available
here. Samples from different manufacturers may have different defect and impurity concen-
tration and energy levels and hence different currents. CVD diamond is polycrystalline with
columnar crystals from the nucleation to the growth side. Such a structure could suggest
current flow preferably along grain boundaries where more defects are likely. Such effects
can neither be confirmed nor excluded by the measurement here since the electrodes cover
an area much larger than the size of single crystals. The current in the bulk is therefore an
average over many crystals and boundaries. Dedicated current measurements on small strip
or pad contacts could give more information.

The mechanism of de-trapping depends on the temperature: an increase of the current in
diamond is expected from Eq. 3.38. The room temperature currents from the CVD diamond
samples here are two orders of magnitude lower than in a silicon diode of similar contact
size. The detector leakage current, ID, of a sensor in a larger detector is important since the
power, P , is eventually dissipated as heat

P = U ID. (3.63)

A CVD diamond sensor dissipates less heat than a silicon sensor of comparable size. This
consideration is particularly important after irradiation with several 1014 particles/cm2 when
the leakage current and biasing voltage are much higher for silicon whereas they remain at
the same magnitude for a CVD diamond sensor.
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3.3 Signal Formation

The signal charge from ionizing particles in solid state detectors depends on
the energy deposited along the particle track. The basic description of ionizing
particles passing through matter, the energy loss, the energy deposited and the
ionization yield are reviewed. Then the signal formation on the electrodes due
to moving charges is derived.

3.3.1 Energy Loss of Particles in Matter

When a charged particle traverses a portion of matter, it interacts with the electrons and
nuclei of the atoms. Most of these interactions are electromagnetic (quasi-) elastic collisions
in which the incoming particle loses energy. One distinguishes between collisions where the
energy transferred to the atomic electrons is large enough to extract them from the atom
(ionization with production of δ−rays) and collisions where the atomic structure is excited,
without complete ionization. The energy transferred to the nuclei is usually negligibly small.

Moderately relativistic charged particles other than electrons lose energy in matter pri-
marily by ionization. Bohr gave the first classical description of such energy loss for heavy
charged particles in matter. An approximation, that contains the most important informa-
tion, for the case of ‘slow’ moving shell electrons is found as follows [68]: the particle traversing
the medium has charge, ze, mass, M , and velocity, βc. The charged particle transfers energy
to the shell electrons of atoms in the medium due to the Coulomb interaction. It is assumed
that the particle travels sufficiently fast such that the shell electron can be considered to be
at rest during the interaction. It is also assumed that the electron mass, m, is much smaller
than the particle: m � M . Then the transverse momentum transfer (perpendicular to the
motion of the particle) to an electron is

ΔpT = e

∫ ∞

−∞
| �ET(t)|dt =

2 e2 z

4πε0 b cβ
with | �ET| =

ezγb

4πε0 (b2 + η2c2t2)3/2
, (3.64)

where | �ET| is the absolute value of the transverse electric field between the shell electron
and the particle at the location of the electron 9. The transverse electric field contains the
longitudinal relativistic distance, ηct, and the transverse distance, b, obtained by Lorentz
transformation of the electric field from the moving particle into the coordinate system of the
electron. γ ≡ (1 + β2)−1/2 is the relativistic dilatation factor and η ≡ γβ. The momentum
transfer allows one to calculate the kinetic energy transfer to an electron. This only depends
on the contribution from transverse momentum transfer since integration over the longitudinal
transfer vanishes:

−ΔE =
Δp2

T

2m
. (3.65)

The negative sign indicates that the moving particle loses energy. The mean differential
energy loss for the charged particle travelling the distance dx is then

−dĒloss, classic = 2π n Zdx

∫
ΔE(b) bdb = k 
 z2 Z

A

1
β2

dx [ln B] (3.66)

where n is the number of atoms per unit volume which can be expressed using Avogadro’s
constant, NA, the atomic mass, A, and the mass density, 
, as n = 
NA/A. The right side
of the equation contains the constant

9All values in Eq. 3.64 are in MKSA-system units.
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k
def= 4πNA

e4

4πε0 mc2
= 4πNAr2

emc2 with re = e2/(4πε0 mc2). (3.67)

re = 2.818 fm is the classical electron radius. For A = 1 mol/g : k/A = 0.307 MeV g−1 cm2.
The value B in Eq. 3.66 only depends on the limits of the integration.

Eq. 3.66 gives the correct dependence of the energy loss on z, Z and 
. The 1/β2 depen-
dence applies for slow moving particles with η < 1, which actually arises from the Rutherford
scattering between two charged, point-like particles. Bohr’s classical result included also
‘fast’ moving shell electrons which adds a second, velocity independent term to Eq. 3.66 and
includes the classical evaluation for B in terms of the oscillation frequency of electrons around
the nucleus.

The quantum mechanical description of the mean ionizing energy loss by Bethe and
Bloch gives B as a function of the energy transfer and the excitation energy, I. If the
incident particle velocity, βc, is larger than that of orbital electrons and small enough that
radiative effects do not matter then the mean rate of energy loss in matter is [9, 69]

−
(

dĒ

dx

)

loss

= k 
 z2 Z

A

1
β2

[
1
2

ln

(
2m c2 η2 Tmax

I2

)
− β2 − δ

2

]
, (3.68)

which has the same value in front of the brackets as in Eq. 3.66. Tmax is the maximum kinetic
energy which can be imparted to a free electron in a single collision

Tmax =
2mc2η2

1 + 2γm/M + (m/M)2
. (3.69)

For η > 1 : Tmax ≈ η2 [MeV].
The logarithm in Eq. 3.68 contains the excitation energy, I, of the medium. The excita-

tion energy per Z is I/Z ≈ 10 eV for most elements with Z > 35. For diamond the excitation
energy is I(di) = (78± 6) eV [9]. The electric field of very fast charged particles is limited by
polarization in the medium which is known as the density effect. Eq. 3.68 includes therefore a
density correction, δ, which truncates the logarithmic rise at very high energies (η > 10). The
energy loss by electrons and positrons is not described by Eq. 3.68. The dominant source of
energy loss for electrons and positrons is bremsstrahlung and requires a different description
given by the Bethe-Heitler formula.

The density correction, δ, can be calculated following Sternheimer’s parameterization in
reference [70, 71]

δ =

⎧⎪⎨
⎪⎩

0 : X ≤ X0

4.6052X + C0 + a(X1 − X)m : X0 < X < X1

4.6052X + C0 : X ≥ X1

(3.70)

with X = log10(η). The quantities X0, X1, C0, a and m depend on the absorbing material.
They are listed in Table 3.2 for air, plastic scintillator, silicon, graphite and diamond. The
values for diamond could not be found in the literature. The values from graphite were used
for the density correction in diamond.
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Material Density
[
g/cm3

]
I [eV] C0 a m X0 X1

air,(20◦C,1atm) 1.29 85.7 -10.6 0.1091 3.40 1.742 4.28
plastic scintillator 1.032 64.7 -3.20 0.1610 3.24 0.1464 2.49
silicon 2.33 173 -4.44 0.1492 3.25 0.2014 2.87
graphite 2.0 78 -2.99 0.2024 3.0 -0.0351 2.486
diamond 3.515 78 assume correction from graphite

Table 3.2: Constants for the density effect correction. The constants for the materials
except diamond are taken from reference [71]. The values for diamond are assumed to
be equal to those for graphite.

Division of Eq. 3.68 by the mass density gives the stopping power. Fig. 3.15 shows
the stopping power for pions (M = 140 MeV/c2) in diamond, silicon and plastic scintillator
derived from Eq. 3.68 as a function of η. The graphs were evaluated without density correction
(δ = 0). The energy loss in each medium decreases like ∝ 1/β2 for η < 1. At η ≈ 3 the
energy loss has a minimum. Particles which lose the minimum amount of energy are called
minimum ionizing particles (mip’s). The energy loss increases logarithmically with η2 for
η > 3. The stopping power shifts upwards for lower Z material and shifts downwards for
high Z material [9]. The stopping power curves are about the same for muons, protons and
pions with a minimum at η = 3.
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Figure 3.15: Stopping power for pions in diamond, silicon and plastic scintillator as
a function of η which is the ratio between the particle momentum, p, and the particle
mass, M . The graphs were evaluated for the Bethe-Bloch formula, Eq. 3.68, without
density correction.

The energy loss calculated using Eq. 3.68 and the density correction using the values in
Table 3.2 for a particle with η = 3 in silicon is

(
dĒ

dx

)

loss in si

=

{
1.70 MeVcm2/g × 2.33 g/cm3 = 119 keV/300 μm : δ = 0
1.67 MeVcm2/g × 2.33 g/cm3 = 117 keV/300 μm : with δ

(3.71)

and for a particle with η = 3 in diamond is
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(
dĒ

dx

)

loss in di

=

{
1.84 MeVcm2/g × 3.515 g/cm3 = 194 keV/300 μm : δ = 0
1.76 MeVcm2/g × 3.515 g/cm3 = 186 keV/300 μm : with δ

.

(3.72)
Using the density correction the calculated energy losses agree with the values given by the
Particle Data Group in reference [9]. It should be noted that the density correction for
diamond was taken to be the correction as in graphite.

3.3.2 Restricted Energy Loss of Particles

In general the charge signal depends on the energy deposited along the particle track
in the detector rather than the energy lost. Some of the energy lost by a fast charged
particle is removed from the vicinity of its track by secondary electrons or by Cerenkov
radiation (photons). The mean rate of energy deposited along the track in the detector is
then described by the mean restricted energy loss rate

−
(

dĒ

dx

)

restr.

= k 
 z2 Z

A

1
β2

[
1
2

ln

(
2m c2 η2 Tupper

I2

)
− β2

2

(
1 +

Tupper

Tmax

)
− δ

2

]
(3.73)

where Tupper = min(Tcut, Tmax) [9]. The Bethe-Bloch formalism describes the mean energy
loss rate. The mean energy deposited in the detector by a charged particle travelling the
distance, a, is

Ēdep(a) =
∫ a

0

(
dĒ

dx

)
restr.

dx ≈ a ·
(

dĒ

dx

)
restr.

. (3.74)

The approximation to the right is true if (dĒ/dx)restr. is independent of the travelling distance
in the medium. This is correct as long as η > 3. In case of η < 3 the particle slows down. As
a particle slows down, its rate of energy loss changes as its kinetic energy changes and more
energy per unit length is deposited towards larger travelling distance: the particle eventually
stops in the medium. The curve Edep as a function of the penetration depth a is called the
Bragg curve. α-particles, for example, penetrate only few microns in silicon and diamond. β-
particles from 90Sr typically penetrate several hundred microns of silicon or diamond. Beam
particles like protons (p), pions (π) or muons (μ) with typically 5 GeV/c to 100 GeV/c
traverse several centimeters of matter without significant velocity loss.

Fig. 3.16 shows the mean ionizing energy loss rates in silicon (left) and in diamond (right)
for pions. Each figure shows the energy loss according to Eq. 3.68 and the restricted energy
loss from Eq. 3.73. Here the restricted energy loss was calculated using Tcut = 140 keV in
silicon and in diamond for reasons given in Sec. 3.3.5. The restricted energy loss smoothly
joins the energy loss from Eq. 3.68 for Tcut > Tmax. From Fig. 3.16 one can read the restricted
energy loss rates of 97 keV/300 μm silicon and 156 keV/300 μm diamond for pions with η = 3
with density correction.

The Bethe-Bloch formalism does not include energy loss due to radiation. Radiation loss
is negligible for heavy particles (M > m). When an electron or a photon is incident on matter,
it initiates an electromagnetic cascade by pair production and bremsstrahlung. The mean
distance over which a high energy electron loses all but 1/e of its energy by bremsstrahlung
is the radiation length [9]

X0 =
716.4 g/cm2 A


Z (Z + 1) ln(287/
√

Z)
. (3.75)
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Figure 3.16: Energy loss rate and restricted energy loss rate as a function of η in
silicon (left) and in diamond (right). The graphs are given for the cases with density
correction and without density correction.

The radiation length in a mixture or a compound may be approximated by [9]

1
X̄0

=
∑
j

wj

X
(j)
0

with wj =
Dj∑
j Dj

. (3.76)

The radiation length is X
(di)
0 = 12.2 cm for diamond and X

(si)
0 = 9.36 cm for silicon. A typical

configuration in particle beam tests, as described in Chapter 4, contains Dsi ≈ 2.4 mm silicon
and Ddi ≈ 2 mm diamond which gives a radiation length, X̄0 ≈ 10.53 cm. This configuration
has a thickness corresponding to (

∑
j Dj)/X̄0 =

∑
j(Dj/X

(j)
0 ) ≈ 4.2% of the radiation length

of the setup. The radiation length is important since it is used in the calculation of multiple
scattering of high energetic particles from thin layers [Eq. 1.12].

3.3.3 Fluctuations of Energy Loss

The amount of energy loss is subject to two sources of fluctuations. The number of
collisions varies as does the energy lost in each collision. For N collisions the number of
collisions varies like

√
N . The number of collisions is proportional to the thickness of the

absorber and hence the relative variation per path length is 1/
√

N . Therefore in the limit of
very thick absorbers the fluctuations due to the number of collisions vanishes. The energy
loss distribution function is called the straggling function. The straggling functions for thick
absorbers have a Gaussian form. Thin absorbers have an asymmetric distribution with a
mean value higher than the most probable value. A first description of energy straggling for
thin absorbers was given by Landau resulting in the Landau energy straggling function which
depends only on one parameter [72]. In Landau’s derivation three assumptions were made.
The most important assumption is that the incoming particle can transfer all its energy to
a single shell electron which can be mathematically described by infinite energy transfer.
This is the reason why Landau’s straggling function has an infinite mean value. The second
assumption is that the shell electrons are free. The third assumption is that the traversing
particle does not lose velocity. The last assumption is true if the absorber is thin which means

κ
def=

ξ

Tmax
� 1 with ξ

def= k 

z2

β2

Z

A
x, (3.77)
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where x is the thickness of the absorber. A 500 μm thick diamond sensor illuminated with
minimum ionizing particles from a β−source can be considered as thin since κ is of the
order of 10−2. Landau’s straggling function can be used to fit measured energy loss spectra.
The measured spectrum is always a convolution of the energy loss straggling function with
functions due to other processes. A description of energy loss straggling in thin silicon sensors
is given in reference [15].

3.3.4 Energy for Charge Carrier Generation

The energy, εc, to create an electron-hole pair in a semi-conductor is always higher than
its band gap energy. This is attributed to the additional excitation of phonon and plasmon
states. Phonon excitation transfers energy to the lattice and plasmon excitation transfers
energy to the collective excitation of electrons. An attempt to calculate εc has been made
in reference [16]. Measurements of εc have been summarized in the same article. Fig. 3.17
shows the energy for pair creation as a function of the band gap for various semi-conductors.
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Figure 3.17: The measured energy for
electron-hole pair creation as a func-
tion of the band gap for various semi-
conductors at room temperature. The
data is taken from the collection in ref-
erence [16].

One can see that, εc, is proportional to the
band gap, Eg. Fitting the data with a linear
function gives

εc(Eg) = 1.76 eV + 1.84 · Eg. (3.78)

The energy, ε
(di)
c , required to create an

electron-hole pair in diamond has been mea-
sured from the ratio of pulse heights in a
natural diamond sensor compared to a sil-
icon sensor in response to ionizing radia-
tion [13, 17]. Such measurement requires
that all the generated charge carriers are col-
lected at the electrodes of the silicon and di-
amond sensor. This assumption is normally
true for a fully depleted silicon diode, but not
necessarily true for a diamond sensor. The
measured energy in diamond is [13, 17]

ε(di)
c ≈ 13 eV. (3.79)

This value was obtained with α and β-particles. The energy, ε
(si)
c , required to create an

electron-hole pair in silicon is [15, 16]

ε(si)
c ≈ 3.6 eV. (3.80)

3.3.5 Ionization Yield

Fig. 3.18 illustrates the creation of an electron-hole pair by ionizing radiation. The
passing particle with charge ze transfers energy to an electron in the valence band (VB). The
energy excites the electron into the conduction band (CB). The excited electron is an excess
charge carrier. An applied external electric field causes the excess carriers to drift along the
field lines which results in an electric current: the particle induced current or excess current.
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Figure 3.18: Creation of an excess carrier: a
passing particle with charge, ze, transfers en-
ergy to an electron in the valence band (VB).
This energy excites an electron in to the con-
duction band (CB). The excited electron is
an excess charge carrier. The applied exter-
nal electric field �E causes the excess carriers
to drift along the field lines which results in
an electric current (particle induced current
or excess current).

The total mean energy deposited, Ēdep from Eq. 3.74, and the carrier creation energy
determine the number of generated electron-hole pairs

N̄gen =
Ēdep(x)

εc

Eq. 3.74≈ x

εc

(
dĒ

dx

)

restr.

(3.81)

where the right approximation holds for negligible change of the energy loss rate along the
path distance, x, in the material. The mean ionization yield is then

Q̄gen
def= e N̄gen. (3.82)

If the particle enters perpendicular to the surface of a planar material, then the path distance,
x, equals the thickness, D, and the mean ionization yield is

Q̄gen =
eD

εc

(
dĒ

dx

)

restr.

. (3.83)

For the following discussion we assume the most probable ionization yield in 300 μm silicon

Q̂(defined)
gen

def= 22500 e from a mip in 300 μm silicon (3.84)

where the ‘̂ ’ indicates the most probable value. This most probable ionization yield is
commonly used in the discussion of the ionization yield of silicon detectors 10. This value
for the most probable ionization yield in silicon as defined in Eq. 3.84 is the basis for further
calculations. From Fig. 4.19 in Sec. 4.1.8 one finds the measured ratio of 1.2 between the
mean and the most probable ionization yield in 300 μm thick silicon. This implies a mean
ionization yield of

Q̄(derived)
gen = 27000 e from a mip in 300 μm silicon. (3.85)

Using Eq. 3.83 one obtains the mean restricted energy loss of a mip in 300 μm thick silicon
(

dĒ

dx

)

restr. in si

= 97.2 keV/300 μm. (3.86)

This mean restricted energy loss can also be derived from Eq. 3.73 using a cut-off energy
of Tcut = 140 keV. This is the reason for the cut-off energy chosen in Fig. 3.16. The ratio

10This value is based on reference [73]. Another most probable value of 25000 e in 300 μm silicon is proposed
in reference [9].
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between the mean energy loss [Eq. 3.71] and the mean restricted energy loss [Eq. 3.71] in
300 μm thick silicon is 1.21. If one assumes for diamond the same ratio between the mean
energy loss and the mean restricted energy loss one obtains from Eq. 3.72

(
dĒ

dx

)

restr. in di

= 154 keV/300 μm. (3.87)

This result is consistent with the mean restricted energy loss of 156 keV/300 μm derived for
Tcut = 140 keV in Sec. 3.3.2. Using Eq. 3.83 one obtains the mean ionization yield in 300 μm
thick diamond

Q̄(derived)
gen ≈ 11850 e from a mip in 300 μm diamond. (3.88)

If one assumes that the ratio between mean energy loss and mean restricted energy loss is the
same for 100 μm thickness then one obtains the (derived) mean ionization yield in 100 μm
diamond

Q̄(derived)
gen ≈ 3950 e from a mip in 100 μm diamond (3.89)

which is within 10 % of the commonly in-use mean ionization yield in 100 μm diamond [11]

Q̄(in−use)
gen ≈ 3600 e from a mip in 100 μm diamond. (3.90)

We will use the mean ionization yield from Eq. 3.90 in the discussion which follows.
Table 3.3 summarizes the mean energy loss, the mean restricted energy loss, the mean

and most probable ionization yield in 300 μm thick silicon (top) and the derived values in
300 μm thick diamond (bottom). The values for the ionization yield in silicon from Eq. 3.84
and diamond from Eq. 3.90 are the basis for further calibration in calculations of the collected
charge in diamond.

silicon with εsi
c = 3.6 eV, mip (η ≈ 3)

D = 300 μm

D · (dĒ/dx)(derived)
loss [keV] 117

D · (dĒ/dx)(derived)
restr. [keV] 97

Q̄
(derived)
gen [e] 27000

Q̂
(defined)
gen [e] 22500

diamond with εdi
c = 13 eV, mip (η ≈ 3)

D = 300 μm

D · (dĒ/dx)(derived)
loss [keV] 186

D · (dĒ/dx)(derived)
restr. [keV] 154

Q̄
(derived)
gen [e] 11850

Table 3.3: Mean energy
loss, the mean restricted en-
ergy loss, the mean and most
probable ionization yield in
300 μm thick silicon (top)
and the derived values in
300 μm thick diamond (bot-
tom). The values were ob-
tained from Eq. 3.68, Eq. 3.73
and Eq. 3.83 using the density
correction from Table 3.2.
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3.3.6 Charge Collection Mechanism

The ionization yield is the charge which potentially could be collected at the electrodes.
However, the actual induced charge may differ depending on material parameters and oper-
ating conditions of the sensor. The ratio between the induced charge (that is the measured
charge) on the electrodes and the ionization yield is expressed as the charge collection ratio

εr
def=

Q̄ind

Q̄gen
. (3.91)

The ratio is between 0 and 1 for the case of no charge carrier multiplication and no photo-
conductive gain. The charge collection ratio does not yet allow one to extract information
about the electrical properties of the sensor material. It is instead necessary to understand
the charge collection mechanism.

Any silicon or diamond sensor measures the induced charge on its electrodes. A charge
is induced on the electrodes by the movement of excess charge carriers in the sensor material.
The method of multiple image charges is used here to calculate the induced charge at the
electrodes.

3.3.6.1 Fixed Single Charge

Fig. 3.19 shows a conductive plate at a position +D/2. The plate is kept at a constant
electric potential, +Φ/2, where the potential at infinity is defined to be zero. A single
charge, q, is fixed at the position, a, below a conductive plate. The induced charge on the
plate may be calculated using the image charge method. The cylindrical coordinates, ρ and
z, are chosen according to the symmetry of this configuration. The boundary condition,
Φ(ρ, z = D/2; a) = Φ/2, defines the position and charge value of the image charge. In order
to satisfy the boundary condition it can be shown that the charge at a has a single image
charge of opposite sign at D−a where the conductive plate is the mirror plane [68]. The total
potential, Φ(ρ, z; a), is found by superposition of the potentials from the original charge, the
image charge and the potential of the plate given by the boundary condition 11. Once the
potential is known one can calculate the derivative of the potential evaluated at z = D/2 to
obtain the surface charge density on the plate

σ(ρ; a) = − 1
4π

∂zΦ(ρ, z; a)|z=D/2. (3.92)

The induced surface charge density is a function of the radial coordinate, ρ, and the position,
a, of the original charge [68]. A circular surface region with radius, R, can be chosen in
the conductive plate where the region is centered around the axis between charge and image
charge. The induced charge, qind(a;R), on the plate is then calculated by integration over
this surface region

qind(D/2 − a;R) =
∫ 2π

0
dφ

∫ R

0
σ(ρ; a) ρdρ = −q +

(D/2 − a)q√
R2 + (D/2 − a)2

. (3.93)

The induced charge approaches −q in the limit of large radius:

qind = −q for (D/2 − a)/R � 1. (3.94)

11It should be noted that the description here assumes vacuum and in particular equal dielectric constants
on both sides of the plate.
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That means that a single fixed charge below the conductive plate induces the opposite charge
on the surface of the conductive plate.

Fig. 3.21 shows a configuration with two conductive plates. The second plate is parallel

z

q

image charge

charge 

-q
D-a

D/2

a
0

conductive plate 
constant potential
+ Φ/2

Figure 3.19: A single fixed charge, q,
below a conductive plate at position,
a. The potential of the plate is con-
stant. The induced charge on the con-
ductive plate can be found using an im-
age charge, −q, located at D − a.
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Figure 3.20: Two charges (q,−q)
starting at a position a, moving be-
tween two conductive plates in oppo-
site directions by distances dn and dp

respectively.
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+ Φ/2

− Φ/2

image charges

image charges

image charge

+D/2

-D/2

Figure 3.21: Single fixed charge, q,
between two conductive plates. The
induced charge in a plate can be cal-
culated using the method of multiple
image charges.

to the first plate and located at position, −D/2. The distance between the plates is D. The
second plate is kept on a constant potential, −Φ/2. The charge, q, is fixed between the
plates and again located at position, a. In order to calculate the induced charge on the upper
plate one can use the method of multiple image charges. The image charges are shown in
Fig. 3.21. All image charges lie on one axis. Their potentials can be superimposed and the
resulting potential is expressed as an infinite sum. Using Eq. 3.92, followed by integration
over a surface region with radius R, gives the total induced charge on the top plate

q
(top)
ind (a;D,R) =

q

2

∞∑
k=−∞

(
2kD − D + a√

R2 + (2kD − D + a)2
+

2kD + a√
R2 + (2kD + a)2

)
. (3.95)

Fig. 3.22 shows the induced charge on one plate as a function of the normalized position,
a/D, of the original charge between the plates obtained from a numerical summation from
Eq. 3.95. A distance, D = 0.5 mm, between the plates was chosen for the calculation. The
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Figure 3.22: Induced charge on one
plate as a function of the position of
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calculated using Eq. 3.95. The dis-
tance between the plates was chosen
to be 0.5 mm. The radius, R, of
the area that measures the induced
charge is a parameter. Three graphs
are shown for different values of R.

graphs are plotted for different radii, R. The radius, R, represents the area over which the
charge is collected. For the case of R ≥ D the induced charges on the top and on the bottom
plates follow to a very good approximation the linear relations

q
(top)
ind = −

(
D/2 − a

D

)
q and q

(bottom)
ind = −

(
D/2 + a

D

)
q. (3.96)

The position, a, may take any value between −D/2 and +D/2. If the charge is near the
top at a ≈ D/2, one finds q

(top)
ind ≈ 0 and q

(bottom)
ind ≈ −q. The sum of the charges, q

(top)
ind and

q
(bottom)
ind , induced on the top and on the bottom plate by the fixed charge is

q
(top)
ind + q

(bottom)
ind = −q. (3.97)

Charge is conserved.

3.3.6.2 Moving Single Charge

In the derivation of the previous section the charge was fixed. If the charge is moved a
distance, dz, between the plates then a change, dqind, in the induced charge is observed on
the plates. Eq. 3.96 gives the change in the induced charge as the charge moves by dz:

dq
(top)
ind = +

q

D
dz and dq

(bottom)
ind = − q

D
dz for

D

R
< 1. (3.98)

The total charge induced on one plate by moving a charge the distance from a to a + r with
r > 0 is

q
(top)
ind = +

q

D

∫ a+r

a
dz = +

q

D
r and q

(bottom)
ind = − q

D

∫ a+r

a
dz = − q

D
r. (3.99)

The sum of the charges, q
(top)
ind and q

(bottom)
ind , induced on the top and on the bottom plate by

the single moving charge is

q
(top)
ind + q

(bottom)
ind = 0. (3.100)
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3.3.6.3 Charge Pair Moving in Opposite Directions

Fig. 3.20 shows the configuration of two conductive plates a distance, D, apart with two
charges of opposite sign located at a distance, a, from zero. For the case where both charges
are fixed one finds that the sum of induced charges on each plate is zero as can be seen by
applying Eq. 3.96 to both charges:

q
(top)
ind

∣∣∣
by • + q

(top)
ind

∣∣∣
by ◦ = 0 and q

(bottom)
ind

∣∣∣
by • + q

(bottom)
ind

∣∣∣
by ◦ = 0, (3.101)

where the ‘ ◦ ’ denotes the fixed positive charge and ‘ • ’ denotes the fixed negative charge.
For the case where the plates are kept at different potentials +Φ/2 and −Φ/2 respectively,

an electric field, �E, exists between the plates

�E = −∇Φ here= −∂zΦ(z). (3.102)

The electric field is oriented perpendicular to the plates. The force, +q �E, acts on the charge,
+q, and the force, −q �E, acts on the charge, −q. The force pulls the charges in opposite
directions. The negative charge, −q, moves to the plate with the positive potential, whereas
the positive charge moves to the plate with the negative potential. The moving charges
induce a charge on the plates according to Eq. 3.98. Their movement starts from the same
position, a. The positive charge is assumed to move the distance, rp(a), away from the top
plate and the negative charge is assumed to move the distance, rn(a), towards the top plate.
The distance each charge moves may depend on the position, a, from where the charges start
travelling. The distance travelled are defined to be positive quantities. The induced charge,
q
(top)
ind , on the top plate generated by such movement is

q
(top)
ind (a) =

∫ a+rn(a)

a

−q

D
dz +

∫ a−rp(a)

a

+q

D
dz = − q

D
[rn(a) + rp(a)] . (3.103)

and on the bottom plate

q
(bottom)
ind (a) = +

q

D
[rn(a) + rp(a)] . (3.104)

These expressions suggest that one should define the charge collection distance 12

d(z) def= r(z) def= rn(z) + rp(z). (3.105)

The charge collection distance is the distance two charges, starting at a common point, move
apart under the force of an external applied electric field. The charge collection distance may
depend on the position, z, from where the charges start travelling. The sum of charges, q

(top)
ind

and q
(bottom)
ind , induced by two opposite moving charges is zero as expected.

3.3.6.4 The Role of Contacts

Eq. 3.99 and Eq. 3.103 discribe the induced charge on a plate for the movement of charges
between the plates. If a single positive charge is moved from z = −D/2 to z = +D/2 then
the induced charge is +q at z = +D/2. One should notice that the charge +q is induced on
the plate even if the moving charge only approaches the plate and does not leave the region

12The symbols r(z) and d(z) are used synonymously for the charge collection distance.
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between the plates. What happens when the charge ‘touches’ the plate depends on the type
of contact. There are two possible types of contacts: blocking contacts and non-blocking
contacts [74]. Blocking contacts (Schottky contacts) inhibit the passage of a charge from the
region between the plates into the conducting plate. Non-blocking contacts or ohmic contacts
allow charge injection from the plate into the region between the plates. If a charge leaves
through a non-blocking contact at +D/2 then there are two possibilities for what can happen
at the opposite plate. If the contact at −D/2 is non-blocking then there appears a charge of
the same sign at −D/2. If the contact is blocking then there is no new charge entering the
region between the plates. A contact which blocks the exit of charges and the entrance of
opposite charges can cause charge accumulation near the contact.

In the model of charge induction described so far the distances travelled between the
plates are limited by the contacts. This limitation is expressed by

rn(a) ≤ D/2 − a ∧ rp(a) ≤ D/2 + a ∀ a ∈ [−D/2,+D/2]

⇒ rn(a) + rp(a) ≤ D ∀ a ∈ [−D/2,+D/2]
(3.106)

hence the absolute charge induced must be smaller than |q|

rn(a) + rp(a) ≤ D ⇒ q
(top)
ind (a) ≥ −q and q

(bottom)
ind (a) ≤ q. (3.107)

The goal is to identify the distance travelled of a negative charge with the mean drift
length of a charge carrier in the CB and to identify the distance travelled of a positive charge
with the mean drift length of a charge carrier in the VB [Eq. 3.40]

rn(z) = sc(z) and rp(z) = sv(z) for z ∈ [z0, z1] . (3.108)

The identification is possible if the mean drift lengths are small compared to the distance
between the plates. The width of the interval, [z0, z1], on which one can identify the charge
collection distance with the drift length depends on the type of contacts.

Fig. 3.23 illustrates the sum of the distances travelled (solid line) of a positive and
a negative charge and the carrier drift length (dashed line) as a function of the position
between the plates for the case of blocking contacts (left) and non-blocking contacts (right).
A comparison with Fig. 3.7 shows that the identification between the distance travelled and
the carrier drift length is possible in the region from z0 to z1 sufficiently far from the contacts.
In the region near the contacts the charge collection distance differs from the carrier drift
length. The effect of contacts is illustrated by the arrows in the region from −D/2 to z0 and
z1 to +D/2. For the case of blocking contacts the charge collection distance is always smaller
than the carrier drift length. For the case of non-blocking contacts the charge collection is
smaller than the carrier drift length near one contact and larger near the other contact. For
the case on non-blocking contacts it should be noted that the charge collection distance is
equal on both sides: r0 = r1.

A charge which exits the region between the plates may cause another charge to enter
from the other side for the case of non-blocking contacts. If in addition the charge collection
distance of the material is different from zero on both sides then it is possible that the
induced charge on a contact is higher than the amount of initally generated charges. In
this case one observes photo-conductive gain. The measurements in Sec. 3.5 indicate small
charge collection distance on the nucleation side of an as-grown CVD diamond. In this case
photo-conductive gain is not possible.
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Figure 3.23: Illustration of the charge collection distance with blocking contacts (left)
and injecting contacts (right). The dashed line represents the carrier drift length, the
solid line represents the charge collection distance. The arrows indicate the difference
between the carrier drift length and the charge collection distance.

3.3.6.5 Many Charge Pairs Moving in Opposite Directions

In the model of charge collection considered so far two opposite point charges (a charge
pair) travel from a common starting point under the influence of an external electric field.
For later applications it is necessary to extend the model to a distribution of N charge pairs
along the z-direction as shown in Fig. 3.24. The N charge pairs are assumed to be distributed

bottom

top

0

+ Φ/2

− Φ/2

two conductive plates
constant potentialz

-D/2

+D/2

+Nq

-Nq

Figure 3.24: Moving charge pairs along
a line. The open circles represent N pos-
itive charges, the solid circles are N neg-
ative charges. The positive charges move
towards the plate with the negative poten-
tial (bottom), the negative charges move
towards the plate with the positive poten-
tial (top).

homogeneously along the z-direction perpendicular to the plates:

dN

dz
(z) =

N

D
= const. (3.109)

Homogeneity means that the distribution is constant as a function of z. The total induced
charge on the top plate, for example, is then

Q
(top)
ind =

∫ +D/2

−D/2

dN

dz
(z) q

(top)
ind (z) dz =

N

D

∫ +D/2

−D/2
q
(top)
ind (z) dz. (3.110)

For any function, r(z), the distribution dN(z)/dz can be mapped into the distribution
dN(r)/dr

dN

dz
(z) dz =

dN

dr
(r)

dr

dz
dz =

dN

dr
(r) dr. (3.111)
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Using Eq. 3.103, Eq. 3.110 and Eq. 3.111 one can then rewrite the total induced charge as

Q
(top)
ind = − q

D

∫ +D/2

−D/2
rn

dN

drn
(rn) drn − q

D

∫ +D/2

−D/2
rp

dN

drp
(rp) drp. (3.112)

The integrand in Eq. 3.112 contains the distribution of the distances travelled. The integrals
themselves are the mean values of the distances travelled of the charge carriers

r̄n =
1
N

∫ +D/2

−D/2
rn

dN

drn
(rn) drn and r̄p =

1
N

∫ +D/2

−D/2
rp

dN

drp
(rp) drp (3.113)

and therefore

Q
(top)
ind = −q N

D
(r̄n + r̄p). (3.114)

The charge induced by moving charges along a line between the plates is expressed in terms
of the average charge collection distance of positive charges moving towards the negative
electrode and negative charges moving towards the positive electrode. This leads one to
define the average charge collection distance sum 13

d̄
def= r̄

def= r̄n + r̄p. (3.115)

Finally the induced charges on the top and on the bottom plates are

Q
(top)
ind = −q N

D
d̄ and Q

(bottom)
ind = +

q N

D
d̄. (3.116)

It is important to notice that the derivation of Eq 3.116 does not require any assumption
about the form of rn(z) and rp(z). The average charge collection distance is

d̄ = 〈r〉 =
1
N

∫ ∞

∞
r

dN

dr
dr. (3.117)

Using the mapping of Eq. 3.111 and Eq. 3.111 one finds

d̄ =
1
D

∫ D/2

−D/2
r(z) dz. (3.118)

3.3.6.6 Fluctuating Charge Pairs Moving in Opposite Directions

The charge pairs described above can be associated with the charges generated by an ion-
izing particle traversing the region between the plates. The amount of positive and negative
charge along the track is

Qgen,p = +q N and Qgen,n = −q N (3.119)

where N is the number of charges along the path of the ionization. The mechanism of
simultaneous charge carrier generation implies Qgen,p = −Qgen,n

def= Qgen. The number of
generated charges along the track normally fluctuates. For any distribution dM/dQgen of
charges one finds the mean generated charge

13The ‘average charge collection distance sum’ is shortly called the ‘average charge collection distance’ or
‘charge collection distance’. The symbols d̄ and r̄ are used synonymously.
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Q̄gen =
1
M

∫ +∞

−∞
Qgen

dM

dQgen
(Qgen) dQgen

with

M =
∫ +∞

−∞
dM

dQgen
(Qgen) dQgen.

(3.120)

The induced charge is a function of the generated charge and therefore

dM

dQgen
(Qgen) dQgen =

dM

dQ
(top)
ind

(Q(top)
ind ) dQ

(top)
ind (3.121)

which allows to rewrite Eq. 3.120 using Eq. 3.116

Q̄gen = − D

M d̄

∫ +∞

−∞
Q

(top)
ind

dM

dQ
(top)
ind

(Q(top)
ind ) dQ

(top)
ind . (3.122)

The integral is the mean induced charge

Q̄
(top)
ind =

1
M

∫ +∞

−∞
Q

(top)
ind

dM

dQ
(top)
ind

(Q(top)
ind ) dQ

(top)
ind . (3.123)

Hence, the mean induced charge on the top plate, and in analogy on the bottom plate, are

Q̄
(top)
ind = − d̄

D
Q̄gen and Q̄

(bottom)
ind = +

d̄

D
Q̄gen. (3.124)

This result is important since it relates the mean induced charge on an electrode to the
average charge collection distance.

The mean generated charge can be different from the most probable generated charge,
Q̂gen. In analogy to Eq. 3.124 one finds the most probable induced charge

Q̂
(top)
ind = − d̄

D
Q̂gen and Q̂

(bottom)
ind = +

d̄

D
Q̂gen. (3.125)

It should be noted that for the derivation of Eq. 3.124 and Eq. 3.125 no assumption on the
shape of the distribution of the (local) charge collection distances between the electrodes
has been made and also no assumption about the distribution of generated charge carriers
in successive events. Eq. 3.124 and Eq. 3.125 are therefore applicable for the description of
induced signal charges in mono-crystalline natural diamond with presumably uniform charge
collection distance and for the description of CVD diamond where the charge collection
distance depends on the position along the direction of growth. In order to infer the average
carrier drift length from Eq. 3.48 with d̄ from Eq. 3.124 one has to insure that s(z) ≤
D ∀ |z| < D/2. A neccessary condition for this is that the average carrier drift length is
smaller than the distance between the contacts.

3.4 Charged Particle Detection

A particle sensor requires both a sensor material and suitable readout electron-
ics. The principle of a CVD diamond sensor is described here. The readout
electronics for measuring the charge collection distance is also presented. Fi-
nally, results of the typical performance of CVD diamond sensors with a single
pair of electrodes on opposite sides of the sensor are given.
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3.4.1 Principle of a Diamond Sensor

Fig. 3.25 shows the basic principle of a diamond sensor. The diamond sensor is shown
from the side with electrodes on the top and on the bottom. A potential difference, U , is
applied to the electrodes. A charged particle traversing the diamond deposits energy along its
path due to Coulomb interaction with atomic electrons as described in Sec. 3.3.2. The energy
deposited is available to excite electrons from the VB to the CB with subsequent creation of
a vacancy (hole) in the VB. The number of generated electron-hole pairs is given by Eq. 3.83.
The potential difference applied to the electrodes causes an electric field inside the diamond
sensor [Eq. 3.102]. The charge carriers in the CB and the VB move towards the electrodes
according to the equation of motion [Eq. 3.14]. The distance travelled can be limited due to
defect states in the band gap. The average distance travelled for charge carriers in the CB
and the VB is given by the average carrier drift length [Eq. 3.48].

D

electrode

electrode

CVD-diamond

readout electronics

h
e

Au, 6000 A
Cr, 500 A

+
- U

charged particle

Figure 3.25: Principle of a diamond detector.

By measuring the mean induced charge one finds the average charge collection distance

d̄ =
Q̄ind

Q̄gen
D. (3.126)

The measurement of the average charge collection distance allows one to infer the average
carrier drift length

μτ̄ | �E| =
Q̄ind

Q̄gen
D ⇔ μτ(z)| �E| condition≤ D ∀ |z| <

D

2
(3.127)

where the ‘⇔ ’ means ‘if and only if’. From this logical statement one infers

μτ̄ | �E| =
Q̄ind

Q̄gen
D ⇒ d(z) ≤ D ∀ |z| <

D

2
(3.128)

which is logically equivalent to

¬
(

d(z) ≤ D ∀ |z| <
D

2

)
⇒ μτ̄ | �E| �= Q̄ind

Q̄gen
D (3.129)

which means that if there exists a z with s(z) ≡ μτ | �E| > D then one can not infer the exact
value of the mean carrier drift length from the measurement of the induced charge. However,



3.4 Charged Particle Detection 87

if s(z) < D for most z then one can see from Fig. 3.23 that s(z) = d(z) for most z and hence
s̄ ≈ d̄. For most CVD diamonds measured here the average charge collection distance was
smaller than the thickness by typically a factor of 2 to 5. We assume that for these cases the
average carrier drift length can be infered from the average charge collection distance.

The observed charge is typically induced for a time of the order of the mobility weighted
lifetime [Eq. 3.43]. The moving charges cause a current between the electrodes which can be
described by an exponential decrease

iind(t) =

⎧⎨
⎩

0 : t < 0
Qind

τ̄
e−t/τ̄ =

Qgen

D

d̄

τ̄
e−t/τ̄ : t ≥ 0

. (3.130)

The induced current can be approximated by a delta-function14, δ(t), if the carrier lifetime
is short compared to any time constant of the following readout electronics

iind(t) = Qind δ(t). (3.131)

If the diamond is uniformly illuminated by an electron flux, f(t), from a 90Sr β-source then
the induced current at the electrodes of size, A, is

Iind(t) = A

∫ +∞

0
f(t′) iind(t − t′) dt′ = Af(t)Qind = d̄

A

D
f(t)Qgen. (3.132)

For the case of a single excitation, f(t) = δ(t)/A, one obtains the induced current from
Eq. 3.130. It can be seen that the induced current is proportional to the average charge
collection distance and the particle flux.

The induced charge can be read out on both electrodes by a charge sensitive amplifier
(CSA). The readout with one CSA is shown in Fig. 3.25. The CSA is typically a charge
integrator and is symbolized as an operational amplifier with a feedback capacitor. The
feedback capacitor collects the charge

Qfp(t) =
∫ t>τ̄

0
iind(t′) dt′ ≈ Qind Θ(t). (3.133)

The charge on the feedback capacitor is essentially the induced charge multiplied by the step
function (Θ(t) = 1 for t > 0 and otherwise zero). In practice, the feedback capacitor must
be slowly discharged by a feedback resistor since otherwise it would sum the signals from
successive events and saturate the output of the amplifier. In Eq. 3.133 the Θ-function needs
to be replaced by a slowly decreasing function in order to correctly describe the slow discharge
of the feedback capacitor.

3.4.2 Viking/CMOS Charge Sensitive Amplifier (CSA)

A recently developed charge sensitive readout amplifier is the VA2. The VA2 is a succes-
sor of the Viking chip and is actually one version of a series of Viking chips [76, 77, 78]. The
VA2 is produced in CMOS technology 15 and offers 128 charge sensitive amplifiers (channels)
from which one is shown schematically in Fig. 3.26. A single channel contains a charge sensi-

14The delta-function, δ(x), has the property [75]:
∫ x0+ε

x0−ε
dxδ(x − x0) f(x) = f(x0) ∀f : x �→ f(x) ∈ R

with normalization
∫ x0+ε

x0−ε
dxδ(x − x0) = 1. Where ε > 0 → +0 is a small number compared to the scale

chosen for x. From its property one obtains the unit, [δ(x)], of the delta-function: [δ(x)] = 1/ [x]. A general
representation of the delta-function is δ(x) = g(x/ε)/

(
ε
∫

dxg(x)
)

for all ‘physically healthy’ functions, g(x).
15The abbreviation CMOS: Complementary Metal Oxide Semi-conductor.
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Figure 3.26: Schematic of one channel of the VA2 showing the internal diagram and
the external controls necessary for operation.

tive preamplifier (PreAmp) followed by a signal shaper. The shaper differentiates the voltage
Qfp(t)/Cfp, which is approximately QindΘ(t)/Cfp, and performs 2-pole semi-Gaussian signal
shaping (also called CR-RC shaping). The amplitude of the shaped pulse is proportional to
the signal charge. The signal peaking time can be adjusted between 1.0 μs and 2.0 μs. For
this application the shaping time was chosen to be 2 μs. The shaper is followed by the sam-
ple and hold circuit which is adjusted to sample the shaped voltage signal at its peak. The
sampled signals from several channels can be multiplexed and read out sequentially through
a differential output buffer. Signal multiplexing was used for the readout of up to 256 chan-
nels in diamond strip detectors. It is also possible to choose a single channel, bypassing
the multiplexer, and directly measure the shaped signal on that channel. This mode was
normally used for characterization of sensors with a single electrode. The external controls
for the preamplifier and the shaper were adjusted to obtain a desired gain and signal shape.
Table 3.4 lists a typical setting for the operation of one chip.

VFS (400..500) mV
VFP -350 mV
PreBias (350..450) mV across 1 kΩ
ShaBias 5 mV across 1 kΩ
BufBias 16 mV across 1 kΩ

Table 3.4: Typical settings for operating a VA2.

VFS and VFP are voltages for the gates of the feedback FETs which adjust the dis-
charging of the feedback capacitors by adjusting the resistance of the drain-source path of
the FETs. PreBias, ShaBias and BufBias are the bias currents for the drain source path of
the FETs in the preamplifier, the shaper and the buffer. The VA2 was designed for medium
sized detectors with a capacitive load up to 10 pF. The VA2 has a linear dynamic range from
−4 × 22500 e to +4 × 22500 e. The power consumption is nominally 1.2 mW/channel.

3.4.3 Noise in a CMOS CSA
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One important feature of the Viking readout is its low noise. The noise of a sensor
readout can be expressed as the equivalent noise charge (ENC). The ENC is the noise charge
variation at the input of the CSA. The ENC has units of a charge. The ENC depends on
the characteristics of both, the CSA and the pulse shaper. The noise is dominated by the
input device of the CSA. In the CMOS process the input device is a field effect transistor
(FET). The noise components are commonly separated into the parallel and series noise.
Significant series noise components for a device manufactured in the CMOS process are the
channel thermal noise at temperature, T , and the frequency dependent flicker noise whose
rms decreases like 1/f with increasing frequency. Both noise sources add in quadrature and
give the total series equivalent noise charge,

〈
q2
series

〉
. For the CMOS input amplifier followed

by a first order CR-RC signal shaping the series equivalent noise charge is proportional to
the total capacitance [79]:

〈
q2
series

〉
=
〈
u2

a

〉
· C2

t ; Ct = Ca + Ce. (3.134)

The total capacitance, Ct, is the sum of the external capacitance, Ce, and the preamplifier
inherent capacitance, Ca. The preamplifier inherent capacitance is the sum of the feedback
capacitance of the charge sensitive amplifier, the gate source capacitance and the gate drain
capacitance of the input FET. The external capacitance includes the detector capacitance
and stray capacitances. The proportionality in Eq. 3.134 is given by the equivalent noise
voltage,

〈
u2

a

〉
, which can be calculated for the CMOS process

〈
u2

a

〉
=

(
8kBT

3gm
· e2

E

8e2τp
+

Kf

C2
oxWL

· e2
E

e2

)
(3.135)

where e is the electron charge and eE is Euler’s constant (with the subscript ‘E’ indicating
‘Euler’ in order not to confuse with the electron charge). Cox is the capacitance of the gate
electrode depending on the thickness of the oxide layer and the size of the gate contact on
the silicon oxide. The channel thermal noise is white noise and inversely proportional to the
channel transconductance, gm = e Ibias/(kBT ). The flicker noise which is the second term
of
〈
u2

a

〉
depends on geometrical parameters of the input transistor like the transistor width,

W , the effective transistor length, L, and a process dependent constant, Kf , which is the
1/f frequency dependent noise coefficient. A generalization of Eq. 3.134 for any order of the
semi-Gaussian shaped signal is derived in reference [79]. The series noise can be evaluated for
a given CMOS process at zero external capacitance which gives the preamplifier equivalent
noise charge

〈
q2
a

〉
def=
〈
q2
series

〉 ∣∣∣
Ce=0

=
〈
u2

a

〉
C2

a . (3.136)

The series equivalent noise charge can therefore be written in terms of the preamplifier equiv-
alent noise charge and a slope term

√〈
q2
series

〉
=
√
〈q2

a〉 +
√
〈u2

a〉 · Ce. (3.137)

The series equivalent noise charge of a single VA2 amplifier channel, as given by the
manufacturer, is at best 60 e + 11.0 e/pF at 2 μs signal peaking time and 80 e + 15.0 e/pF
at 1 μs signal peaking time [78].

The parallel equivalent noise charge is due to the detector leakage current, ID, is asso-
ciated to the bias resistor, RB, and the preamplifier feedback loop resistor, RF. The parallel
equivalent noise charge is given by [79]
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〈
q2
parallel

〉
=

1
2
·
(

2 e ID +
4 kB T

RB
+

4 kB T

RF

)
Aparallel. (3.138)

For the case of first order CR-RC signal shaping with signal peaking time, τp, the constant
Aparallel/2 is [79]

1
2
Aparallel =

(π/2) e2
E

e2 4π
· τp (3.139)

where the constants are left uncancelled to keep the form in reference [79].
The noise due to the detector leakage current is shot noise. This noise contribution,

evaluated for the characteristic signal peaking time of 2 μs in the VA-circuit, gives a useful
rule of thumb

√〈
q2
D

〉
[e] def=

√
1
2
Aparallel · 2 e ID =

√
τpe2

E

4e

√
ID [A] = 150

√
ID [nA]. (3.140)

In the last equation the current has to be inserted in nanoampere in order to give the result in
rms electrons. The noise from the biasing resistor or from the preamplifier feedback resistor
is thermal noise. This noise contribution, evaluated for the characteristic signal peaking time
of 2 μs in the VA-circuit, gives a useful rule of thumb

√〈
q2
R

〉
[e] def=

√
1
2
Aparallel

4 kBT

R
=

√
τpe2

E

4e

√
2kBT

eR
= 1070

√
1

R [MΩ]
. (3.141)

The parallel noise charge is proportional to the square root of the signal peaking time.
The total equivalence noise charge of the readout with the external capacitance, Ce, is

obtained by adding the series noise and the parallel noise components in quadrature:

〈
q2
total

〉
=
(√

〈q2
a〉 +

√
〈u2

a〉 · Ce

)2

+
〈
q2
parallel

〉
. (3.142)

3.4.4 Experimental Method: Sample Preparation

The preparation of CVD diamond samples for charge collection measurements is the
same as described for the current measurements in Sec. 3.2.1. CVD diamond samples with
electrical contacts on both sides are shown in Fig. 3.1.

3.4.5 Experimental Method: Charge Collection Distance

Fig. 3.27 shows a possible setup for measuring the charge signal response and the charge
collection distance from a diamond. The bias voltage was applied via the resistor, R1, to
one electrode of the diamond sensor. The combination of the capacitor, C1 = 4.7 nF (with a
small resistor, R3, to ground, small is R3/R1 � 1) and the resistor, R1 = 100 MΩ, served as
a low-pass filter in order to reject ripple on the bias voltage. The 3 dB attenuation frequency
of this low-pass filter is at f = 1/(2πR1C1) ≈ 0.3 Hz. If one would chose R1 = 1 MΩ and
the same C1 the 3 dB attenuation frequency would be at 300 Hz. Hence a 50 Hz ripple on
the DC bias voltage would pass the filter 16. The electrode on the other side of the diamond

16The unit dezibel: unit of attenuation, a. If a voltage, ui, is attenuated to a voltage, uo, then a =
20 log10 (uo/ui). For the case uo/ui = 0.707 one finds a = −3 dB [80].



3.4 Charged Particle Detection 91

was AC coupled to the preamplifier of a VA2 readout channel. Care was taken to choose the
coupling capacitance, C2, sufficiently large (C2 � detector capacitance) in order to transmit
all of the induced charge. The readout electrode was at virtual ground via the resistor R4.
A collimated 90Sr source was located above the diamond sensor. 90Sr emits 100 % electrons
(e−) and anti-neutrinos (ν̄e) from successive β−-decays:

90
38Sr

(e−,ν̄e)−→ 90
39Y

(e−,ν̄e)−→ 90
40Zr. (3.143)

No photons are emitted. The first transition has a physical half-life of τ1/2 = 28.5 y and an
electron endpoint kinetic energy of 0.546 MeV, the second transition has a half-life of 64 h
and an endpoint kinetic energy of Tmax = 2.283 MeV [9]. The endpoint kinetic energy of
the second transition corresponds to η ≡ √T 2

max/m
2 + 2T/m = 5.37. The endpoint kinetic

energy is above minimum ionizing as can be seen in Fig. 3.16. The mean energy deposited
from electrons of the yttrium decay is close to the energy deposited from a minimum ionizing
particle. It was shown in reference [11] that the mean energy deposited from the source using
a similar configuration was 8 % higher than that deposited by a minimum ionizing particle
in a 500 μm thick CVD diamond

Q̄(source)
gen = 1.08 Q̄(mip)

gen =⇒ Q̄
(source)
ind = 1.08 Q̄

(mip)
ind . (3.144)

The signal readout of the diamond was triggered by a silicon diode behind the diamond.
The trigger therefore selects only events from electrons which traverse the diamond. The
exact value for the energy deposited from the 90Sr source depends on the amount of material
between the diamond sample and the trigger. If there is more material one selects events
which are closer to minimum ionizing. However, additional material also lowers the event
rate.

Fig. 3.5 lists the sources which were used together with their calculated activity at
different dates 17,18. The original activity and date were imprinted on the source. The
activities were then calculated from the exponential law for radioactive decays using the
given half-life of 90Sr. It can be seen that the change in activity was below 10 % for the
period of time shown.

source original activity date activity date activity date activity date
name [MBq] [mCi] [MBq] [MBq] [MBq]
3513RP 37.0 1.0 08/94 35.1 10/96 34.3 10/97 33.5 10/98
3595RP 37.0 1.0 07/95 35.9 10/96 35.0 10/97 34.2 10/98
3752RP 3.7 0.1 10/96 3.6 10/96 3.5 10/97 3.4 10/98

Table 3.5: List of 90Sr sources in use for measuring the charge collection distance.
The calculated activities are given for different dates.

The waveform of the shaped pulse was recorded by a digitizing oscilloscope (LeCroy
9310A [81]). The amplitude was read from the scope via GPIB into a PC using software
written in Labview [67]. The average charge collection distance was found from the measure-
ment of the induced charge by re-arranging Eq. 3.124 and using Eq. 3.90

d̄ =
Q̄ind [e]
36 e/μm

. (3.145)

17The unit becquerel: 1 Bq = 1 disintegration per second, unit of activity.
18The unit curie : 1 Ci = 3.7 × 1010 Bq, unit of activity.
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Figure 3.27: Schematic of the setup for measuring the charge collection distance in a
diamond detector using a radioactive β-source.

A typical mean induced charge of 6000 e at 1 V/μm in a CVD diamond therefore corresponds
to a mean charge collection distance of 167 μm. The typical equivalent noise charge of the
electronics was 210 e without a sample connected.

3.4.6 Experimental Method: Gain Calibration

The induced signal charge was measured as the voltage amplitude of the shaped pulse.
A calibration was required in order to obtain the gain constant that converts the voltage
amplitude into a charge. Various methods were used in order to find the gain constant,
two of them were the photo-absorption method and the test-pulser method. The photo-
absorption method measured the photo yield in a fully depleted silicon photo-diode from a
radioactive γ-source. The source used was 57Co that emits photons at two distinct energies
of E1 = 0.122 MeV and E2 = 0.136 MeV. A silicon diode was mounted at the location of
the diamond in the setup shown in Fig. 3.27 with the cobalt source illuminating the diode.
The voltage separation, ΔU , of the photo-absorption peaks in the recorded spectrum is
proportional to the energy difference between the peaks. Using the energy, ε

(si)
c , for carrier

generation in silicon one obtains the gain constant

gγ =
E1 − E2

ε
(si)
c ΔU

. (3.146)

This method was used as a cross check. In the test-pulser method a pulser supplied a voltage
step into a capacitance, C, that was connected to the preamplifier input. The cable which
transmited the voltage step was terminated by a resistor, R. Typical values were R = 50 Ω,
C = 1.8 pF, and the step magnitude of the order of several millivolt. The voltage step injects
a charge Q(t) = C U(t) = C U0 Θ(t). The current that charges the preamplifier feedback
capacitor is given by Eq. 3.131 by replacing the induced charge with the injected charge.
The charge injection causes a voltage amplitude, Ûout, of the shaped pulse. Then the gain
constant is
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gtp =
C U0

Ûout

. (3.147)

Fig. 3.28 shows a measurement of Ûout as function of the input charge, C U0, from one
channel of a VA2. The input charge was generated using a constant capacitance of 1.8 pF
and voltages U0 ranging from -5.4 mV to +5.4 mV. The gain can be read from the slope
of the measured curve: gtp ≈ 25 e/mV. The measurement in Fig. 3.28 also demonstrates
the linearity of the VA2 for positive and negative charge injection. It should be noted that
no direct current flows into the preamplifier during this measurement. For the case that
a detector is connected to the preamplifier with a leakage current flowing into the gate of
the preamplifier the response could be different since the conductivity of the drain-source
path of the feedback FET depends on the direction of the current in the drain-source path.
For applications with a diamond detector or with AC coupled detectors one can assume a
negligible feedback current and hence linearity of the VA2 for positive and negative charge
injection.
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Figure 3.28: Voltage amplitude of the shaped signal as a function of the injected charge
into the preamplifier of a channel of a VA2 at negligibly small direct current flowing
into the preamplifier. The upper graph shows a range from -60000 e to +60000 e. The
lower graph shows a magnification in the interval from -15000 e to +15000 e. The solid
line is a linear fit to the measured data points.

The statistical error on the gain constant, gγ , is determined by the statistical error of the
line position in the recorded histogram. The relative statistical error, 1/

√
N , decreases as the

number of entries, N , in a photo-absorption peak of the histogram increases. The relative
statistical error was estimated to be below 1 % for a histogram with about 4000 entries in the
photo-peak at E1. The statistical error on the gain constant, gtp, depends on the statistical
error of Ûout and U0, where both decrease like 1/

√
N for increasing number, N , of test pulses.

In practice the error is determined by the measurement of the capacitance. The capacitance
was measured for a series of capacitors with a relative deviation below 4 % compared to the
printed value. Stray capacitances may contribute as well depending on the geometry. The
reproducibility of the gain constant had a 1 σ standard deviation of about 5 % of the gain
constant.
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3.4.7 Observation: The Pumping Effect

Fig. 3.29 shows a measurement of the charge collection distance as a function of time
in the setup. The bias voltage for the diamond was constant at 1 V/μm. The electron flux
from the 37 MBq 90Sr source was constant as well and therefore the time shown in the figure
is proportional to the absorbed dose from the source. The charge collection distance was
derived from the induced charge using Eq. 3.145. It can be seen that the charge collection
distance increased in time from a value of (50 ± 5) μm to (87 ± 3) μm. The increase in
charge collection distance at relatively low dose is called pumping. It is attributed to trap
filling which then allows charge carriers to travel longer distances before being trapped. The
measured data is fitted by an exponential function

d̄(t) = d̄p · (1 − r e−t/τ ) with r
def=

d̄p − d̄0

d̄p
. (3.148)

The time constant, τ = 64 min, was obtained from the fit to the data. Pumping was seen
on CVD diamond samples from other manufacturers and also on a natural diamond and
therefore seems to be characteristic for diamond.
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Figure 3.29: Charge collection distance as a
function of time in the measuring setup un-
der the 90Sr source. The source used for this
measurement had an activity of 37 MBq.

Figure 3.30: Charge collection distance as a
function of voltage after several exposures to
fluorescent light.

Fig. 3.30 demonstrates the effect of fluorescent light: the charge collection distance was
measured several times as a function of the applied electric field with intermediate exposures
to fluorescent light. The time of exposure to the light was doubled between the first two
measurements. The time of the last exposure was 144 hours. The absolute spectral intensity
of the fluorescent light and the absorbed photon dose is unknown. The time of exposure gives
the frequency integrated relative dose of light. The charge collection distance decreased with
increasing exposure time to fluorescent light. The decrease of charge collection distance is
called depumping. Depumping is explained by releasing filled traps. The effects of pumping
and depumping were reproducible. The charge collection distance ratio between the pumped
and the depumped state was typically between 1.5 and 2.

The effect of pumping and depumping has been tested by measuring temperature stim-
ulated currents using the setup described in reference [82] and by measuring the thermolu-
minescence light during linear heating in a thermoluminescence reader [83]. Fig. 3.31 shows
the current from a CVD diamond (CDS-9) at 100 V as a function of the temperature after
exposure to β-radiation from a 90Sr source. The temperature is given as a function of time
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in the lower graph. The current in the diamond increases from a few picoamperes at room
temperature to several 100 μA during heating. The current peaks at about 230 ◦C. Once
heated, charge carriers are flushed and the current peak is missing during cooling or repeated
heating.

0
50

100
150
200
250
300

300 350 400 450 500 550 600 650

cu
rr

en
t[

μA
]

0
5

10
15
20
25
30
35
40
45

300 350 400 450 500 550 600 650
Temperature [K]

ti
m

e 
[m

in
]

Thermoluminescence on Diamond, Dose Dependence

0

1

2

3

4

5

50 100 150 200 250 300 350 400

Temperature [oC]

T
L

 In
te

n
si

ty
 [a

rb
it

ra
ry

]

Figure 3.31: Temperature stimulated current
as a function of temperature after exposure to
β-radiation from a 90Sr source.

Figure 3.32: Thermoluminescence signal as
a function of temperature at different doses of
β-radiation from a 90Sr source. The dashed
graph shows the thermoluminescence response
after 2.2 hours pumping with 90Sr followed by
an exposure to a fluorescent light lamp.

Fig. 3.32 shows the intensity of light emission during heating from a CVD diamond
(CDS-12-P4). The observation of luminescence light emission from a CVD diamond after
exposure to β-radiation from a 90Sr source was described in Sec. 1.1.2. The curves here are
given for different time of exposure to radiation. The time of exposure is proportional to
the fluence from the source. It was found that the integral under the luminescence curve is
proportional to the time of exposure up to an accumulated dose of about 1 Gy. The intensity
of the luminescence peaks at 240 ◦C. It is also shown that the thermoluminescence after 2.2
hours pumping with 90Sr followed by an exposure to a fluorescent light lamp decreases the
luminescence response (dashed graph). The comparison between the temperature stimulated
current and the thermoluminescence response shows that the peaks occur at about the same
temperature which indicates that both effects originate from the same trap levels. It can be
concluded that exposure to light decreases luminescence and thermally stimulated current as
well as charge collection distance. It was confirmed that the pumping state remains stable
over at least one month for the case that the diamond is kept in darkness and at room
temperature.

3.4.8 Results: Charge Collection Distance

Fig. 3.33 shows the mean induced charge measured from two CVD diamond samples,
CDS-28 (left) and UTS-5 (right), as a function of the electric field. The charge collection
distance was derived using Eq. 3.145 and is given on the right axis. The charge collection
distance increases with increasing electric field as expected from Eq. 3.48. At about 0.5 V/μm
the charge collection distance saturates as explained by velocity saturation due to electron
phonon scattering in Sec. 3.1.4. Initially an offset from zero between -200 e and +200 e
at 0 V was observed. The data was then corrected such that the graph intersects with the
origin of the coordinate system. The charge collection distance from CDS-28 is shown in the
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partially pumped and in the fully pumped state. The sample was relatively thick (1098 μm)
which lowered the acquisition rate since less electrons could penetrate the sample compared
to thinner samples. Hence, the time for acquiring 800 events was longer on a thick sample
than on a thinner sample. A thick diamond therefore pumps during the measurement and
the graph is therefore labeled as ‘partially pumped’. The fully pumped curve reaches a signal
charge of (8700±100) e corresponding to (242±3) μm charge collection distance at 1 V/μm.
The charge collection distance of the sample UTS-5 in the pumped state is shown for positive
and negative electric field to the right. The measurement for positive and negative signals is
possible since the amplifier gain is symmetric for positive and negative input charge as shown
in Fig. 3.28. The charge induced at an electrode changes polarity for the reversed field as
expected by the reversed movement of charges. The mean induced charge was (8350± 100) e
at +1 V/μm corresponding to a charge collection distance of (232 ± 3) μm. The induced
charge at -1 V/μm was about -6700 e. The absolute induced charge was lower for negative
polarity than for positive polarity. This observation has been made for several samples.
As a convention the charge collection distance is almost always given for a positive voltage
applied to the nucleation side with the charge read out on the growth side. This convention
applies to all measurements with diamond strip sensors in the beam in Chapter 4 and to the
characterization of irradiated diamonds in Chapter 5.
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Figure 3.33: Charge collected and charge collection distances from two CVD diamond
samples, CDS-28 and UTS-5, as a function of the electric field.

Fig. 3.34 shows the charge collected and the charge collection distance from a 285 μm
thick natural diamond. The diamond was classified by the vendor as a class IIa single
crystal, natural diamond 19. In the depumped state the mean induced charge reached 470 e
corresponding to 13 μm charge collection distance at 1 V/μm. The sample remained under
the 90Sr source for 17 hours. The measurement after 17 hours showed a mean induced charge
of 860 e corresponding to a charge collection distance of 24 μm at 1 V/μm. The natural
diamond sample pumped similarly to the CVD diamonds. The pumping factor, the ratio
between the charge collection distance in the pumped and the depumped state, was 1.8 which
is comparable to what was seen on CVD diamonds. A charge collection distance of about
20 μm at 1 V/μm is confirmed on other type-IIa natural diamonds [85, 11]. The maximum
charge collection distance on this natural diamond is lower than what was measured on CVD

19 Natural diamonds are classified according to their optical transmission for wavelengths between 225 nm
and 2.5 μm in the types Ia, Ib, IIa, IIb [84, 2]. Diamonds of type Ia and Ib transmit light with wavelengths
longer than 340 nm whereas IIa transmits starting from 225 nm. The different transmission is due to impurities,
where common impurities in diamond are nitrogen and boron.
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diamonds which indicates that the electrical quality of CVD diamonds has exceeded that
of natural diamond. It can also be seen that the charge collection distance in the natural
diamond does not saturate in the electric field range measured (up to 1.25 V/μm). This
observation is confirmed on another natural diamond in reference [11]. In CVD diamond
saturation of the charge collection distance was always observed below 1 V/μm. Hence, the
carrier velocity in natural diamond saturates at a higher electric field strength than in CVD
diamond.
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Figure 3.34: Charge collected and charge col-
lection distance measured from a natural di-
amond (type IIa). The charge collection dis-
tance is shown in the depumped state and in
the pumped state after 17 hours under the
90Sr source.

Table 3.6 on page 107 lists the mean signal charge and the charge collection distance
for a series of diamond samples in the pumped state. The samples are ordered according
to their delivery from the manufacturer. The applied electric field was normally 1 V/μm.
A maximum voltage of 1100 V was applied if a sample was thicker than 1100 μm. For the
samples shown the charge collection distance ranges from 40 μm to 347 μm. Three samples
of this set had a diode-like current-voltage curve as described in Sec. 3.2.5 and the signal
charge could not be measured.

Fig. 3.35 (left) shows the charge collection as a function of the sample thickness. The
graph contains unprocessed samples (as-grown) and processed samples. One can see that the
charge collection distance increases with the thickness of the as-grown samples. Assuming
similar growth conditions one may conclude that the local charge collection distance increases
along the direction of growth. An increase along the direction of growth indicates an increase
in the carrier drift length and therefore an increase of the electrical quality.

The slope of the bulk averaged charge collection distance versus thickness is

d̄

D

Eq. 3.124
=

Q̄ind

Q̄gen

Eq. 3.91
= εr (3.149)

where the right side was defined as the charge collection ratio in Eq. 3.91. For unprocessed
samples the charge collection ratio can be read from Fig. 3.35 ranging between 0.1 and 0.2.
The graph also shows samples which were lapped on the nucleation side. The charge collection
distance was typically higher on samples which were lapped than on the as-grown sample.
The charge collection ratio reached 0.5 for lapped samples.

3.4.9 Results: Signal Charge Distribution

Fig. 3.36 shows signal charge distributions from two CVD diamond samples in the
pumped state: CDS-36 with a thickness of 1202 μm (left) and UTS-5 with a thickness of
432 μm (right). Both distributions have a pedestal at 0 e due to false triggers. The mean
of the pedestal verifies that the overall distribution has no offset from zero. The standard
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deviation of the pedestal corresponds to the readout noise. The pedestal distributions in

both samples have a standard deviation of
√〈

q2
ped

〉
≈ 350 e. The leakage current in the

station under the source is about 100 pA at 1 V/μm which contributes to the parallel equiv-
alent noise charge with ≈ 50 e [Eq. 3.140]. The biasing resistor, RB = 100 MΩ, and the
feedback resistor, RF = 100 MΩ, contribute to the parallel noise with 107 e each [Eq. 3.141].
Hence the calculated parallel noise is

√〈q2
a〉 ≈ 160 e. The series noise can be calculated

using
√〈q2

a〉 ≈ (70 ± 10) e and
√〈u2

a〉 = 11 e/pF. If one assumes an external capacitance,
Ce = 20 pF, one obtains a total noise

√〈
q2
total

〉 ≈ (330 ± 10) e. The external capacitance is
the sum of the detector capacitance, Cd, and the stray capacitance, Cstray. Since the diamond
sample had a capacitance of Cd ≈ 3 pF according to Eq. 3.57 one inferes a stray capacitance
of about 17 pF. Such high stray capacitance may be possible, since the mechanics that con-
tacts the diamond is all metal and much larger than the electrode on one side of the diamond.
The readout noise is therefore dominated by the noise of the setup which is mainly due to
the stray capacitance.
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Figure 3.36: Charge signal distribution from two CVD diamond samples, CDS-36
(left) and UTS-5 (right), in the pumped state.
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Fig. 3.36 shows the signal distributions for CDS-36 and UTS-5. The mean, Q̄ind, of
the induced signal charge distribution (without entries from the pedestal) is (6280 ± 24) e
for CDS-36 and (8330 ± 100) e for UTS-5. The signal charge distributions are separated
from zero. The signal distribution starts at about Qmin = (1500 ± 500) e for CDS-36 and
Qmin(1200±400) e for UTS-5. This corresponds to a separation to most probable ratio of 1/4
in CDS-36 and 1/5 in UTS-5. The separation in silicon can be read from the measurement of
the signal distributions in Fig. 4.50: the separation between the rise of the distribution from
zero is about 3/4 of the most probable signal. The separation from silicon is about 3 times
larger than from these diamonds.

A technique to find the mean of the signal distribution is to calculate the background
corrected mean value of the histogram with pedestal

Q̄ind =
(

1 +
Np

Ns

)
H̄ (3.150)

where H̄ is the mean value of the whole histogram (including entries from the pedestal)
and Np is the number of entries in the pedestal and Ns is the number of entries in the
signal distribution. For the measurements of the charge collection distances in Table 3.6
a background correction was made if the measurement had a pedestal distribution. The
histogram of CDS-36 includes 8000 entries while the histogram of UTS-5 (right) only includes
800 entries. The number of entries in the signal distribution determines the statistical error
of the mean of the signal distribution

ΔQind ≈ FWHM
2.35

√
Ns

. (3.151)

The FWHM is the full width of the distribution at half the maximum. Eq. 3.151 is an
approximation which assumes a Gaussian signal distribution. The statistical error of the
mean is 24 e for CDS-36 and 100 e for UTS-5. The statistical error of the mean charge
directly corresponds to the error in the charge collection distance measurement. The error
of 100 e corresponds to an error of 3 μm for the charge collection distance. The statistical
error can be reduced by recording more events.

The shape of the signal charge distribution is determined by fluctuations of the energy
loss process. The Landau distribution can be used as a description of the energy loss distri-
bution [Sec. 3.3.3] assuming a characteristic width σdE/dx

(20). The energy necessary for the
creation of an electron-hole pair straggles as well and may contribute with a width σeh. The
width of a distribution due to straggling is then

σstraggling =
√

σ2
dE/dx + σ2

eh. (3.152)

The electronics noise, σnoise =
√〈

q2
ped

〉
, also contributes to the width of the induced charge

distribution. In addition there are variations in signal charge laterally across the sample as
shown in Sec. 4.4. These variations may contribute with a width σLV. The FWHM of the
signal charge distribution is then approximated by

FWHM ≈ 2.35
√

σ2
straggling + σ2

noise + σ2
LV. (3.153)

20The mean and the rms of the Landau distribution are infinite. The characterization of the widths may be
done by the FWHM which could be used to define σdE/dx. Alternatively one could define a cut-off energy for
the Landau distribution and calculate the standard deviation for values below the cut-off energy.
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The FWHM was chosen to characterize the width of measured signal charge distributions.
Table 3.7 on page 108 lists results from a series of CVD diamond samples. The thickness,
D, ranges from 600 μm up to 2253 μm. The mean charge signal ranges from 2000 e to
12500 e. The values were measured on samples in the pumped state and if possible at
1 V/μm. Eq. 3.151 was used to calculate the error on the most probable signal charge.
Fig. 3.37 compares the most probable value of the distributions with their FWHM value. It
can be seen, that the FWHM increases as the signal charge increases. For some samples the
ratio of FWHM and the most probable value is less than one and for some samples bigger
than one. The solid line in the figure has a slope of one. Two points (open circles) are shown
from a measurement on silicon detectors (the distribution from silicon are shown in Fig. 4.50
in Sec. 4.3.4.). Also in silicon the FWHM increases as the most probable signal increases.
The silicon points are near to a line with slope 0.5 (dashed line).
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Figure 3.37: FWHM as a function of the most probable value in CVD diamond
samples (solid circles) and in silicon (open circles).

3.4.10 Summary and Discussion

The method of characterizing a diamond sample by its charge collection distance has been
described in this section. The characterizations were made using VA2 readout electronics.
The linearity, noise performance and gain were studied in order to obtain reliable data from
measurements in diamond.

Charge collection measurements were made using a 90Sr β-source. The energy deposited
from 90Sr in this setup is assumed to be 8% higher than from a minimum ionizing particle.
One effect observed was pumping: the charge collection distances increased with absorbed
dose from the β-source. The pumping and depumping of the charge collection distance was
found on all diamond samples that were measured. The increase was typically a factor 1.5
to 2.0 from the unpumped value to the pumped value. Pumping is explained by filling traps
with electrons, depumping by releasing electrons from traps. This model is supported by mea-
surements of the temperature stimulated current and the thermoluminescence signal: both
methods confirm release of electrons from trapped energy states during heating. Depumping
with fluorescent light was observed to lower the charge collection distance and the lumines-
cence response. The characterization of CVD diamond using the method of temperature
stimulated currents and luminescence seems natural for characterizing the energy of trap
levels and their concentration and eventually quantify their influence on the charge collection
distance. In particular thermally stimulated current methods are a useful tool in identifying
trap levels in other semi-conductor devices. This is also interesting for characterizations of
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irradiated samples. Finally, it may be noted that a diamond sensor in a high luminosity
experiment would quickly pump due to the high radiation background.

For recent samples the mean collected charge in the pumped state was above 6000 e at
1 V/μm corresponding to 166 μm charge collection distance. Samples with higher charge
signal exceeding 8000 e (220 μm charge collection distance) were also available. The signal
charge distribution from most diamonds was separated from zero by about 1200 e which is
1/5 of the most probable value. The separation in silicon was normally 3/4. Separation
from zero is important for the determination of the particle hits in strip or pixel sensors. Hit
finding relies on the threshold chosen for discriminating signal from noise. The threshold has
to be sufficiently high in order to exclude noise hits. A separation above 3 times the noise
charge variation prevents loss of signal due to a threshold cut. The noise charge variation
was between 660 e and 850 e using fast (25 ns) LHC type readout electronics with a 1 pF
load capacitance [Sec. 4.5]. Therefore one would desire a separation of about 3 × 660 e to
3 × 850 e. A separation of 1200 e is near the lower end of the desired separation. The
separation has to improve to not loose signal charge. It was found that the width of the
signal charge distribution increases with the most probable charge signal. The ratio of the
FWHM to the most probable value was near 1.0 in CVD diamond and near 0.5 in silicon.
The width from silicon sensors was lower than what was observed in CVD diamond sensors.
A possible explanation for the FWHM in CVD diamond is a lateral variation in the charge
collection distance.

As a result of the measurements on about 100 CVD diamond samples, often from differ-
ent growths, the charge collection distance from one manufacturer has been improved from
originally 30 μm to now typically between 170 μm and 200 μm and sometimes above 200 μm.
It is likely that chemistry and control of impurities have improved during the last years of
collaboration with the manufacturer. These years were mainly used to gain experience and
understanding in research growth reactors. It is now time to transfer the growth to produc-
tion reactors, this means the process should become a defined recipe which can be reproduced
in other growth reactors and by different personal. This work has been started and samples
from production growths have been delivered. For example the large trackers in Sec. 4.3
originate from production growths.

3.5 Material Removal Study

CVD diamond typically grows in a polycrystalline columnar structure along the
growth direction. The substrate side begins with small grains (≈ 1 μm) which
grow with material thickness. As the material grows it develops the texture of
the fastest growing crystal orientation. It has previously been shown [11, 86, 87]
that the electrical properties of CVD diamond vary with the thickness of the
material: the carrier lifetimes are small on the substrate side and large on the
growth side. As a result, the raw diamond material can be “improved” by
removing material (lapping) from the substrate side. This procedure has been
used to increase the signal size by 35% over the as-grown sample. This section
presents measurements of the charge collection distance after material removal
from the nucleation and growth side and explains the results with the linearly
increasing charge collection distance in the material.



102 CHAPTER 3. PARTICLE DETECTION

3.5.1 Successive Lapping on the Nucleation Side

Fig. 3.38 shows the charge collection distance versus electric field measured in a diamond
sample (CDS-14) before and after material removal from the nucleation side. The charge
collection distance was measured using the technique described in Sec. 3.4. The sample
had a thickness of 624 μm as-grown. The charge collection distance at that thickness was
(43± 4) μm at 1 V/μm in the depumped state. After lapping by 175 μm from the nucleation
side, which is 28 % of the original thickness, the charge collection distance was (57 ± 4) μm
at 1 V/μm in the depumped state which is higher than before lapping. The increase in
charge collection distance is therefore (25 ± 4) % compared to the as-grown sample. This
measurement shows that the average charge collection distance can be improved by material
removal from the nucleation side. Successive lapping has been performed on CDS-14 and the
charge collection distance was measured after each removal step. Fig. 3.39 shows the average
charge collection distance, d̄, normalized to the average charge collection distance, d̄0, before
material removal as a function of the material removed from the nucleation side where D is
the thickness before material removal. The measurements were performed by two groups (A
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Figure 3.38: Charge collection distance as
a function of the electric field in a diamond
sample (CDS-14) before and after material re-
moval from the nucleation side. The sample
was measured in the depumped state for this
measurement.

Figure 3.39: Measured charge collection dis-
tance as a function of the material removed
from the substrate side. The sample was
lapped three times by about 60 μm at each
step. The charge collection increases after
each step which is explained by the linear in-
crease of charge collection from the substrate
side in the diamond.

at CERN in the pumped state and B at OSU [85] in the depumped state). The normalized
charge collection distance increases linearly with Δn/D after each step of material removal
with a slope of m = 1.0 using the A data only and m = 0.89 using A and B data. The
measurements from A and B agree except for the point after 28 % material removal. The
measured increase is described by a linear function

d̄(Δn) = d̄0 + m d̄0
Δn

D
. (3.154)

The measurement can be explained with the following model. The charge collection
distance depends on the position in the material along the direction of growth and can be
described with a function, d(z), which increases monotonically along the direction of growth
on the interval from 0 to D with 0 ≤ d(z) ≤ D for all z in this interval. The mean value, d̄,
of the charge collection distance is then
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d̄ =
1
D

∫ D

0
d(z) dz. (3.155)

The average charge collection distance, d̄, after material removal Δn from the nucleation side
leaving the sample of thickness D − Δn is then given by

d̄(Δn) =
1

D − Δn

∫ D

Δn

d(z)dz. (3.156)

For Δn = 0 one obtains the charge collection distance d̄0
def= d̄(0) before material removal.

Calculation of the derivative ∂d̄/∂Δn from Eq. 3.156 gives the charge collection distance as
a function of the position z in the material

d(z) = d̄(z) − (D − z) · ∂d̄

∂z
(z) (3.157)

where the argument z is used instead of Δn to stress that Eq. 3.157 can be used for any
position. Eq. 3.157 is useful since it relates the bulk averaged charge collection distance
to the local charge collection distance. It allows one to deduce the local charge collection
distance for any change of the measured bulk charge collection distance after several steps of
lapping. The linear increase of the bulk charge collection distance as measured and described
with Eq. 3.154 can be inserted in Eq. 3.157 and one obtains a linear increase of the local
charge collection distance from the nucleation to the growth side

d(z) = (1 − m) d̄0 + 2m d̄0
z

D
. (3.158)

Using Eq. 3.158 it is possible to calculate the local charge collection distance at any position
z in the bulk. In particular one finds the charge collection distance, d0, on the nucleation
side for z = 0 from the measured slope of m ≈ 1 from Fig. 3.39

d0 ≡ d(0) = (1 − m) d̄0 ≈ 0 (3.159)

and the charge collection distance on the growth side from the measured slope

d(D) = (1 + m) d̄0 ≈ 2 d̄0. (3.160)

The slope, n, of the charge collection distance inside the bulk can be read from Eq. 3.158

n =
2m d̄0

D
≈ 2 d̄0

D
. (3.161)

The approximations in each of the previous equations have been made from the observation
that m ≈ 1 and therefore d0 ≈ 0.

3.5.2 Linear Model of the Carrier Drift Length

The observation above started with the measurement of the bulk averaged charge collec-
tion distance and deduced the local charge collection distance. It was shown that the mea-
sured linear increase of the bulk averaged charge collection after successive material removals
implies the linear increase of charge collection distance in the material. The charge collection
distance, d, can be identified with the carrier drift length, s, for the case of 0 ≤ s(z) ≤ D for
all z along the direction of growth. For that case one can start with the assumption of a lin-
early increasing carrier drift length. This assumption, known as the linear model [11, 86, 87]
starts with a linear Ansatz for the carrier drift length
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Figure 3.40: Linear model of the drift length,
s(z), as a function of the depth, z, in the di-
amond bulk. The nucleation side of the dia-
mond is at z = 0 the growth side is at z = D
which gives the as-grown thickness D. Lap-
ping on the nucleation side or growth side re-
duces the thickness by the amount Δn or Δg.

s(z) = s0 + n z. (3.162)

Fig. 3.40 illustrates the carrier drift length from the nucleation side to the growth side. The
nucleation side at z = 0 has the carrier drift length, d0, which can be different from zero.
The carrier drift length is assumed to increase in direction of growth with the slope n. One
can identify the carrier drift length with the charge collection distance if s(z) ≤ D for all z
along the direction of growth

if s(z) ≤ D then d(z) = s(z) and d0 = s0. (3.163)

Integration of Eq. 3.162 as in Eq. 3.48 gives the bulk averaged charge collection distance

d̄(Δn) = d̄0 +
n

2
Δn ; d̄0 =

(
d0 +

n

2
D

)
(3.164)

where Δn denotes again the amount of material removed from the nucleation side. In partic-
ular one obtains the bulk averaged charge collection distance after lapping on the nucleation
side

d̄

d̄0
= 1 +

(
1 − d0

d̄0

)
Δn

D
, (3.165)

which is overlayed to the measured data in Fig. 3.39. In other words, the change in the
carrier drift length after lapping is proportional to the change in thickness. One can conclude
that the linear model of carrier drift length is consistent with the measurement of linearly
increasing charge collection distance. The measured slope, m, from Eq. 3.154, is then related
to the charge collection distance (= carrier drift length) on the nucleation side and the initial
bulk averaged charge collection distance

m = 1 − d0

d̄0
. (3.166)

The measured slope, m ≈ 1, is consistent with zero charge collection distance and carrier
drift length on the nucleation side (d0 = s0 = 0).
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3.5.3 Lapping on the Growth Side

For tracker preparation with strips on the growth side it was necessary to remove material
from the growth side in order to obtain a smooth surface. Lapping on the growth side is
expected to decrease the averaged carrier drift length and hence the averaged charge collection
distance since according to the linear model regions with comparable high carrier drift length
are removed. The bulk averaged charge collection distance for lapping on the growth side by
the amount Δg is given in analogy to Eq. 3.156 by

d̄(Δg) =
1

D − Δg

∫ D−Δg

0
d(z)dz. (3.167)

One can use the model of linearly increasing carrier drift length [Eq. 3.162] and assume that
one can identify the carrier drift length with the charge collection distance. Then one obtains
the bulk averaged charge collection distance after lapping on the growth side

d̄

d̄0
= 1 −

(
1 − d0

d̄0

)
Δg

D
(3.168)

which differs from Eq. 3.165 by the sign in front of the brackets, only. For the general case
of lapping on both sides of one obtains

d̄

d̄0
= 1 +

(
1 − d0

d̄0

)(
Δn

D
− Δg

D

)
. (3.169)

Fig. 3.41 shows the measured charge collection distance before and after lapping on the
growth side of a CVD diamond sample (CDS-38) as a function of the electric field. The
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Figure 3.41: Collected charge sig-
nal and charge collection distance
as a function of the electric field in
a diamond sample (CDS-38) before
and after material removal from the
growth side. In both measurements
the sample is in the pumped state.

sample had a thickness as-grown of 782 μm and a charge collection distance of (238±10) μm
at +1 V/μm. After lapping of 92 μm from the growth side to a thickness of 690 μm the
charge collection distance is (193±10) μm at +1 V/μm. The measured ratio d̄/d̄0 is therefore
0.811± 0.07. The expected ratio from Eq. 3.168 assuming d0 = 0 μm is 0.88 which is slightly
higher than the measured ratio.

3.5.4 Summary and Discussion

CVD diamond samples have been thinned by successive lapping on the nucleation side.
The charge collection distance has been measured after each removal step. The charge collec-
tion distance is observed to increase after each lapping step. Taking the measured increase
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it was shown that the local charge collection distance increases linearly from the nucleation
side to the growth side. The measurement indicates that the carrier drift length is nearly
zero on the nucleation side and twice the bulk carrier drift length on the growth side. It was
also demonstrated by one measurement that lapping on the growth side leads to a decrease of
the average charge collection distance. These observations agree with previous work on CVD
diamonds produced by other manufacturers [11, 86, 87]. It has been shown in Sec. 2.2 that
the grain size increases linearly from the nucleation side to the growth side. It could therefore
be that in the region of larger grains the carrier drift length is higher than in regions with
smaller grains. A possible reason for a lower carrier drift length on the nucleation side could
be a high concentration of grain boundaries or a high concentration of defects in general.
It could also be that the orientation of growth is important for the carrier drift length and
hence for the charge collection distance.

The carrier drift length was measured on the surface of a diamond as described in
reference [11, 86] using carrier excitation by a laser. The carrier drift length was measured
between two contacts on the surface of CVD diamonds and natural diamond. It was found
that the carrier drift length is near zero on the nucleation side of CVD diamond and twice
the bulk average carrier drift length on the growth side. In natural diamond the carrier
drift lengths are equal on both sides. The carrier drift length was infered from the charge
collection distance. The linear model implies a thickness above which the carrier drift length
exceeds the thickness of the sensor. For this case the carrier drift length can no longer be
infered from the charge collection distance. The measurement of the surface charge collection
distance allows one to infer the surface carrier drift length at any thickness. The identification
is only limited by the distance of the contacts on the surface. In order to infer the carrier
drift length the measurement of the surface charge collection distance is therefore favorable if
the charge carrier drift length approaches or exceeds the detector thickness. Finally it should
be noted that for the case that the carrier drift length exceeds the detector thickness and
for the case of injecting contacts one should be able to observe photo-conductive gain which
means that the signal charge on the electrodes exceeds the generated charge.
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sample sample delivery D [μm] Q̄ind d̄ comment
index name number ±5μm Ns [e] [μm]

1 DRDS-1 - 285 800 900 ± 14 25 ± 1 natural

2 CDS-14 (42) 642 800 3240 ± 50 90 ± 1 as-grown

3 CDS-15 (43) 764 800 2700 ± 41 75 ± 1 as-grown

4 CDS-16 (44) 411 800 1440 ± 22 40 ± 1 as-grown

5 CDS-17 (47) 743 800 2340 ± 35 65 ± 1 as-grown
6 CDS-18 (58) 499 800 3168 ± 48 88 ± 1 as-grown

7 CDS-19 (61) 388 800 3060 ± 46 85 ± 1 lapped

8 CDS-20 (63) 460 800 2304 ± 81 64 ± 2 as-grown

9 CDS-21 (64) 435 800 2268 ± 34 63 ± 1 as-grown

10 CDS-22 (67) 2620 800 8028 ± 110 223 ± 3 as-grown

11 CDS-23 (68) 776 800 5112 ± 78 142 ± 2 as-grown
12 CDS-24 (69) 765 not measured as-grown

13 CDS-25 (70) 785 800 2520 ± 38 70 ± 1 as-grown

14 CDS-26 (71) 1578 580 12500 ± 220 347 ± 6 lapped

15 CDS-27 (72) 1445 4400 11270 ± 70 313 ± 2 lapped

16 CDS-28 (73) 1098 800 8700 ± 100 242 ± 3 prob. lapped
17 CDS-29 (74) 611 800 4800 ± 70 133 ± 2 prob. lapped

18 CDS-30 (75) 2253 1260 2900 ± 30 81 ± 1 as-grown

19 CDS-31 (76) 2242 3164 2350 ± 14 65 ± 1 as-grown

20 CDS-32 (77) 2000 1168 6100 ± 44 169 ± 1 as-grown

21 CDS-33 (78) 710 790 5482 ± 61 153 ± 2 lapped
22 CDS-34 (79) diode-like

23 CDS-35 (80) diode-like

24 CDS-36 (81) 1202 7760 6280 ± 24 174 ± 1 as-grown

25 CDS-37 (82) 1232 6870 6050 ± 25 168 ± 1 as-grown

26 CDS-38 (83) 782 700 7200 ± 110 200 ± 3 lapped
27 CDS-41 (84) diode-like

28 CDS-39 (85) 1543 9000 10400 ± 41 288 ± 1 lapped

29 CDS-42 (86) 920 7200 10700 ± 47 297 ± 1 lapped

30 UTS-5 - 432 700 8330 ± 100 232 ± 3 lapped

31 CDS-61 - 521 4000 6340 ± 37 176 ± 1 lapped

32 CDS-62 - 535 4000 8750 ± 46 243 ± 1 lapped

Table 3.6: Results from a series of diamond samples measured in the pumped state:
the thickness, D, the number, Ns, of events taken for calculating the mean signal
charge, the mean signal charge, Q̄ind, and the charge collection distance, d̄. The samples
are listed in the order of delivery by the the manufacturer (number in brackets). The
index in the very left column is assigned in order to display the results Fig. 3.35.
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sample deli- D | �E| Q̄ind Q̂ind FWHM FWHM/Q̂ind

name very [μm] [V/μm] Ns [e] [e] [e]
no. ±5 < ±10% < ±12%

CDS-26 (71) 1578 0.70 580 12500 ± 220 10650 ± 220 12477 1.17

CDS-27 (72) 1445 0.77 4400 11270 ± 70 7250 ± 70 10800 1.48

CDS-28 (73) 1098 no histogram

CDS-29 (74) 611 1.00 800 4800 ± 70 3800 ± 70 4500 1.18

CDS-30 (75) 2253 0.50 1260 2900 ± 30 2600 ± 30 2380 0.90
CDS-31 (76) 2242 0.50 3164 2350 ± 14 2100 ± 14 1900 0.90

CDS-32 (77) 2000 0.55 1168 6100 ± 44 4900 ± 44 3520 0.72

CDS-33 (78) 710 1.00 790 5482 ± 61 4650 ± 61 4020 0.86

CDS-34 (79) diode-like

CDS-35 (80) diode-like

CDS-36 (81) 1202 0.90 7760 6280 ± 24 5160 ± 24 4880 0.94
CDS-37 (82) 1232 0.90 6870 6050 ± 25 5000 ± 25 4906 0.98

CDS-38 (83) 782 1.00 700 7200 ± 110 6064 ± 110 6820 1.13

CDS-41 (84) diode-like

CDS-39 (85) 1543 0.70 9000 10400 ± 41 9000 ± 41 9186 1.02

CDS-42 (86) 920 1.00 7200 10700 ± 47 8580 ± 47 9300 1.08
UTS-5 - 432 1.00 700 8330 ± 100 6000 ± 100 6200 1.03

CDS-61 - 521 1.00 4000 6340 ± 37 5500 ± 37 5500 1.00

CDS-62 - 535 1.00 4000 8750 ± 46 7500 ± 46 6800 0.91

Table 3.7: Results from a series of diamond samples measured in the pumped state:
The thickness (D), the magnitude of the electric field,

∣∣�E∣∣, the number of signal entries,
Ns, the mean induced charge (Q̄ind), the most probable induced charge (Q̂ind), the full
width at half maximum (FWHM) and the ratio FWHM/Q̂ind are listed. The statistical
errors on the mean and most probable value were calculated using Eq. 3.151. The
samples are listed in the order as they were delivered by the the manufacturer (number
in brackets).



Chapter 4

Particle Tracking

Position sensitive CVD diamond detectors were studied in particle beams to
understand the mechanisms involved in charge collection and to measure their
intrinsic spatial resolution and hit recognition efficiency. A silicon beam ref-
erence telescope was used to predict the incident angle of particle tracks into
the diamond and the intersection point of the track with the diamond. The
response of the diamond sensor to the incident particle was studied. The meth-
ods used to analyse beam data are presented. Wherever possible the results
from silicon sensors are presented in order to verify the methods. A photo-
graph of a CVD diamond strip sensor and its readout is shown in Fig. 4.1.
This diamond sensor is an example of a large diamond strip detector which
was read out by low noise electronics and studied in a particle beam.

Figure 4.1: Photograph of a 2 × 4 cm2 CVD diamond strip detector. The diamond had a
thickness of 650 µm. The strips on the diamond surface were 25 µm wide and had a pitch
of 50 µm. In total 256 strips of the detector were read out by two low noise CMOS chips
(VA2).
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4.1 The Silicon Beam Reference Telescope

This section describes the silicon beam reference telescope, its performance
in terms of signal-to-noise ratio, spatial resolution and track prediction. The
analysis methods of determining the pedestal, common mode shift and signal,
hit finding, track finding and detector alignment are also discussed.

4.1.1 The Beam

The beam tests described were performed at CERN using pions in the X5 west area of
the SPS and in beam areas of the PS. A good description of the SPS beam transport to X5,
its conditions and layout may be obtained from reference [88]. The pion momentum in X5
was chosen to be 100 GeV/c at a flux of below 106 particles/spill. The beam was brought to
a focus at the region of the silicon beam reference telescope. The beam had an oval shape
with a width of about 1 cm at the center of the telescope.

4.1.2 Telescope Setup in the Beam Area and Data Acquisition

A schematic diagram of the silicon beam reference telescope used here is shown in Fig. 4.2.
The beam telescope had eight silicon detector planes, each with a size of (length × width ×

Silicon Strip

Particle Track

Reference Detectors
Silicon Strip

Reference Detectors

Diamond 
Tracker

180 mm

Figure 4.2: Schematic of the silicon beam telescope. The telescope had two sets of
modules containing four silicon planes each. The modules were 180 mm apart. The
diamond detectors under test were placed between the two sets of planes.

thickness) = (12.8 mm × 12.8 mm × 300 µm) arranged in two modules of four planes 180 mm
apart. The silicon detectors were single sided p-on-n strip detectors with a strip pitch of
50 µm [89]. The silicon strip detectors in one module had one intermediate strip between
two readout strips, the other module had detectors with two intermediate strips between
readout strips. The strips of a plane were oriented vertically (V) or horizontally (H) in the
order HVVH per module. Diamond detectors under test were placed between the two sets of
silicon reference planes. A fast plastic scintillator trigger (not shown) with a size of 7×7 mm2

was centered in the beam in front of the telescope. The scintillation light was detected by
two photomultiplier tubes: their coincident signal in response to a traversing charged particle
defined a trigger event (beam event).
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A total of 256 strips per plane were read out with low noise VA2 (CMOS) electronics [78].
The channel acquisition rate was 1 MHz; reading 128 channels from the multiplexer of a VA2
required 128 µs as illustrated in Fig. 4.3. The analogue voltage levels of each channel in
the sequence were digitized by sirocco VME analogue-to-digital-converters (ADC) [90]. The
sirocco ADC for the silicon beam reference telescope digitized the analogue signal with a
precision of 8 bits. The data acquisition system, based on VME bus with ELTEC E-16
processor running OS/9, had a typical acquisition rate of 300 to 400 trigger events per spill
with simultaneous data recording on 8 mm EXABYTE magnetic tapes during spill breaks.
One event, containing data from a maximum of 16 × 256 strips, had a size of 8 kByte in
memory which allowed 250000 events to fit on one 2 GByte tape. In practice a full tape with
250000 beam trigger events could be recorded in 3 to 4 hours of good beam performance. The
off-line analysis used ‘DiamondTracking’ object oriented C++ code [91] linked to classes of
the ROOT framework [92]. Small analysis jobs with an execution time of less than 60 minutes
ran on an interactive node of the ATLAS HP-Unix work group server. Large analysis jobs
with an execution time of more than 60 minutes (for data ‘production’) were submitted as a
batch job to the SHIFT-ATLAS computers.

Figure 4.3: Left: raw data sequence from 128 channels at the output of the multiplexer
from a VA2 readout chip. Right: raw data sequence from 16 channels in another event.
A silicon diode was bonded to the 10th channel. In both events the 10th channel has a
higher value due to a signal in the diode.

4.1.3 Pedestal, Common Mode, Signal and Noise Determination

The raw signal, rk(n), on the strip k in the event n from a detector measured by the
sirocco analogue-to-digital converter [Fig. 4.3] can be expressed in terms of the physical charge

signal, qphy
k (n), the random charge signal, qrnd

k (n), the pedestal, pk(n), and the common mode
shift, c(n):

rk(n) = qphy
k (n) + qrnd

k (n) + pk(n) + c(n). (4.1)

These quantities have dimensions of a charge measured in ADC units 1. The physical signal
charge, qphy

k (n), is due to a particle interaction in the detector and is to be distinguished from
the noise signal charge, qrnd

k (n), which occurs randomly. After acquiring N beam events the
‘true’ initial pedestal value is

1The unit ADC: 1 ADC
def
= 1 value from the analogue to digital converter.
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pk(N) =
1

N

N
∑

n=1

[

rk(n) − qphy
k (n)

]

(4.2)

where the summation goes over signal suppressed raw values

r′k(n)
def
= rk(n) − qphy

k (n). (4.3)

In practice it is not obvious how to extract signal suppressed raw values. A possible estimator
for the pedestal is

p
(est)
k (N) =

1

N

N
∑

n=1

rk(n). (4.4)

On a strip k a total of N beam events contains Np events with no physical signal charge
and Ns = N − Np events with physical signal charge. The pedestal estimator Eq. 4.4 can
therefore be rewritten in terms of a true pedestal and a contribution from raw values with
signal

p
(est)
k (N) =

1

N

N
∑

n: rk(n) in pedestal

rk(n) +
1

N

N
∑

n: rk(n) in signal

rk(n)

= pk(N) +
1

N

Ns
∑

n: rk(n) in signal

rk(n)

=⇒ p
(est)
k (N) − pk(N)

〈Qs〉
= 1 − Np

N

with 〈Qs〉 =
1

Ns

N
∑

n: rk(n) in signal

rk(n).

(4.5)

It can be seen that the pedestal estimator and the true pedestal are different. The difference
depends on the fraction, Np/N . The goal is to find a pedestal estimator which is as close as
possible to the true pedestal.

In this analysis the pedestal estimator for each channel was calculated as follows. A
buffer was filled with M = 5 raw values from M successive beam events. Any arbitrary value
in this buffer unequal to the extremum of the buffer is an estimator for a signal suppressed raw
value. After M events the buffer was cleared and filled with the next M events. The difference
p
(est)
k (N)− pk(N) between the pedestal estimator and the true pedestal can be quantified for

this method and for the method using Eq. 4.4. In a simplified model one may assume a point
like true pedestal distribution with Np entries at zero and a point like signal distribution with
Ns = N −Np entries at 〈Qs〉 = 1. The pedestal estimator according to Eq. 4.4 is then a linear
function of Np/N as illustrated by the solid line in Fig. 4.4. The pedestal estimator which
uses signal suppressed values from the buffer by excluding the extremum is superimposed in
the same figure (dashed line). The function is (N − Np)

2/N2 since this is the probability of
having two physical signals in the buffer. The method which uses signal suppressed values
from the buffer gives a pedestal estimator closer to the true pedestal at zero. Under the
test beam condition here, the mean signal charge is 〈Qs〉 ≈ 50 ADC and with Kchip = 256
strips one obtains the ratio Np/N ≈ 1 − 1/Kchip = 0.996. Using the pedestal estimator
from Eq. 4.4 one obtains the difference of ≈ 0.2 ADC between the true pedestal and the
pedestal estimator. Using the pedestal estimator with signal suppressed values one obtains
the difference of ≈ 0.00076 ADC between the true pedestal and the pedestal estimator. In
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〈Qs〉, of the signal distribution as a function
of the ratio between the number, Np, of beam
events in the pedestal and all beam events, N .

this analysis the buffer for the signal suppressed pedestal calculation was chosen to have a
size of M = 5. N = 100 events were chosen for calculating the initial pedestal.

After acquiring the first N events the initial noise, ∆qrnd
k (N), on single strips was cal-

culated

∆qrnd
k (N) ≡

√

〈

(qrnd
k )2

〉

=
1√

N − 1

√

√

√

√

[(

N
∑

n=1

r′k(n)2

)

− N · pk(N)2

]

(4.6)

where r′k(n) denotes signal suppressed raw values which were taken from the buffer {rk(n),
..,rk(n + M − 1)} by excluding the extremum. If one would not suppress raw values with
signal one would find an increased noise on strips which were illuminated by the beam.

For events n > N the common mode shift was calculated on K strips where K was
normally the number of channels of a readout chip:

c(n) =
1

K

K
∑

k=1

[rk(n) − pk(n)] . (4.7)

The common mode calculation included only channels with [rk(n) − pk(n)] < 3 · ∆qrnd
k (n) in

order to exclude signals related to a particle hit. The current pedestal for events n > N was
found by using the recursive pedestal-follower-method

pk(n)|n>N =
1

A

[

(A − 1) · pk(n − 1) + r′k(n) − c(n)
]

(4.8)

where pk(n−1) was the pedestal value from the previous event and r ′k(n) is a signal suppressed
raw value. A weight, A = 10, was chosen to be sufficiently robust against fluctuations and
sensitive enough to follow modest changes in the pedestal. Weights A ≥ 10 could be chosen
to give slower response to changes in the pedestal. The signal charge was then extracted from
Eq. 4.1

qk(n)
def
= qphy

k (n) + qrnd
k (n) = rk(n) − pk(n) − c(n). (4.9)

The hit cluster finding required a signal-to-noise threshold cut on the seed strip and threshold
cuts on adjacent strips in the cluster. The single strip noise, ∆qrnd

k (n), is the statistical error
on the measurement of the single strip signal; it was calculated from the strip noise in the
previous event and the noise charge of the actual event:

∆qrnd
k (n) =

√

1

B

[

(B − 1) ·
[

∆qrnd
k (n − 1)

]2
+ qrnd

k (n)2
]

(4.10)
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where qrnd
k (n) is given by Eq. 4.9. The signal suppressed raw value, rk(n) − qphy

k , was taken
from the buffer with M values with the requirement to be different from the buffer’s ex-
tremum. The value B is a weight which was chosen as B = 10. It could be different from
the weight A. A similar method to calculate the pedestal, common mode and signal can be
found in [93, 94].

Fig. 4.5 shows the distribution of the pedestal subtracted, common mode corrected and
signal suppressed values, qk(n) = rk(n)−pk(n)−c(n), measured on 128 strips which were not
in a hit cluster. Each entry in the upper histogram was taken from one strip chosen randomly
with equal probability from the 128 strips. The distribution of qk(n) is non-Gaussian but
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Figure 4.5: Distribution of the pedestal sub-
tracted and common mode corrected signals
qrnd
k (n) = rk(n) − pk(n) − c(n) (above) and

the common mode shifts c(n) (below).

Figure 4.6: Mean value of the pedestal
subtracted and common mode corrected raw
values as a function of the strip index for
256 strips.

symmetric around the mean value of 0.07 ADC. The mean noise is the average over strips

∆qrnd(N) =
1

K

K
∑

k=1

∆qrnd
k (N) ; ∆qrnd

k (N)
Fig. 4.5

=

√

√

√

√

1

N − 1

N
∑

n=1

q2
k(n)

∣

∣

∣|qk(n)|<2 ADC
. (4.11)

The mean noise can be read from the histogram as rms = 0.465 ADC. The averaging was
done over K = 128 strips and the rms was calculated for N ≈ 30000 events.

The raw values were digitized by the 8-bit analogue to digital converter producing inte-
gers. The signal charge, qk(n), is a floating type since the pedestal and the common mode are
floating types. The reason for the non-Gaussian shape of the distribution is the quantization
by the ADC. The underlying distribution in Fig. 4.5 (top) are three peaks at −1, 0 and 1
which have an rms =

√

100 · (−1)2 + 1350 · 02 + 200 · 12/
√

1650 ≈ 0.43 ADC. The precision
due to the quantization is 1/

√
12 ADC ≈ 0.3 ADC. The measured distribution is a convolu-

tion of the quantized raw values and the floating type pedestal and common mode. The later
smear out the quantized distribution. The measured rms is of the order of the precision of
the sirocco ADC.

The measurement of the signal in the beam [as it will be described in Sec. 4.1.4] and the
expected most probable number of 22500 electrons collected in 300 µm thick silicon gives the
gain of the detector-readout from which one obtains the single strip noise in electrons as listed
in Table. 4.1 for the planes 3,4,7 and 8 of the telescope. The equivalent noise charge averaged
over four planes with one intermediate strip was measured to be ≈ 210 e. The planes with
two intermediate strips had, within error, the same single strip noise. Fig. 4.5 also shows the



4.1 The Silicon Beam Reference Telescope 117

distribution of the common mode shifts. The common mode shifts are Gaussian distributed
around 0.05 ADC. The common mode standard deviation, ∆c = 0.073 ADC =̂ 36 e, can be
read from the histogram rms. The measured common mode variation is 15 % of the total
variation of the pedestal subtracted raw values and therefore small compared to the single
strip noise. Such small variations of the common mode noise as measured here suggest that
one may dispense with the common mode correction. The common mode shift and single
strip noise signal are independent quantities and their standard deviations add in quadrature
to give the variation of the pedestal subtracted and signal suppressed raw values:

〈

(r′ − p)2
〉

=
(

∆qrnd
)2

+ (∆c)2 (4.12)

where r′−p = 1
K

∑K
k=1 (r′k − pk). Eq. 4.12 results in

〈

(r′ − p)2
〉

≈
√

0.46552 + 0.07282 ADC =
0.4708 ADC where the values were taken from Fig. 4.5. A measurement of the pedestal
corrected raw data without common mode correction (not shown) gives

√

〈(r′ − p)2〉 =
0.4708 ADC in agreement with the result from Eq. 4.12. The statistical error in the mean
of the common mode measurement is ∆c/

√
K ≈ 0.006 ADC where K ≈ 128 is the number

of channels without hits. It is also found that the common mode on strips read out by one
chip is correlated to the common mode on strips which are read out by the other chip of the
detector. This effect is understood since common mode shifts are caused by variations of the
detector bias voltage or variations in the supply voltage of the readout which affects both
chips.

Fig 4.6 shows the mean value of the pedestal subtracted and common mode corrected raw
values

〈

qrnd
k

〉

≡
〈

r′k − pk − c
〉 Fig. 4.6

=
1

N

N
∑

n=1

qk(n)
∣

∣

∣|qk(n)|<2 ADC
(4.13)

as a function of the strip index, k, where N denotes the number of entries acquired for the
strip k. The figure shows that the individual strip noise mean values vary by a fraction of an
ADC value which is negligibly small compared to the physical signal charge which is of the
order of 50 ADC.

4.1.4 Hit Cluster Charge

A charged particle from the beam which traverses the detector causes a hit in the detector
plane. The first hit (principal hit) was found by searching for the strip, ks, that had the highest
signal charge, qks , and whose strip signal-to-noise ratio exceeded the seed strip signal-to-noise
threshold, ts

qks

∆qrnd
ks

≥ ts ∧ qks > qkn (4.14)

where qkn is a signal charge on a strip, kn, in the neighbourhood of the seed strip. The strip
with the index ks becomes the seed of the hit cluster 2. A hit cluster contains the seed strip
and eventually contiguous neighbour strips. Contiguous neighbour strips, kn, were included in
the cluster if their signal-to-noise ratio exceeded the neighbour strip signal-to-noise threshold,
tn,

qkn

∆qrnd
kn

≥ tn (4.15)

2An alternative method could be to go sequentially through the channels and process the value that exceeds
the threshold.
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where tn ≤ ts. Once the neighbour strip signal-to-noise ratio was below tn then that strip and
others which were further away from the seed were not included in this cluster. A maximum
number of 4 strips could be included on either side of the seed strip. A hit cluster is the set
of contiguous strips

K = {k1, .., kK} ; K = |K| here
< 9 (4.16)

where the signal charge on the strips satisfies Eq. 4.14 and Eq. 4.15.

A hit cluster with K strips has a total hit cluster charge of

QK
def
=
∑

k∈K

qk (4.17)

where the measured charge, qk, on each strip is a sum of the random charge, qrnd
k , and

the physical signal charge, qphy
k . Additional hits can be found by finding a new seed with

neighbours which are not included in a previous hit cluster.

Alternatively the hit cluster charge can be required to include K contiguous strips,
independent of the signal-to-noise ratio on the neighbour strips

QK = qks +
K−1
∑

kn=1

qkn ; qks > q1 > q2 > ... > qK−1. (4.18)

Fig. 4.7 show distributions of measured 1-, 2-, 3-, and 4-strip cluster charges {Q1, Q2, Q3,
Q4} in one of the silicon strip detector planes of the reference telescope. The number of strips
in the cluster was required to be K = 1, 2, 3, 4 independent of the neighbour strip signal-to-
noise ratio. Only the seed strip had to satisfy the condition Eq. 4.14. Cluster charges with 2
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Figure 4.7: Distribution of cluster charges in a silicon strip detector plane of the
telescope. The distributions are shown for 1-, 2-, 3-, and 4-strip clusters of principal
hits with a linear ordinate (left) and a logarithmic ordinate (right).

or more strips are Landau distributed as can be seen in the linear representation (left). The
same data is shown in a logarithmic representation (right). The 1-strip charge distribution is
shown in the logarithmic representation only. The 1-strip charge is not Landau distributed
and peaks at lower signal. Only a fraction of the total charge can be collected on a single
strip in silicon detectors with intermediate strips since the charge is capacitively shared to
the adjacent neighbour strip [94]. The mean and most probable values of clusters with 2
and more strips are shown in the left figure. The charge collected in 3- and 4-strip clusters
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is slightly higher than for 2-strips. In the logarithmic representation one can see differences
among the distributions. The distributions differ at higher charge signals. The 2-,3- and 4-
strip cluster charge distributions deviate above 70 ADC from an exponential decrease. This
deviation may be attributed to events with multiplicity two. Multiplicity 2 events may be
due to secondary electrons (δ-electrons). Delta-electrons would release energies depending on
their distance travelled. Hence the spectrum added to the single particle spectrum is wider
than the single particle Landau distribution from a mip. The 3-strip and 4-strip cluster
charges show a ‘bump’ at 135 ADC in the spectrum. This bump is at ≈ 3× most probable
value and may be attributed to events of multiplicity 3. Multiplicity 3 events may be due to
nuclear interaction in the detector plane. The multiplicity 3 events do not cause a bump in
the spectrum of two strip clusters.

The most probable value of 3-strip cluster charges is 45 ADC. This value was taken to
be 22500 e (see also Sec. 3.3.5). The mean-to-most-probable ratio as read from the 3-strip
charge distribution is 1.3 which corresponds to a mean collected charge in this detector plane
of 29450 e. Using the measured single strip noise from Sec. 4.1.3 one finds the most-probable
signal-to-noise ratio of 110-to-1. Similar results were obtained for the other seven silicon
planes in the telescope.

Table 4.1 shows a summary of measurements of 3-strip most probable signals, single
strip equivalent noise charge and signal-to-noise ratios from four planes of the silicon beam
telescope. The most probable signal-to-noise ratio averaged over all 8 reference planes was ≈
110-to-1.

3-strip signal single strip most probable
plane (most probable) gain noise (ENC) signal / noise

[ADC] [e/ADC] [rms ADC] [rms e] [ ]

7 44.8 502.2 0.420 211 107

8 51.4 437.7 0.411 180 125

3 52.5 428.6 0.465 200 113

4 50.8 442.9 0.483 214 105

Table 4.1: Measurement of 3-strip most probable signal in ADC and single strip
equivalent noise charge in rms ADC in four planes of the silicon beam telescope. The
gain was calculated using the definition of 22500 e for the most probable collected
charge on three strips of the 300 µm thick silicon sensor. The gain allows one to
convert from ADC units to charge units. The ratio of the most probable collected
charge to single strip noise is also shown.

4.1.5 Hit Position

A position sensitive detector is able to measure the hit position, the impact point of the
particle in the detector plane. The measured position has an error which is a composition
of the systematic and statistical error. The statistical error is due to charge fluctuations on
strips (i.e. electronics noise, common mode noise). The systematic error is introduced by the
hit finding method. Detectors which are designed to measure the position of a particle are
characterized by their intrinsic spatial resolution which is equivalent to the error on the hit
position. The collected charge on strips in a hit allows the determination of the position, uh,
of the hit perpendicular to the direction of the strips. Various methods are available to find
the position of the hit. The goal is to apply a position finding method which has the smallest
measurement error, ∆uh, and to attain the highest precision. A prediction for the position,
ut, of the hit was made by measuring the parameters of the particle track (offset, inclination,
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curvature) using the beam reference telescope. This section describes the hit finding method
used and the residual to the predicted hit position 3. The method of how to predict the hit
position is shown later in Sec. 4.1.6. In what follows one assumes that the beam illuminates
the sensor uniformly. However, the methods can be generalized for any beam illumination.

4.1.5.1 Digital Hit Position

The digital hit finding method returns the center position, u0, of the hit cluster seed
strip. The digital hit position is

u
(dig)
h

def
= u0. (4.19)

A measured distribution of residuals, r = u0 − ut, is shown in Fig. 4.8 (left). The digital
residual distribution is centered around zero and roughly constant in the interval from −P/2
to +P/2 where P is the readout strip pitch of 50 µm. The distribution has an rms unrestr. =
15.01 µm as can be seen from the statistic box of the histogram. This rms-value is valid
for the interval from -60 µm to +60 µm chosen for the presentation of this data. This rms-
value is refered to as the unrestricted spatial resolution. The limits of the interval may be
chosen differently. The choice may depend on the shape of the distribution. The shape of
the distribution is described by a rectangular density function

dN

dr
(r)
∣

∣

∣

r=u
(dig)
h

−ut

= Kall ·
N

Uf
· Θ
(

P

2
− |r|

)

; N =

∫ +∞

−∞

dN

dr
(r)dr (4.20)

where Θ(x) = 1 for x > 0 and Θ(x) = 0 for x ≤ 0 and N is the number of events which
uniformly illuminate the fiducial region of length Uf = P · Kall perpendicular to the strips
and Kall = 256 is the number of strips in the detector. The full width at half maximum of
this rectangular residual distribution is 50 µm. The measured full width at half maximum
value is 50 µm, consistent with the rectangular distribution Eq. 4.20. The calculation of
the standard deviation (the root mean square, rms) of the rectangular distribution gives the
spatial resolution of the digital method

∆u
(dig)
h

def
=
√

〈r2〉 ≡
√

1

N

∫ +∞

−∞
r2

dN

dr
dr

Eq. 4.20
=

P√
12

. (4.21)

The theoretical spatial resolution using the digital method (the digital resolution) is rms theory =

∆u
(dig)
h = 14.43 µm for a detector with P = 50 µm strip readout pitch and rms theory =

∆u
(dig)
h = 28.87 µm for a detector with P = 100 µm strip readout pitch. The unrestricted

spatial resolution is larger than the theoretical value. If the limits of the interval chosen are
lowered one finds that the rms slightly decreases until the limits fall below 30 µm correspond-
ing to about twice the unrestricted spatial resolution. The restricted spatial resolution for
the limits from -30 µm to +30 µm, was measured to be rms restr. = 14.45 µm. The restricted
spatial resolution is about equal to the theoretical spatial resolution expected for the digital
method.

It can be seen that the measured residual distribution has a few entries in the tails for
|r| > 25 µm. The rms spatial resolution is sensitive to these entries. Events in the tails of

3The residual (engl.): here the difference between the predicted and the measured hit position, plural
residuals. The latin word residuum (plural residua) can be found in chemistry as a difference of quantities.
The graphs here are often labeled with residuum instead of residual. Both words are used with the same
meaning here.
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the residual distribution occur from multiple scattering or from track prediction errors. The
angle deviation from a straight line due to multiple scattering in one silicon plane of 300 µm
thickness has an rms of ∆Θ = 24 µrad for 100 GeV/c pions [Eq. 1.12]. The distance between
the third and the fourth silicon plane is 6 mm. Using this distance the angle deviation causes
a position uncertainty of 0.14 µm for the track prediction into the fourth silicon plane. An
error in the track prediction may have two causes: firstly the intrinsic spatial resolution of
each plane which gives a precision of the track prediction at the location of the fourth plane of
about 1.4 µm (as shown below). Secondly the possibility to identify false hits and to associate
false hits to a track causes events in the tails of residul distribution. False association of hits
to tracks may occur in the detector under test or in tracking planes. Multiple hits may cause
false association of hits to a track. The tracking code used was not optimized for multiple
hits. The beam intensity is such that as few as possible multiple tracks were recorded. The
calculation of the digital resolution, rms theory from Eq. 4.20, does not account for multiple
scattering or for errors in the track prediction. Hence the theoretical digital resolution is the
smallest resolution which one could hope to attain. It is therefore not surprising to observe
a small difference between the measured rms of the residual distribution and the theoretical
spatial resolution. We conclude that the measured residual distribution is consistent with
the expected shape of the residual distribution of the digital method. The entries in the tails
are understood from a few misidentified hits and false association of hits to a track. Only if
the measured residual distribution would have significantly more entries in the tails and only
if the rms would be much larger than P/

√
12 one would need to investigate further. This is

not the case here.
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Figure 4.8: Digital residual distribution (left) and the residuals as a function of the
hit position relative to strip positions centered at zero (right). The readout strip pitch
is 50 µm. The slope of the ‘line’ (uh − ut versus ut − us) is -1.

Fig. 4.8 (right) shows a measurement of the residuals as a function of the difference,
ut−us, between the true hit position, ut, and the position, us, of a strip. us is the position of
a strip chosen for each beam event relative to the track. The position of the strip chosen is
defined to be zero in this representation. It should be noted that one can chose strips which
are either in an interval from −P/2 to +P/2 or further away than ±P/2. It should also be
noted that the difference, ut − us, only relies on the hit prediction by the tracking system.
The figure therefore shows the quantity, uh − ut, which involves a measurement from the
detector under test as a function of a quantity, ut − us, which is determined by the reference
telescope only. It can be seen that the residuals depend on ut − us. The measurement shows
that the residuals follow a function
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r(t) = t with t
def
= us − ut

⇒ dr

dt
= 1.

(4.22)

The variable, t, is equally distributed for the case of uniform illumination by the beam

dN

dt
(t) =

N

P
. (4.23)

The digital method maps t into equally distributed residuals

dN

dr
(r) ≡ dN

dt

dt

dr

Eq. 4.23
=

N

P

dt

dr

Eq. 4.22
=

N

P
. (4.24)

This expression is consistent with Eq. 4.20 for residuals |r| < P/2. The ‘line’, r as a function
of t, has a slope of one. The slope represents the systematic error of the digital method. It
is important to notice that, in general, the slope of r(t) represents a systematic error of the
hit finding method.

4.1.5.2 Center of Gravity Hit Position

The impact point of the particle in the detector can be measured using the center of

gravity method. The center of gravity method gives the hit position, u
(cog)
h , in terms of the

charge fractions, ηkK , in the cluster:

u
(cog)
h

def
=

1

QK

∑

k∈K

uk · qk ; QK
Eq. 4.17

=
∑

k∈K

qk

= u0 −
∑

k∈K

(u0 − uk) · ηkK ; ηkK
def
=

qk

QK

=⇒ = u0 − P ·
k=k|K|
∑

k=k1

k · ηkK ; P = |uk − uk−1| .

(4.25)

The last expression is true if K is ordered such that the seed strip has index 0 and neighbours
to the left (right) have negative (positive) indices. The sum includes charge fractions from
all strips whose signal-to-noise ratio exceeds the threshold tn. The center of gravity method
assumes that charge fractions have equal probability for a given cluster size. This assumption
is not true for silicon strip detectors as will be seen by looking at charge fraction distributions
in Sec. 4.1.5.3.

Fig. 4.9 shows the measured residual distribution for one of the silicon planes of the
reference telescope using the center of gravity method. The residuals are Gaussian distributed
and centered around zero. The rms of the residual distribution is 5.8 µm as can be seen
in the statistic box of the histogram. The limits of the interval chosen are -30 µm and
+30 µm. The distribution is described by a Gaussian function with a standard deviation
of
√

〈r2〉 = σ = 4.6 µm in the restricted interval from −12 µm to +12 µm. These limits
were chosen to be about twice the rms of the resdual distribution. The measured standard
deviation is to first order the error of the hit measurement 4. Fig. 4.9 (right) shows the
residuals versus the position of tracks relative to the position, us, of strips. It can be seen

4The measured residual is in fact a convolution of the intrinsic residual and the residual of the hit prediction
[see Sec. 4.1.8.1] such that σ2 = (∆uh)2 + (∆ut)

2.
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that the mean residual (superimposed by dark cross markers) depends on the true (predicted)
hit position:

r̄(t)
def
=

1

N

∫ +∞

−∞
r

dN

drdt
(r, t) dr with N =

∫ +∞

−∞
dt

∫ +∞

−∞
dr

dN

drdt
(r, t). (4.26)

In the interval |r| < 25 µm the mean residual, r̄(t), may be approximated by a ‘line’ with
a slope of dr̄/dt = 0.25. The slope contributes systematically to the measured hit position
and hence to the spatial resolution. The slope observed using the center of gravity method is
smaller than the slope observed using the digital method (see Fig. 4.8). The slope contributes
to the spatial resolution. The spatial resolution may be approximated by

√

〈r2〉 =

√

(

dr̄

dt

P√
12

)2

+ σ2
a . (4.27)

There are variations around r̄ which represent the inherent variation of the hit position. The
variation, σa, around r̄ denotes the spatial resolution without systematic errors from the
method used. It is important to note that Eq. 4.27 is an approximation since it combines a
systematic error and a statistical error. Combining the errors depends on the relative size of
the errors. For the case of small systematic error Eq. 4.27 is correct. For the case of large
systematic error Eq. 4.27 underestimates the contribution from the statistical error. Using
the measured spatial resolution from Fig. 4.9 (left) one obtains σa = 2.85 µm. This value
includes contributions due to multiple scattering, the error of the track prediction and the
intrinsic spatial resolution of the device. It may be noted that Eq. 4.27 is consistent with
the digital resolution using the slope, dr̄/dt = 1. The center of gravity method would give a
smaller error (better spatial resolution) if the charge fractions would be equally distributed.
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Figure 4.9: Center of gravity residual distribution (left) and residuals as a function
of the position of the predicted hit around strips centered at zero (right). The mean
residuals are shown by dark cross markers. The slope of the mean residuals is about
-0.25.

The cluster charge distribution in Fig. 4.7 shows that the 2-strip cluster charge is only
slightly smaller than the 3-strip cluster charge. The rising edge of the 2-strip cluster charge
distribution is 2 ADC smaller than the rising edge of the 3-strip distribution and the most
probable is 1.8 ADC smaller which means that 2 strips collect 4 % less charge than 3 strips.
Therefore one may use the charge from two strips in order to obtain the measured hit position.
The 2-strip cluster charge is Q2 = ql + qr with the charges ql and qr collected on the left and
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on the right strips. The charge fractions are defined as ηl
def
= ql/Q2 for the left strip and

ηr
def
= qr/Q2 for the right strip. The 2-strip center of gravity method gives the position of the

hit

u
(cog)
h

∣

∣

∣

K=2
=

1

Q2

∑

k=l,r

uk · qk with Q2 = ql + qr

= ul − ul · (ηl + ηr) + ηl · ul + ηr · ur = ul + ηr · (ur − ul)

= ul + ηr · P

= ur − ηl · P with P = |ur − ul| .

(4.28)

The center of gravity method for 2-strip clusters is linear in ηr or ηl and sometimes
called the linear eta method [95]. The two strip center of gravity method is generalized in
the following to the non-linear eta method.

4.1.5.3 ‘Eta’ Hit Position

Fig. 4.10 shows the charge signals measured on the left strip versus the charge signals
on the right strip for two strip clusters for two different silicon detectors. In both detectors
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Figure 4.10: Distribution of the signal charge on the left strip versus the signal charge
on the right strip. Left: a detector with one intermediate strip. Right: a detector with
two intermediate strips.

the charge is anti-correlated since the charge sum from the left and right strip is on average
a constant for every event. The silicon planes have either one or two intermediate strips
between the readout strips. The number of entries is abundant near the strips. For planes
with two intermediate floating strips, entries are more abundant at η = 0.75 and η = 0.25,
where η denotes either ηr or ηl. The projection of the correlation plot on the abscissa and
division by the total charge gives the distributions dN/dη as a function of η as shown for
both types of planes in Fig. 4.11. It can be seen that the distributions are non-uniform.
As seen in the scatter plot the number of entries peaks at η = 0.5 for one intermediate
strip and at η = 0.75 and η = 0.25 for two intermediate strips. The peaks occur due
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Figure 4.11: Distribution of the variable η in silicon strip detectors of the beam
telescope (the distributions of ηl and ηr are the same hence the axis is labeled with η
only). The upper figure shows the distribution for one intermediate strip, the lower for
two intermediate strips. The distributions have a peak corresponding to the position of
the readout strips at 0 and 1 and at the position(s) corresponding to the intermediate
strip(s).

to capacitive charge coupling from the intermediate strip(s) to the readout strips [95, 96].
Intermediate strips are introduced to equally increase the number of events with η between 0
and 1. The distributions show that the charge fractions have non-equal probability although
any interval in the detector is illuminated uniformly (with equal probability). The center of
gravity method assumes equally probable charge fractions which is not the case for the silicon
strip detectors used here. Therefore using a center of gravity method in the silicon planes
introduces a systematic error in the hit measurement as shown in Fig. 4.9.

In Eq. 4.28 one can see that the hit position, u
(cog)
h , is linear in

f(η) = η =

∫ η

0
dη (4.29)

where η denotes either ηr or ηl. The distribution of f is then

dN

df
(f) =

dN

dη
(η). (4.30)

This distribution is not constant (η is not equally distributed) as shown in Fig. 4.11. In order
to account for the non-uniform charge collection on two strips one re-defines

f(ηr)
def
=

1

N

∫ ηr

0

dN

dηr
(ηr)dηr with N =

∫ 1

0

dN

dηr
(ηr) dηr. (4.31)

The distribution of f is then

dN

df
(f) =

dN

dηr
(ηr) ·

(

df

dηr

)−1
Eq. 4.31

= N = const (4.32)

which implies that f is equally distributed. The function, f , is a mapping

f : ηr 7−→ 1

N

∫ ηr

0

dN

dηr
(ηr)dηr. (4.33)
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The mapping, f , transforms the non-uniform ηr into equally distributed values, f(ηr). This
leads to the definition of the non-linear eta corrected hit position for 2-strip clusters

u
(eta)
h

def
= ul + P · f(ηr)

Eq. 4.31
= ul +

P

N
·
∫ ηr

0

dN

dηr
(ηr)dηr. (4.34)

Fig. 4.12 shows the residual distribution using the 2-strip non-linear eta method. The rms
of the distribution is 4.5 µm using the interval from −30 µm to +30 µm. The measurement
is fitted by a Gaussian function in the interval from −4 µm to +4 µm. The Gaussian fit has a
standard deviation of 1.93 µm. This corresponds to an intrinsic spatial resolution of 1.35 µm
as discussed below. The limits were chosen to exclude the entries in the non-Gaussian tails
of the residual distribution.
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Figure 4.12: Left: residual distribution determined using the non-linear eta method.
The measured distribution is fitted by a Gaussian function (solid line). Right: residuals
as a function of the position of the predicted hit relative to strips centered at zero.

Fig. 4.12 (right) shows the residual as a function of the true (predicted) hit position
around strips. It can be seen that the residuals are nearly independent of the true hit
position. The mean residual, r̄(t), as a function of t = us − ut is slightly inclined. There
are no entries in the triangular regions to the lower left, r < (t − P/2), and the upper right,
r > (t + P/2), of the figure which implies that |uh − us| ≤ P/2 for most entries in the figure.
The most probable residual, as seen by the size of the rectangular boxes, is parallel to the
abscissa. The systematic error of the eta method is smaller than the systematic error of the
center of gravity method and smaller than the systematic error of the digital method:

0 ≈ dr̄

dt
(t)
∣

∣

∣

eta
<

dr̄

dt
(t)
∣

∣

∣

cog
<

dr̄

dt
(t)
∣

∣

∣

dig
= 1 ∀ |t| <

P

2
. (4.35)

The remaining spread around r̄ is due to statistical fluctuations (noise charge on strips).
It should be noted that the residuals obtained from the eta and from the center of gravity
method have a spread around r̄. The digital method has no spread around r̄ (the distribution
in Eq. 4.26 is a delta-function) which allows one to use r̄ = r(t) for the digital method.

The 2-strip non-linear eta method was used as the ‘default’ hit position finding method
of the reference telescope. In practice an initialization was performed once for each silicon
detector plane in order to obtain the integral of the η distribution as a function of η for all
η ∈ (0..1) which was later used to quickly look-up the associated hit position. Fig. 4.13 shows
the integrated η distribution from an initialization with 8000 events. The function, f(η) from
Eq. 4.31, is shown on the ordinate. The non-linear mapping of η into f(η) can be seen. It
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Figure 4.13: Integrated η-distribution as a
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Figure 4.14: The charge fraction η as a func-
tion of the position of the true hit position
between two strips in silicon. The true hit
position was measured with three other sil-
icon strip detector planes and predicted for
this plane.

can also be seen that f(η) ≈ 0 for η < 0.04 and f(η) ≈ 1 for η > 0.96. The reason is that
η is very seldom measured to be close to 0 or close to 1 (see Fig. 4.11) because of the noise
charge, qrnd, on the second strip. If the noise would go to zero then η would be closer to 0
and closer to 1. Near the limits η < 0.04 and η > 0.96 it would be favourable to use the strip
position as the hit position. For very high signal-to-noise ratios it may be correct to use the
non-linear eta method over the entire interval from η = 0 to η = 1. In the analysis here the
non-linear eta method was used over the whole interval from η = 0 to η = 1. Fig. 4.14 shows
the measured correlation of η with the predicted position of the hit between two strips. One
should turn the figure such that η becomes the abscissa in order to compare with Fig. 4.13.
The mean values of the correlation are superimposed. One could also use these mean values
as a look-up table for the track position.

An optimal hit position method should give for any change dut an equal change in
duh. The following shows that the non-linear eta method for two strips optimizes the spatial
resolution. It is assumed that the charge which is relevant for measuring the hit position
is collected on two strips which is almost the case for the silicon strip sensors used. Using
t = us − ut one obtains

d(u
(eta)
h − ul)

dt

Eq. 4.34
=

P

N
· dN

dηr
(ηr) ·

dηr

dt
≡ P

N

dN

dt
(t)

Eq. 4.23
= 1

⇒
du

(eta)
h = dut.

(4.36)

The calculation assumes uniform illumination, dN/dt = N/P . Any change of the true hit

position ut gives an equal change in the measured hit position u
(eta)
h which shows that the

non-linear eta method indeed optimizes the spatial resolution.

4.1.6 The Particle Track

Fig. 4.15 shows the coordinate systems which are defined by the unit vectors (~e1, ~e2, ~e3)

for the reference telescope and the unit vectors
(

~f1, ~f2, ~f3

)

for a detector plane. The origin
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(zero) of a plane is located in the center of the plane. The coordinate system of the telescope
is defined by four primary silicon reference planes which have orthogonal directions of strips:
the direction ~f1 is parallel to horizontal strips, the direction ~f2 is parallel to the vertical
strips. The direction ~f3 is perpendicular to the planes and points along the axis of the
particle beam. An orthogonal and parallel mounting of these four planes is assumed. The
origin of the telescope is located half way between both silicon modules on an imaginary
line which connects the central points of the primary silicon reference planes. The individual
plane coordinate systems can have an offset perpendicular to the strips by uoff . Each plane is
rotated by an angle, ϕ = ϕ0 + ϕoff , (ϕ is called the view angle) such that ~e3 remains parallel
to ~f3. The view angle is given in terms of an initial angle, ϕ0, and an offset, ϕoff . The
initial angle is zero for planes with horizontal strips and 90 ◦ for planes with vertical strips.
The angle offset is a correction of the view angle which is used in the alignment procedure
described in Sec. 4.1.7. The components of a vector ui given in the coordinate system of
plane, p, transform into components of a vector, xi, given in coordinates of the telescope as
follows:

xi = (~ei ◦ ~fj) · (uj − uoff ,j) ; i, j = 1, 2, 3

here (~ei ◦ ~fj) =







cos ϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1






and ~uoff =







uoff ,1

0
0






.

(4.37)

The measurement of the hit position in each plane returns the vector, ~u
(p)
h =

(

u
(p)
h , 0, 0

)

,

which can be transformed by Eq. 4.37 into the hit position, ~x
(p)
h , in the telescope coordinates.
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Figure 4.16: Distribution of χ2 of the track
fit to the measured hits using 5,6,7 and 8 sil-
icon planes. The solid lines are the expected
χ2-distributions for 1,2,3 and 4 degrees of free-
dom.

The trajectory of any particle is assumed to be a straight line. No electromagnetic field
is present which could bend the particle track. The angle deviation from a straight line due
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to multiple scattering in one silicon plane of 300 µm thickness has an rms of ∆Θ = 24 µrad
for 100 GeV/c pions [Eq. 1.12] causing deviations with an rms of 4.3 µm in a distance of
180 mm. For all practical cases the deviation is smaller: firstly scattering in a plane of the
first module alone still provides a straight track to the rest of the tracking system. Only
for the case of multiple scattering in several detectors does the track deviate from a straight
line. Secondly the lever arm into a detector under test is always smaller than the length of
the reference telescope. As a result the deviation due to multiple scattering is below 1 µm
at positions inside the telescope. Secondary particles which produce additional hits in the
silicon are not considered.

A linear fit to the ~x
(p)
h returns the vector components ai of the origin and vector compo-

nents ∆xi of the inclination of the track. The method of finding the origin and the inclination
is shown below. The predicted hit position in a plane in coordinates of the telescope is ob-

tained as the intersection point of the trajectory with the plane at x
(p)
3

x
(p)
t,i = ai + x

(p)
3 · ∆xi ; i = 1, 2, 3. (4.38)

Transformation in the plane coordinate system gives the position, ~u
(p)
t , of the predicted hit

in the plane coordinate system

u
(p)
t,j = (~fi ◦ ~ej) · x(p)

t,i − u
(p)
off,j . (4.39)

The assumption that the trajectory is a straight line can be tested with the χ2-test. The
variable χ2 is defined as usual [97]

χ2 =
pmax
∑

p=1

(

u
(p)
h,1 − u

(p)
t,1

)2

(

∆u
(p)
h

)2 . (4.40)

The intrinsic error ∆u
(p)
h = 1.35 µm is found from a measurement in Sec. 4.1.8.1 and is

assumed to be the same for all silicon planes. By forming the χ2 a measure of the ‘reason-
ableness’ of the fluctuations in the measured data about the predicted values can be obtained.
Fig. 4.16 shows the measured χ2-distributions for track fits using in total 5,6,7 or 8 planes
of the telescope. The measured distributions are fitted with the theoretically expected prob-

ability functions p(χ2) =
(

χ2/2
)(ν/2)−1 · e(−χ2/2)/ (2Γ(ν/2)) for ν = 1,2,3 and 4 degrees of

freedom where Γ is the gamma function [71]. It can be seen that the measured distributions
are consistent with the theoretical distribution of χ2 indicating that multiple scattering is
small.

The track fit was derived using a matrix formalism [98]. The vector of measured values
is

~Uh
def
=
(

u
(1)
h,1, .., u

(P )
h,1

)

. (4.41)

The measurements u
(p)
h,1 are the positions of the hits in the planes p = 1, .., P . The measured

values have the covariance matrix

V~Uh

def
=







(∆u
(1)
h )2 .
. .

. (∆u
(P )
h )2






. (4.42)

The diagonal elements of this matrix are the intrinsic resolutions of the planes. The off-
diagonal elements are zero under the assumption of no correlations between planes. The
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straight line fit Eq. 4.38 is defined by the point (a1, a2, a3) and the inclination (∆x1,∆x2,∆x3).
The values a3 and ∆x3 are redundant and were chosen to be

a3 = 0 ∧ ∆x3 = 1. (4.43)

The remaining values can be written as the vector of the unknown values

~R
def
= (a1,∆x1, a2,∆x2) . (4.44)

The vector of the predicted hit positions in the planes is

~Ut
def
=
(

u
(1)
t,1 , .., u

(P )
t,1

)

= H ~RT − ~Uoff (4.45)

where the u
(p)
t,1 are given by Eq. 4.39 and the matrix is

H
def
=













cosϕ(1) x
(1)
3 cos ϕ(1) sinϕ(1) x

(1)
3 sinϕ(1)

cosϕ(2) x
(2)
3 cos ϕ(2) sinϕ(2) x

(2)
3 sinϕ(2)

. . . .

cos ϕ(P ) x
(P )
3 cos ϕ(P ) sinϕ(P ) x

(P )
3 sinϕ(P )













(4.46)

and the offset is

~Uoff
def
=
(

u
(1)
off , .., u

(P )
off

)

. (4.47)

The generalization of Eq. 4.40 for χ2 is given by

χ2 =
(

~Uh − ~Ut

)

W
(

~Uh − ~Ut

)T
with W

def
= V −1

~Uh
. (4.48)

The fit imposes the condition of least squares

∂χ2

∂ ~R
= ~0 (4.49)

from which follows the solution for the vector of the unknown values

~R =
(

H W HT
)−1

H W
(

~Uh + ~Uoff

)T
(4.50)

and the covariance matrix of ~R

V~R
def
=

(

∂ ~R

∂~Uh

)

V~Uh

(

∂ ~R

∂~Uh

)T
Eq. 4.50

=
(

H W HT
)−1

. (4.51)

The solution ~R given by Eq. 4.50 contains the origin and the inclination of the particle track.

4.1.7 Alignment Procedure

Four primary silicon reference planes were used to define the coordinate system of the
telescope. The four remaining silicon planes were aligned with respect to the telescope co-

ordinate system. Alignment means to correct the offsets, ϕ
(p)
off , for the view angles and the

offsets, u
(p)
off , perpendicular to the strips. These offsets were found by plotting the residuals

r(p) = u
(p)
h − u

(p)
t versus the predicted hit position v

(p)
t ≡ u

(p)
t,2 .

Fig. 4.17 illustrates the four basic cases of misaligned detector planes: a.) uoff 6= 0, b.)
ϕ 6= 0, c.) both previous cases, d.) wrong location of the plane along the beam. The scatter
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Figure 4.17: Examples of four misaligned silicon reference planes in the silicon tele-
scope. Left: residuals as a function of the position, vt, of the hit along the strip. Right:
distributions of the residuals.

plot for each plane, p, in Fig. 4.17 (left) is a graph of N (p) measurements (r(p)(n), v
(p)
t (n))

where n denotes the event number. The measurements can be fitted by a linear function

r(p) = u
(p)
off + m(p) · v(p)

t with m(p) = tan ϕ
(p)
off . (4.52)

The coefficients u
(p)
off and m(p) are the offset and the slope of the linear fit function. Using the

method of least squares [97] one finds that the coefficients satisfy two linear equations

N uoff + [v] m = [r]

and

[v] uoff +
[

v2
]

m = [vr] .

(4.53)

Gauß brief notation for the summation applies here 5. The index p labeling the plane is
omitted for clarity. Cramers rule [97] allows to solve Eq. 4.53 for the coefficients and one
obtains the offset of a plane perpendicular to the strips

uoff =
[r]
[

v2
]

− [vr] [v]

N [v2] − [v] [v]
(4.54)

5Gauß notation for summation: [f(x)] =
∑N

n=1
f(x(n)) where f is a function of x and n is the index of

summation.
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and the rotation in the view angle

ϕoff = arctan(m) = arctan

(

N [vr] − [r] [v]

N [v2] − [v] [v]

)

. (4.55)

Hits were considered in the interval |v(p)
t | < Lv and |r(p)| < Lr (initial interval). The

interval had to be large enough to include hits from the entire region of the detector. Eq. 4.54
and Eq. 4.55 are linear and independent. In principle one can obtain the offset and inclination
from a unique set of N data points in the initial interval. However, the interval chosen
contains hits from good signals and also background hits. The signal to background ratio
can be increased by lowering the limits of the intervals. Therefore the alignment was usually

performed in several iterations. Initially the offsets, u
(p)
off and ϕ

(p)
off , were assumed to be zero.

The first iteration, based on about 200 events, gave an offset according to Eq. 4.54 and
and an angle offset according to Eq. 4.55. The measured offset and rotation angle were
subtracted from the initial values. The following iteration was based on the next 200 events
and gave new values for the offset and rotation angle. Each iteration considered hits in
the interval, |r(p)| < Lr, perpendicular to the strips and centered around the predicted hit
position. From one iteration to the next the length of the interval, Lr, was decreased which
excluded background hits and increased the signal to background ratio for the alignment
fit. The number of iterations depends on the hit signal to background ratio in the detector.
The lowest interval length depends on the spatial resolution. At a spatial resolution of
σ =

√

〈r2〉 = 2 µm one may lower the interval to a length of Lr = 8 µm (corresponding
to a ±2σ cut) which then excludes 4.6 % of good hits. Alignment of the secondary silicon
reference planes required in practice 5 iterations using a total of 5 × 200 events.

Fig. 4.18 shows the residuals of the four secondary reference planes of the telescope after
alignment. The residuals are centered around zero and have zero inclination versus vt. The

positions, x
(p)
3 , of the secondary reference planes were adjusted along the beam (direction of

~f3) by measuring the spatial resolution as a function of x
(p)
3 (not shown here). The position

along the beam is correct when the spatial resolution is at a minimum.
The secondary reference planes were aligned for each new run where a new run was

always started after any changes to the telescope (for example after mounting new detectors).
Diamond detectors were aligned later with respect to tracks which were found by the aligned
telescope.

4.1.8 Transparent Charge Signal

The charge collection on strips in a detector plane can be studied at the predicted hit
position. The prediction is independent of any parameter of the detector plane under test.
Hence the charge on strips in the detector plane under test can be studied without using a
threshold cut for the signal charge. Since no threshold cut is applied this method may also
include noise charge in the measurement. Fig. 4.19 shows the transparent 3-strip charge signal
distribution, dN/dQ3, as a function of the 3-strip charge, Q3. The transparent signal charge
is the sum of charge signals from strips which are closest to the predicted hit position. The
ratio of the transparent mean to most probable signal is 1.206 which is smaller than the ratio
obtained from the cluster charge distribution in Sec. 4.1.4. For comparison the distribution of
3-strip hit cluster charges from Fig. 4.7 is superimposed on the transparent signal distribution
with equal number of entries in both distributions. Both distributions are essentially equal
except for high charge signals and very low charge signals. In the logarithmic presentation,
Fig. 4.7 (right), it can be seen that the cluster charge distribution has more entries at higher
signal charge which leads to a larger mean to most probable ratio for the cluster charge
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Figure 4.18: Residuals in silicon planes after alignment. Left: residuals as a function
of the position, vt, of the hit along the strip. Right: distributions of the residuals.

distribution compared to the transparent charge distribution. The large number of entries
with higher signal charge is explained by the threshold which is applied for selecting events
in the cluster analysis. The cluster analysis is biased towards higher signal charge whereas
the transparent analysis is unbiased with respect to a threshold cut 6. The transparent signal
distribution has a few events, 0.1 % of all entries, between zero and the most probable value.
These events are real and appear on good tracks with good χ2. The transparent charge signal
for these events is distributed over more than 3 strips which can be shown by summing the
charge up to 6 strips. The distribution of charges from 6 strips for these 0.1 % events peaks
at the most probable value of the 3-strip distribution. The distribution of the charge over 6
strips is possible for particles which scatter perpendicular to the track and do not leave the
detector.

In a transparent analysis one can measure the hit recognition efficiency of a plane which
is defined for K strips as a function of the cluster threshold, tc, as follows

εK(tc)
def
=

1

N

∫ +∞

tc

dN

dQK
(QK)dQK ; N =

∫ +∞

−∞

dN

dQK
(QK)dQK . (4.56)

The hit recognition efficiency quantifies the number of hits which can be found in a cluster
analysis for the given cluster threshold tc. The 2-strip and 3-strip cluster hit recognition

6In addition one should note that the transparent analysis is biased with respect to the position of the
track whereas the cluster analysis is unbiased with respect to the track position.
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Figure 4.19: Distribution of 3-strip charge signals from a silicon plane of the telescope.
The figure overlays the measured cluster signal distribution and the transparent signal
distribution. Both distributions contain the same number of entries. The distributions
are shown with a linear ordinate (left) and the same distributions with a logarithmic
ordinate (right). The entries between 0 and the rise of the distribution is the signal
charge from real particles. The total charge of these events is spread out over more
than 3 strips.

efficiency for the silicon planes of the telescope was found to be above 98 % for thresholds
below 0.6 × MPmip. The hit recognition efficiency is discussed more in Sec. 4.2.8.

4.1.8.1 Telescope Precision

The distribution, dN(r)/dr, of residuals, r, allows one to measure the standard deviation
∆r =

√

〈r2〉 of the distribution. This standard deviation is a convolution of the intrinsic
spatial resolution, ∆uh, in the detector under test and the precision, ∆ut, of the hit prediction
in the detector under test

(∆r)2 = (∆uh)
2 + (∆ut)

2 . (4.57)

This assumes no correlation between the positions, ut and uh.

The hit position error can be derived for positions, z, along the beam. Two reference planes
may be located at z1 and at z2 a distance L = z2 − z1 apart. Under the assumption that
the planes have the same intrinsic spatial resolution, ∆uh, one obtains the error on the hit
prediction at the position, z

∆ut(z) =
∆uh

L

√

(z − z1)2 + (z2 − z)2 (4.58)

where z may be the position of a third plane. One can see that the precision of the prediction
has a minimum at z = (z1 + z2)/2 where ∆ut(0) = ∆uh/

√
2. For the case that the third

plane has the same intrinsic resolution as the reference planes one obtains the measured
spatial resolution of the plane at z under the assumption that z near z1 or near z2

∆r
Eq. 4.58

= ∆uh

√
2. (4.59)

For the case of z near z1 or near z2 one finds uh ≈ ut and using Eq. 4.57 one also obtains the
expression in Eq. 4.59. Therefore the measurement of ∆r = 1.93 µm in Fig. 4.12 gives the
intrinsic resolution of the plane: ∆uh = 1.35 µm.
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The prediction error from four planes is found as follows: under the assumption that the
planes have equal intrinsic spatial resolution one first calculates the prediction errors from
two adjacent planes for the positions between them which gives the error for two virtual
planes. The position of these virtual planes is chosen to minimize the prediction error. Then
one calculates the prediction error from the virtual planes at the position z. One obtains the
error of the predicted hit position from four planes

∆ut(z) =
∆uh√

2 · |(z1 + z2)/2 − (z3 + z4)/2|

√

√

√

√

[

(

z − z1 + z2

2

)2

+

(

z3 + z4

2
− z

)2
]

. (4.60)

Fig. 4.20 shows the error of the predicted hit position as a function of the position, z, along
the beam. The error was calculated for two intrinsic resolutions of 1.5 µm and 1.35 µm. The
hit position prediction error has a minimum in the middle between both silicon modules. For
an intrinsic resolution of 1.35 µm per plane the hit position error is 0.7 µm at the minimum.
The prediction error increases at positions outside the telescope.
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Figure 4.20: Error of the predicted
hit position in horizontal and vertical
direction. The graphs were calculated
for four planes using Eq. 4.60. The
planes were located at (z1, z2, z3, z4) =
(−93,−87, +87, +93) mm. Two graphs
are shown: one graph was calculated
for an intrinsic spatial resolution ∆uh =
1.35 µm the other for ∆uh = 1.5 µm.

4.1.9 Summary

The silicon beam reference telescope has been described in this section. Each plane had
a single strip noise of about 210 e and a most probable signal-to-noise ratio of around 110-
to-1. The intrinsic spatial resolution of a plane was measured to be 1.35 µm by using the
non-linear 2-strip eta method. The hit recognition efficiency of each plane was above 98 % for
thresholds below 0.6 times the most probable signal charge. The reference telescope allowed
the prediction of the particle hit position in detectors under test to a precision of below 2 µm
for all positions inside the telescope. This is of great importance in the study of diamond
detectors in the following sections.
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4.2 CVD Diamond Strip Detectors

The silicon beam telescope described in the previous chapter has been used to
study CVD diamond strip detectors. Here the preparation method of diamond
strip sensors and the tests in the the beam are reported. A typical behaviour
of a strip sensor is shown with respect to signal charge, spatial resolution and
hit recognition efficiency.

4.2.1 Introduction to CVD Diamond Microstrip Sensors

Figure 4.21: Free-standing, 100 mm di-
ameter CVD diamond window, (courtesy of
De Beers Industrial Diamond Division (UK)
Ltd.) [53].

Free-standing CVD diamond can be
grown in the form of planar disks, several
centimeters in diameter and up to several
millimeters thickness [33, 34] with the ma-
terial characteristics reported in Chapter 2.
Fig. 4.21 shows a photograph of a transpar-
ent CVD diamond disk produced for an opti-
cal application [34]. The disk has a diameter
of 100 mm. CVD diamond samples for par-
ticle sensors were cut from similar disks.

The first diamond strip detector was
tested in 1993 at CERN [99]. The detector
had a charge collection distance of 50 µm.
The strip pitch was 100 µm and the spatial
resolution attained was 26 µm. Since then
a variety of diamond strip detectors have
been tested in the beam. The goal of these
tests was mainly to characterize the diamond
material from different growth processes in
terms of charge collection distance and spa-
tial resolution in order to improve the pro-
duction process.

4.2.2 Principle of Operation

Fig. 4.22 shows the schematic representation of a diamond strip detector with strips on
one side, typically the growth side, and a solid back plane electrode on the opposite side. A
charged particle that traverses the diamond bulk in the direction perpendicular to the surface
uniformly creates charge pairs along the track as illustrated by solid circles (electrons) and
open circles (holes). A positive voltage is applied to the backplane causing an electric field
inside the bulk with field lines from the backplane to the strips. The electric field is assumed
to be constant and homogeneous over most of the bulk and only bends towards the strips
in the region near the strips. The assumption of a homogeneous electric field, although
seemingly reasonable, has not been confirmed for the polycrystalline bulk of CVD diamond.
The electron-hole pairs separate in the electric field as discussed in Sec. 3.3 and travel a
certain distance until they get trapped. The motion induces a charge proportional to the
charge collection distance as shown for large electrodes in Eq. 3.124. However, here the
moving charges induce charge on several strips. In order to deduce the charge induced on
strips one needs to calculate the field distribution for the strip geometry. Discussions about
charge induction on strips can be found in the references [100, 101, 102, 103].
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Fig. 4.23 shows a schematic of a diamond strip detector from the top view. Typical
detectors had a size of 1×1 cm2. The strips where surrounded by a guard contact which was
connected to ground potential.
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Figure 4.22: Schematic representation of a
diamond microstrip sensor (side view) with
electronic readout of each strip. The strips
have a width, w, and a pitch, P . The thick-
ness, D, has been chosen to be six times the
pitch in order to illustrate the relation of the
pitch to thickness.

Figure 4.23: Schematic of a diamond strip
sensor seen from the top. The dimensions are
in millimeters and are correct for most of the
trackers tested.

Estimates of the equivalent noise charge in the detector readout require an estimate of
the capacitance, Ce, at the input of an amplification channel:

Ce = Cd + Cstray (4.61)

where Cstray is a stray capacitance and Cd is the detector capacitance. The detector ca-
pacitance is given in terms of the interstrip capacitance, Cs, and the strip to backplane
capacitance, Cb

Cd ≈ 2Cs + Cb. (4.62)

This expression is an approximation since the capacitance to strips further away then the strip
pitch is neglected. The interstrip capacitance per unit length, L, in a medium of dielectric
constant, εr, is [68]
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Cs

L
=

2π ε0 εr

ln

[

2 (P − w)2/w2 −
√

2 (P − w)2 /w2 − 1

] , (4.63)

where w is the width of the strips and P is the pitch of the strips. The equation was derived
for round wires with a diameter w and is used here as an approximation for the flat strips
on the diamond surface. The expression is only correct if the wires are embedded in the
material. A comparison with the potential of a line charge at the interface of two dielectrics
with dielectric constants 1 and ε, as discussed in reference [95], gives εr = aε + 1− a where a
is determined by the electric field at the interface. The geometry here has a = 1/2 and hence
εr = (ε + 1)/2. The relative dielectric constant of diamond is ε = 5.6 [Table 1.1]. Eq. 4.63
was used to calculate the capacitance between two strips on the surface of the diamond as a
function of the distance between the strips with the result shown in Fig. 4.24. One finds the
interstrip capacitance Cs = 0.54 pF for two 6.4 mm long and 25 µm wide strips at a pitch of
50 µm.
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Figure 4.24: Calculated capacitance between
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The capacitance to the backplane is

Cb

L
= ε0ε

P

D
. (4.64)

It should be noted that the area which determines the capacitance to the backplane is P L.
One obtains Cb = 0.032 pF for a 500 µm thick diamond. The interstrip capacitance is larger
by a factor 17 than the capacitance to the backplane. The detector capacitance at the input
of an amplification channel is therefore Cd ≈ 1.1 pF for 6.4 mm long and 25 µm wide strips
at a pitch of 50 µm.

4.2.3 Experimental Method: CVD Diamond Microstrip Preparation

Fig. 4.25 shows four regions of the strip side of a CVD diamond strip detector. The
strip pattern on the diamond surface was prepared by reference [104]: the diamond surface
was completely covered with either Cr/Au by evaporation or Ti/Au by sputtering. The
gold prevents the chromium from oxidizing. Gold is a good conductor and later allows wire
bonding to the readout chip. The strips were prepared as follows: a thin layer of UV-light
sensitive photoresist was spun on the gold surface. Then a glass mask with a positive image
of the strips was positioned on top of the photoresist and the surface was exposed to UV-light
through the glass mask. The positive image of the glass mask prevented illumination at the
positions of the strips. Then the sensor was put in developer solution and the photoresist
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was dissolved where exposed (between the strips). The metal layers were then etched (in the
sequence first gold then chromium) in those regions which were not covered with photoresist.
After etching no metal remained between the strips. The remaining photoresist (covering
the strips) was removed with acetone. The detector was annealed for 5 minutes at 400 ◦C in
an N2 atmosphere in order to form a carbide interface between the strips and the diamond.
The carbide gives the ohmic contact between the metal and the diamond. The strips were
prepared on one side of the diamond, the other side had a solid electrode which reached close
to the edges of the diamond.

The sensor shown in Fig. 4.25 had strips of a width of 25 µm and a pitch of 50 µm.
The chromium layer had a thickness of 500 Å before annealing and the gold layer had a
thickness of 2000 Å. The strips were staggered and had bond pads on both sides in order
to facilitate wire bonding to the readout electronics. The total sensitive area was therefore
128 × 50 µm × 6400 µm. The strips were surrounded by one rectangular guard contact.
The guard contact, properly connected to the same potential as the strips, prevented leakage
current from the backplane over the edges of the diamond to the strips. The photograph of
the sensor shows dark spots on the surface. These are voids in the diamond surface which
remained after lapping. A visual inspection showed that the strip metallization was not
broken at most of the voids. The majority of strips had no breaks or shorts.

Figure 4.25: Photographs from four regions
of a CVD diamond strip detector. The strips
on the diamond can be seen. The strips have
a width of 25 µm and a pitch of 50 µm. The
magnification to the right at the bottom shows
bond pads for wire bonding to the readout
electronics [104].

Figure 4.26: Photograph of a CVD diamond
strip sensor mounted on a ceramic board and
bonded to the VA2 readout chip.
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Fig. 4.26 shows a picture of a diamond sensor mounted on a ceramic printed circuit
board and bonded to the VA2 readout electronics. The sensor was glued with conductive
epoxy to the ceramic board and mounted next to a G10 printed circuit board with a VA2
readout chip. The readout electronics was directly wire bonded to the strips on the diamond.
After selection of a diamond sample using the β-source setup described in Sec. 3.4.5 the VA2
readout electronics [Sec. 3.4.2] was always used for the first tests with new diamond strip
sensors. The VA2 electronics had low noise and could easily be operated in the testbeam.
The diamond sensors were normally biased with 1 V/µm via a 100 MΩ resistor with a positive
voltage applied to the detector backplane. A capacitor of 4.7 nF/3.3 kV from the backplane
to ground was used to smoothen ripples on the DC bias voltage to ground. The strips were
at virtual ground potential via the input amplifier. The diamond sensor and its readout chip
were then mounted inside a light tight and electrically shielded aluminium frame in the beam
reference telescope.

4.2.4 Experimental Method: Setup in the Beam

The frames containing the diamond sensors were mounted in the silicon beam telescope
shown in Fig. 4.2 in Sec. 4.1. The diamond planes were parallel to the silicon reference planes.
The whole telescope was adjusted in the beam such that the pion tracks were normally
incident to each plane. The signal acquisition from diamond detectors was accomplished
using 12 bit sirocco ADCs in the VME create described in Sec. 4.1.2. The offline analysis
for diamond detectors was the same as for the silicon reference detectors: pedestal, common
mode, signal and noise were found using the same algorithms and analysis code as described
for silicon detectors in Sec. 4.1.3.

4.2.5 Results: Noise on Strips

The noise charge gives important information about the performance of a sensor. Sup-
pression of the physical signal charge, qphy

k (n), in Eq. 4.3 gives the noise charge

qrnd
k = r′k(n) − pk(n) − c(n) (4.65)

where k is the strip index and n is the event number. The noise charge is the pedestal
subtracted, common mode corrected and hit suppressed charge on a strip.

Fig. 4.27 shows the noise charge measured on a CVD diamond strip sensor as a function
of the strip index. One can see that most values scatter around zero as expected. There are
three strip regions at the strips 58/59, at the strips 67/68 and at the strip 98 which have
higher noise charge. The noise was higher on a pair of strips if two preamplifier channels were
electrically connected. A connection between strips on the sensor or a connection between
the bond wires could account for this. Higher noise on a single channel could be due to a
broken amplifier channel. Strips which were noisier than other strips were excluded from the
analysis by a software selection rule in the analysis code.

Fig. 4.28 (upper graph) shows the distribution of the noise charge superimposed from
all channels. The superposition was performed since the mean noise charge from individual
strips varied by fractions of ADC values which is negligibly small. The standard deviation
of the noise charge from all channels is 4.5 ADC. The common mode distribution is shown
as well. The common mode has a standard deviation of 2.3 ADC and is centered at 3 ADC.
The distribution is not centered at zero since a few strips with a signal charge related to a
hit may be included in the common mode calculation. This effect should be studied further
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using a more effective method of signal suppression. Using the calibration of 22 e/ADC one
finds a noise charge variation of 100 e and a common mode variation of 51 e.
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Figure 4.27: Pedestal subtracted, common
mode corrected and hit suppressed raw values
as a function of the readout channel index for
128 channels (one chip).

Figure 4.28: Distribution of the pedestal
subtracted, common mode corrected and hit
suppressed raw values (above) and the distri-
bution of common mode shifts (below).

The noise charge has a series noise term described by Eq. 3.137 and parallel noise term
described by Eq. 3.138. Fig. 4.29 shows a model of a strip detector with the equivalent noise
voltage, uk, for the strip number k in series with the input of the preamplifier. The series
equivalent noise charge of a single readout amplifier as described by Eq. 3.137 is here

√

〈

q2
series

〉

=
√

〈u2
a〉Ca +

√

〈u2
a〉Ce ≡

√

〈q2
a〉 +

√

〈u2
a〉Ce. (4.66)

where Ca = Ci+Cf the sum of the feedback capacitor, Cf , and the internal capacitance, Ci, of
the preamplifier. The external capacitance, Ce, of a strip connected to a channel of the charge
sensitive amplifier is given by Eq. 4.62. The capacitance from the detector is Cd ≈ 1.1 pF
as calculated in Sec. 4.2.2. This calculation neglects the capacitance from strips farther than
one pitch away. Assuming a stray capacitance of about Cstray = 1 pF per bond wire from the
bond pad of the preamplifier to the strip on the sensor one obtains Ce ≈ 2 pF. Using Eq. 4.66
and the preamplifier equivalent noise charge variation of

√

〈q2
a〉 = 81 e and the preamplifier

equivalent noise voltage
√

〈u2
a〉 = 11 e/pF one obtains the series equivalent noise of 103 e on

a single strip. In reality each noise source couples to every strip. A calculation which takes
this coupling and its correlation into account is proposed in reference [105]. This calculation
predicts a 10 % higher noise. The parallel noise is neglected here because of the small detector
leakage current and the large feedback resistor of the preamplifier. The estimate of the total
noise is therefore 103 e in a single readout channel. This is in good agreement with the noise
measurement of 100 e.

The noise charge shown so far was taken from a single strip. The noise charge from K
strips in a cluster is

Qrnd
K =

K
∑

k

qrnd
k . (4.67)

Assuming that there are no noise correlations between strips one obtains the cluster noise
charge variation
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Figure 4.29: Schematic of a strip detector
with interstrip capacitance, Cs, backplane ca-
pacitance, Cb, and charge integrating readout
electronics with feedback capacitor, Cf . The
series noise voltage, uk, models the internal
noise voltage of the amplifier [105].

√

〈

(Qrnd
K )2

〉

=

√

√

√

√

K
∑

k

〈

(qrnd
k )2

〉

(4.68)

where
√

〈

(qrnd
k )2

〉

is the equivalent noise charge variation measured on adjacent strips in a
cluster. Fig. 4.30 shows the distribution of the cluster noise charge for K = 2, 3, 5 and 7
strips included in the cluster. The noise distributions are Gaussian shaped and centered at
a value close to zero. The unit chosen for the presentation of the cluster noise charge is the
standard deviation of the single strip noise charge from Fig. 4.28. Under the assumption that
the noise charge variation is the same on all strips in the cluster one obtains a prediction on
the cluster noise charge variation as a function of the number of strips included in the cluster

√

〈

(Qrnd
K )2

〉

=
√

K ·
√

〈(qrnd)2〉 (4.69)

where
〈

(qrnd)2
〉

def
=
〈

(qrnd
k )2

〉

is the same equivalent noise charge variation of a single strip

for all k in the cluster. Fig. 4.31 shows a measurement of the cluster noise charge variation as
a function of the number of strips included in the cluster. The data were measured on three
CVD diamond strip sensors and a silicon strip sensor. Overlayed to the measured data is the
expected noise charge variation from Eq. 4.69. The measured cluster noise charge variation
in silicon and diamond are in good agreement with the expectation of uncorrelated noise on
strips.

4.2.6 Experimental Method: Alignment in the Beam

Alignment of diamond detectors in the beam was performed by the procedure described
for silicon detectors in Sec. 4.1.7. The silicon beam telescope predicts the position, (ut, vt),
in the diamond sensor and the diamond sensor measures the position, uh. Fig. 4.32 shows
the residuals, uh − ut, as a function of the position of the track, vt, in CVD diamond sensor
UTS-5 after alignment. One can see that the mean residual has zero offset and zero rotation
with respect to the position vt. This demonstrates good alignment. The sensors were also
aligned along the beam by optimizing the resolution as a function of z (not shown here).

Fig. 4.33 shows the residual of the same strip detector as a function of the position ut.
The graph shows regions where the residuals are centered around zero and regions where the
residuals form a ‘line’ with inclination -1. The lines appear at strips which are electrically
shorted since in this case the measured hit position, uh, is independent of the predicted hit
position. Lines also appear at the rim of the detector (at the left end and at the right end in
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the figure) where the true hit was outside the sensitive area of the diamond and the position
was determined as the last strip of the diamond detector and hence again independent of
ut. Fig. 4.33 shows that the position of hits are properly measured in most of the sensitive
area. The fiducial regions chosen for characterizing the diamond sensor are drawn in the
figure and exclude the shorted and noisy strips and the rim. The choice of fiducial regions
allows one to focus the analysis on the inherent properties of the diamond. The alignment
was always performed and fiducial regions were always chosen before analyzing signal charges
and residuals.
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diamond sensor UTS-5 after alignment.

Figure 4.33: Residuals, uh − ut, versus ut.
Three possible fiducial regions are shown.

4.2.7 Results: Signal Charge

Fig. 4.34 shows distributions of measured 1-, 2-, 3-, and 4-strip cluster charges in UTS-5.
The cluster charge was measured according to Eq. 4.17 as described in Sec. 4.1.4. The cluster
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charge distributions are asymmetric and Landau-like. It can be seen that the distribution
for 2-,3- and 4-strip cluster charges starts at about 50 ADC. The start of the distribution
is higher than the seed strip threshold of 8-to-1 chosen (corresponding here to a seed strip
threshold of ≈ 36 ADC). The charge collected on one strip is smaller than the cluster charges
including more than one strip. This observation has been made in silicon as well. The most
probable two and three strip cluster charge are 204 ADC and 230 ADC. Using the single strip
noise of 4.5 ADC one finds a most probable signal-to-noise ratio of 45-to-1 and 51-to-1 for
two and three strips respectively. The mean two and three strip cluster charges are 341 ADC
and 383 ADC corresponding to a mean signal-to-noise ratio of 76-to-1 and 85-to-1. Using the
calibration of 22 e/ADC one finds a mean two and three strip hit cluster charge of 7500 e and
8426 e corresponding to a charge collection distance of 208 µm and 234 µm. It can be seen
that the amount of charge collected depends on the number of strips included in the cluster.
Using the most probable two strip charge as a normalization one finds 13 % and 19 % more
charge on three and four strips than on two strips. It should be noted that the amount of
charge collected in silicon also depends on the number of strips in the cluster. From Fig. 4.7
it can be seen that the cluster charge in silicon is 4 % and 8 % higher on three and four
strips than the most probable two strip signal. In Fig. 4.5 and Fig. 4.28 it was shown that
the noise charge is centered at 0.07 ADC in silicon and about 0.5 ADC in diamond. This
value is small compared to the difference between the strip cluster charges. We infer that
the increase in cluster charge is real and is not an artifact of the method used. A reason
could be δ−rays and particles from nuclear interaction which release energy in the vicinity
of the track. These particles create electron-hole pairs in the vicinity of the track which may
appear on neighbour strips. One should expect a cluster charge saturation if one includes
more and more strips. It should be noted that the increase of the cluster charge in diamond
is about twice as high as the increase in silicon. Based on this observation one can infer
that the induced charge in diamond extends over a larger area than in silicon. In silicon the
carrier drift length is longer than the thickness of the sensor. A charge travels along the field
line and induces a charge on several strips. The sign of the induced charge is determined by
the direction of motion of the charge carrier relative to the strip. When the charge carrier
approaches the strip where the field line ends it moves away from other strips and induces
there a negative charge which cancels the charge initially induced on these strips. In diamond
the carrier drift length is shorter than the thickness of the sensor. A moving charge induces
a charge on several strips as in silicon and the sign is also determined by the direction of
motion. In diamond the charge may not always reach the strip since it may be trapped. In
this case there is no cancellation of charge on adjacent strips. This may explain the excess
of charge on neighbour strips compared to silicon. One should note that the diamond shown
here is 432 µm thick which is 44 % thicker than the silicon sensors used for comparison. In
order to compare the extension of induced charge in silicon and diamond one should use both
sensors of the same thickness.

The logarithmic distribution in Fig. 4.34 to the right has been prepared in analogy
to Fig. 4.7. It can be seen that one strip collects less charge than two or more strips. The
distributions for two or more strip clusters have similar shape. The three and four strip cluster
charge distributions have slightly more entries at higher ADC values. This observation has
been made in silicon and may be explained by δ−rays and particles produced from nuclear
interactions. It has to be noted that the data here are from UTS-5 measured with strips
widths of 30 µm and 40 µm as discussed below.

The transparent analysis (see Sec. 4.1.8) allows one to measure the signal charge at the
intersection of the particle track with the diamond sensor. The charge on strips around the
track in the diamond can be studied without applying a threshold cut on the diamond signal
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Figure 4.34: Hit cluster charge distributions in CVD diamond sensor UTS-5 for 1, 2,
3 and 4 strips included in the hit cluster. The data are presented on a linear ordinate
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charge. Fig. 4.35 shows the transparent 3-strip charge in diamond sensor UTS-5 overlayed
to the 3-strip hit cluster charge. The distributions have the same number of entries. Most
of the events are common to both distributions. The 3-strip cluster charge was chosen to
compare with the transparent 3-strip charge in silicon. However, one could also compare the
2-strip cluster and transparent charges. The transparent 3-strip charge distribution shown
has a most probable of 215 ADC and a mean charge of 328 ADC. These values are smaller
than the 3-strip most probable cluster charge of 230 ADC and the 3-strip mean cluster charge
of 383 ADC. The cluster charge distribution has an excess of entries in the high end and a
deficiency of entries at the low end. The cluster analysis uses the three largest charges on
strips whereas the transparent analysis uses the charges of the three strips closest to the
track. The cluster charge is biased towards higher signal charge and the higher cluster most
probable and mean values are therefore inherent to the cluster method.
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Figure 4.35: Transparent 3-strip signal charge distribution (solid line) and the 3-
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From the signal charge distributions shown we infer that the principles of charge induc-
tion on strips in diamond and silicon are similar. The most significant amount of charge is
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collected on two strips. Using more strips the signal charge in silicon and diamond increases
by a few percent. The charge induced in diamond may extend over a larger region than in
silicon. However, this observation requires confirmation using a 300 µm thick diamond to
directly compare with silicon.

Table 4.2 summarizes the performance for a variety of CVD diamond sensors in terms
of the transparent 3-strip charge signal-to-noise ratio. These results are discussed in the
summary.

4.2.8 Result: Hit Recognition Efficiency

The transparent analysis allows one to study the hit recognition efficiency, εK , of the
detector. Using the transparent signal charge distribution, dN/dQK , of the transparent
signal charge a possible definition of the hit recognition efficiency is given by Eq. 4.56. The
efficiency depends on the number, K, of strips which are included in the transparent signal
charge, QK =

∑K
k=1 qk, where qk = qrnd

k + qphy
k . By definition εK takes values between 0

and 1 depending on the cluster threshold, tc, in Eq. 4.56. Fig. 4.36 shows a measurement
of the hit recognition efficiency in silicon (left) and in diamond (right) as a function of the
threshold and for K = 1 to K = 5. One can see that for sufficiently low threshold the hit
recognition efficiency is one corresponding to 100 %. The efficiency is still close to 100 % as
the threshold increases. However, at a certain threshold the efficiency decreases. A decrease
in efficiency for single strip signal charge sets in at a threshold lower than for two or more
strips. In silicon the efficiency is above 98 % for thresholds below 30 ADC corresponding
to 0.6 times the two strip most probable charge. In diamond the efficiency is above 98 %
for thresholds below 80 ADC corresponding to 0.4 times the most probable two strip charge.
The efficiency drops to 90 % for thresholds of 0.8 times the two strip most probable value in
silicon and 0.9 times the two strip most probable value in diamond. The definition of the hit
finding efficiency implies that εK = 0.5 for thresholds equal to the mean value of the K-strip
signal charge distribution.
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Figure 4.36: Hit recognition efficiency in silicon (left) and in a CVD diamond sensor
(right) as a function of the threshold. The efficiency is given for different numbers of
strips included in the transparent charge.

In silicon or diamond one can always determine the threshold where the efficiency is close
to 100 %. However, if the threshold is chosen too low one acquires noise hits which spoil the
spatial resolution. One method of judging the lower limit of the threshold is counting the
number, N , of strips with a signal above threshold as a function of the threshold. Fig. 4.37
shows 1/N as a function of the threshold in one of the silicon planes (left) and in the diamond
sensor UTS-5 (right). The graphs were prepared as a scatter plot with a profiling histogram
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of the entries in each threshold bin overlayed (cross markers). One can see that the number of
strips with a signal charge above threshold increases with lower threshold. This corresponds
to a decrease of 1/N with lower threshold. This is expected because noise signals exceed low
thresholds. It was shown that two strips collect most of the charge in silicon and diamond
strip detectors. In silicon it was also shown that two strips give a good spatial resolution.
From Fig. 4.37 one can read the threshold for two strips hit on average. One finds 4 ADC
in silicon and 80 ADC in diamond (using three strips one finds about 2 ADC in silicon and
55 ADC in diamond). From this and Fig. 4.36 one infers the range for choosing a threshold
with a hit finding efficiency of above 98 %. Using two strips one obtains the range from
4 ADC to 30 ADC in silicon and 80 ADC as the lower and upper limit in diamond. This
corresponds to a cluster signal-to-noise cut between 9-to-1 and 64-to-1 in silicon and 18-to-1
in diamond. One may certainly lower the thresholds in order to allow more strips to be
on average included in the hit cluster. If one applies the same thresholds below 18-to-1 to
diamond and silicon one finds a hit recognition efficiency above 98 % in both devices.
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Figure 4.37: The inverse of the number of strips in a silicon detector (left) and the
CVD diamond sensor UTS-5 (right) as a function of charge threshold. The case of zero
number of strips is excluded.

4.2.9 Results: Charge Collection and Strip Width

The charge collection has been studied on strips with variable widths and constant
pitch. Fig. 4.38 (left) shows the schematic of a strip with variable widths. Each strip had
four regions, a, b, c, d, with the widths 10 µm, 20 µm, 30 µm and 40 µm. The strips were
read out on the wide end. This strip geometry allows one to study the charge collection as
a function of the strip width. In Fig. 4.38 (center and right) one can see the mean charge
collected on a strip as a function of the particle position, (ut − u0, vt), with respect to the
center of the strip in the interval from −50 µm to +50 µm. The measurements from all strips
in the fiducial region are mapped into a single strip centered at zero. One can recognize a
region with high collected charge near the bonding pads and a region with lower collected
charge at the end opposite to the bonding pads. The bonding pads are in region e. The
bonding pads also collect charge. The start of the region d is at −2250 µm in UTS-5 and
at −2000 µm in CDS-57. Each region had a length of 1500 µm as illustrated in the figure.
Region a was partially outside of the area defined by the beam trigger counter. One can see
that for the widths below 30 µm the mean single strip charge decreases with decreasing strip
width. This effect was seen in two diamond sensors CDS-57 and UTS-5.

Fig. 4.39 and Fig. 4.40 facilitates the representation of the contents from UTS-5 in the
previous figure [Fig. 4.38]. The single strip charge is shown versus the distance between
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Figure 4.38: Schematic of a strip on the diamond sensor (left): the strip has four
regions a, b, c, d with widths of 10 µm, 20 µm, 30 µm and 40 µm. Center and right:
mean signal charge on a single strip at zero in the diamond sensors UTS-5 and CDS-57.
The mean signal charge is gray scale coded and plotted along the strip direction, vt,
and versus the distance, ut − u0, from the center of the strip at zero. The region e
corresponds to four rows of bonding pads.

the track and the center of a strip at zero. The number of entries is logarithmically gray
scale coded. Three important features can be observed in these figures: first the shape of
the distribution is trapezoidal with a flat top corresponding to the width of the strip and
a linear decrease from the edge of the strip. The slope of the linear decrease depends on
the width of the strip. It can be shown that the slope is proportional to the strip width.
The second observation is that if a track passes through a strip then there are no entries
which induce a signal charge of less than 50 ADC counts corresponding to about 1100 e. The
third observation is that the signal charge is larger on wide strips than on narrow strips. For
example in Fig. 4.39 and Fig. 4.40 the histogram in region a has a top of 220 ADC whereas
in region d the flat top is at 280 ADC.
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Figure 4.39: Charge collected on the single strip versus the distance ut − u0 in the
diamond detectors UTS-5. The signal is shown for the regions, a and b, with different
strip width.
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Figure 4.40: Charge collected on the single strip versus the distance ut − u0 in the
diamond detectors UTS-5. The signal is shown for the regions, c and d, with different
strip width.

Fig. 4.41 shows the signal charge from two strips as a function of the position of the track
between two strips. One can see that the measured charge is independent of the position of
the track. In other words, there is no loss of induced charge for tracks which pass between
two strips. The comparison of the charge on two strips in region a with region d shows that
there is less charge induced on two strips for the narrow strip width.
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Figure 4.41: The sum of the signal charge from the left and the right strip as a
function of the position of the track between the strips for 10 µm wide strips (left) and
for 40 µm wide strips (right).

Fig. 4.42 shows the mean signal-to-noise ratio for three strips as a function of the strip
width measured from UTS-5 and CDS-57. One can see that the signal is larger on wider
strips. The signal appears to plateau above 30 µm strip width.

For comparison Fig. 4.43 shows the induced charge on a strip in a silicon detector as
a function of the position of the track relative to the strip. The strip measures the highest
charge if the track passes through the strip. For distances away from the strip the induced
charge decreases non-linearly and reaches a value close to zero at the position of the adjacent
strip. The sum of the charges from two adjacent strips in silicon is shown as a function of
the track position between the strips in Fig. 4.44. One can see that the charge sum depends
on the position of the track. There are relative minima at the position of intermediate strips.
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The charge loss at the position of the intermediate strips is understood by the capacitive
coupling from the intermediate strips to the backplane of the silicon detector as described in
reference [94].
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Figure 4.43: Signal charge on a single strip
as a function of the position of the track rel-
ative to the position of the track in a silicon
strip detector. The silicon detector has two
intermediate strips.

Figure 4.44: The sum of the signal charge
from the left and the right strip as a function
of the position of the track between the strips
in silicon.

Fig. 4.45 shows the relation between the signal charge on the left strip versus the right
strip in hits in the diamond UTS-5. The distributions show anti-correlation similar to what
was observed in silicon sensors in Fig. 4.10 in Sec. 4.1.5.3. The entries are accumulated in
two ‘islands’ corresponding to a complete charge collected on either one strip or on the other
strip. For region d (wide strips) the separation between the islands is more pronounced than
it is the case for region a (narrow strips). This indicates that on narrow strips there is more
charge sharing between the strips. A single wide strip more often collects all the charge.

4.2.10 Results: Spatial Resolution

The spatial resolution in diamond strip detectors was found using the K-strip center of
gravity (c.o.g.) method as described in Eq. 4.25 in Sec. 4.1.5.2. Fig. 4.46 shows the residual
distribution for UTS-5 in the region a and in region d. The hit position found by the diamond
was measured here using the digital hit position, the 2-strip c.o.g. position and the 3-strip
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Figure 4.45: Relation between the signal charge on the left strip and the signal charge
on the right strip for the region a with 10 µm wide strips (left) and for region d with
40 µm wide strips (right).

c.o.g position. One can see that the residuals are symmetrically distributed around zero.
The digital residual distribution is a flat-top distribution. The digital residual distribution is
more rectangular for wider strips than for narrower strips. The spatial resolution using the
digital method is 18.5 µm in region a and 16.9 µm in region d as obtained from the rms in the
interval for |uh−ut| < 50 µm. A Gaussian fit to the digital residual distribution in the interval
|uh − ut| < 50 µm gives the same spatial resolution as the rms. If one extends the interval
to |uh − ut| < 60 µm the digital spatial resolution increases by about 0.1 µm. The measured
digital resolution is larger than P/

√
12 = 14.43 µm. It can be seen that the measured

digital residual distributions have entries in the tails for |uh − ut| > 25 µm. The measured
spatial resolution, the rms, is sensitive to these entries. The measured FWHM is 50 µm for
both distributions as expected for the digital method. The shape of the single strip residual
distributions in this diamond are trapezoidal. For comparison the digital residual distribution
in silicon has a rectangular shape [Fig. 4.8]. The 3-strip c.o.g. residual distribution has a
Gaussian-like shape and is narrower than the digital residual distribution. The shape of the
distribution in region a has a flat top whereas the shape in region d has a ‘round’ top. The
spatial resolution using the 3-strip c.o.g. method is 14.5 µm in region a and 13.9 µm in
region d obtained from the standard deviation of a Gaussian fit to the residual distribution
for |uh−ut| < 25 µm. The 2-strip c.o.g. residual distribution has a Gaussian-like shape and is
narrower than the 3-strip c.o.g. residual distribution. The shape of the distribution in region
a might have a flat top whereas the shape in region d is point like. The spatial resolution
using the 2-strip c.o.g. method is 12.1 µm in region a and 12.4 µm in region d obtained from
the standard deviation of a Gaussian fit to the residual distribution for |uh − ut| < 25 µm.

4.2.11 Summary and Discussion

The method of analyzing the noise and signal charge in CVD diamond strip sensors has
been described. A typical noise on 6 mm to 7 mm long strips has been measured to be 100 e
in agreement with the expected equivalent noise charge. Two analysis methods, a cluster and
a transparent analysis, were used. The signal charge from a cluster analysis is slightly higher
than the transparent charge which is inherent to the method used. Table 4.2 shows a summary
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are shown.

of results obtained on recent CVD diamond sensors in the beam. The thickness ranges from
432 µm to 1570 µm. The electrical field was normally 1 V/µm. For some diamonds larger
leakage current of the order of several hundred nanoamperes made it necessary to operate
at lower field. The values for signal-to-noise and K-strip c.o.g. spatial resolution are shown
for the diamond sensors in the pumped state (except for CDS-51). The pumped state was
reached by several hours exposure of the sensor to electrons from a 37 MBq 90Sr source. The
mean signal-to-noise ratios were obtained in the transparent analysis. All pumped sensors
listed had a mean signal-to-noise ratio above 30-to-1. UTS-5 and CDS-57 had the largest ratio
of 73-to-1 and 89-to-1. Using the K-strip c.o.g. method the spatial resolution was typically
between 13.5 µm and 16 µm. There were sensors with spatial resolution above 20 µm. The
reason for the relatively poor spatial resolution in CDS-57 despite its high signal-to-noise
ratio is not clear. Different hit finding methods have been used from which the 2-strip c.o.g.
method was the most promising so far. The spatial resolution could be improved by using
the 2-strip c.o.g. method as demonstrated in UTS-5 reaching a spatial resolution between
12.1 µm and 12.4 µm which is better than digital resolution.

The influence of the strip width on the charge collection and on the spatial resolution
has been investigated. Given that the residual distributions for different strip widths were
measured on the same detector there can be no differences due to gain or noise variations as
they could occur using two different sensors. Using the strip geometry with variable strips
on one diamond one is sensitive to the strip width only. Therefore differences in the charge
collection on different strip width are due to the strip width only. It was shown that 30 µm
and 40 µm wide strips collect about 20 % more charge than 10 µm wide strips. The signal
charge appears to plateau above 30 µm strip width. Strips with a width of 25 µm at a strip
pitch of 50 µm are therefore a reasonably good choice from the point of charge collection.
Using the hit finding methods described here it was shown that there are differences in
the shape of the residual distributions for 10 µm wide strips and 40 µm wide strips. The
important observation is that the 2-strip c.o.g. method gives a better spatial resolution than
the 3-strip c.o.g. method. Normally the K-strip c.o.g. method has been used for hit position
finding where K was variable depending on how many strips were exceeding the neighbour
strip threshold. As a result of the observation made here and on other diamond strip sensors
analysed one should consider using the 2-strip c.o.g. method rather than the 3-strip or K-
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CVD diamond thickness | ~E| state mean transp. c.o.g. spatial
sensor 3-strip S/N resolution (K strips)

[µm] [V/µm] [µm]

CDS-83 690 0.86 p 37 13.7

CDS-51 557 0.45 dp 22 15.6

UTS-5 432 1.0 p 73 15.0

CDS-57 480 1.04 p 89 26.5

CDS-26 1570 0.7 p 38 21.0

CDS-22 690 0.8 p 35 22.0

CDS-44 650 0.3 p 35 14.0

CDS-55 452 0.66 p 51 15.9

Table 4.2: Overview of the performance of recent CVD diamond sensors in the beam.
The sensor thickness, the biasing electric field and the pumping state (dp=depumped,
p=pumped) are shown. The mean signal-to-noise ratio from three strips measured in
the transparent analysis and the spatial resolution obtained using the K-strip center
of gravity method (c.o.g.) are given. CDS-55 and CDS-44 are 2 × 4 cm2 sensors and
their results are reported in detail in Sec. 4.3.

strip c.o.g. methods. Preliminary work using the 2-strip non-linear eta method in diamond
has begun.
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4.3 Large Area Diamond Strip Detectors

The typical size of a sensor module for particle tracking in high energy physics
experiments ranges from one square centimeter to several tens of square cen-
timeters. Sensors can be arranged next to each other to build a module and
to cover larger areas. Many modules may then be grouped in wheel or barrel
structures to meet the physics requirements. This structure may cover sev-
eral hundred square centimeters, for example 1300 cm2 in the Delphi Silicon
Tracker [1]. In an application using diamond detectors one would also group
several diamond sensors in the required structure. CVD diamond strip de-
tectors with a size of 2 cm × 4 cm were tested in pion beams. Their charge
collection properties and spatial resolution are reported below.

4.3.1 Introduction

The first 2 × 4 cm2 CVD diamond sample was delivered in 1996 together with a 1 cm2

sample from the same diamond disk. The charge collection distance of the 1 cm2 sample
was considered too low for use in a beam test with the large sample. This large sample
was therefore returned to the manufacturer. After feedback on how to improve the charge
collection distance large diamond samples from a second growth where delivered in 1997. The
second delivery contained four 2 × 4 cm2 samples and three 1 cm2 samples from the same
disk.

4.3.2 Experimental Method

Fig 4.47 shows the drawing of a diamond disk. The disk has a size of 120 mm in diameter.
Inside the disk one can see the locations of the four 2 × 4 cm2 samples and three 1 × 1 cm2

samples, CDS-23,24,25. CDS-23 was cut from the center, CDS-24 was cut from a position
between the center and the rim and CDS-25 was cut from the rim. The 1 cm2 samples had
a thickness of 770 µm as-grown. The 2 × 4 cm2 samples were cut as shown. The surfaces of
the 2×4 cm2 diamonds were lapped and then optically polished on both sides. After lapping
the diamond CDS-44 had a thickness of 650 µm. The thickness variation was measured from
five uniformly distributed points over the area of 2 cm × 4 cm. The thickness variation was
2.6 µm on this sample. Another sample, UTS-1, had a thickness of 660 µm after lapping and
a thickness variation of 7.6 µm. The diamond growth side of CDS-44 was then metallized
with Cr/Au and patterned with 384 strips using the method described in Sec. 4.2.3. Fig. 4.1
shows a photograph of the diamond detector, CDS-44, after metallization and bonding to the
readout electronics. The strips on the diamond growth side were 25 µm wide with a strip
pitch of 50 µm. 256 strips had a length of 3.8 cm, 128 strip a length of 1.9 cm. In total 256
strips of the detector were read out by two low noise CMOS VA2 chips [78]. A rectangular
contact was metallized at the end of the 1.9 cm strips for charge collection measurements
with 90Sr in the lab. Other strips of 100 µm pitch behind the rectangular contact remained
unused in these tests. The backside of the diamond had one solid Cr/Au electrode with a
size of 3.8 cm × 1.9 cm. The sensor was mounted on a 650 µm thick ceramic printed circuit
board which also contained a 100 MΩ biasing resistor to the diamond backplane and one
4.7 nF/3.3 kV capacitor to ground in order to reject ripples on the DC bias voltage. The
sensor and readout chips were fixed inside a light tight and electrically shielded aluminium
frame. The Al-frame had thin Al-foil windows above and below the sensor for the pion beam
to pass through.

Table 4.3 gives an overview of the detectors prepared for testing. It contains the 2 ×
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Figure 4.47: Schematic view of the diamond
disk showing the locations of the various dia-
mond samples. The diamond disk shown has
a diameter of 120 mm. The sample CDS-44
and the other 3 large samples have a size of
2 × 4 cm2, the smaller pieces are 1 × 1 cm2.

Figure 4.48: Photograph of a 2×4 cm2 large
diamond strip detector. The diamond sub-
strate had a thickness of 650 µm. The strips
on the diamond surface were 25 µm wide and
had a pitch of 50 µm. In total 256 strips were
read out by two low noise CMOS chips (VA2).

4 cm2 samples and the three 1 × 1 cm2 samples from the same disk. The beam tests were
carried out using the silicon beam reference telescope and data acquisition system described
in Sec. 4.1.2. The same analysis program was used to analyze the data: the algorithms for
pedestal, common mode, signal and noise calculations from the raw data were the same as for
the silicon reference planes. Only the thresholds for seed strip signal-to-noise and neighbour
strip signal-to-noise for the hit finding were chosen lower than in silicon.

4.3.3 Results: Charge Signal versus Location on the Diamond Disk

Fig. 4.49 shows the charge collection distance as a function of the applied electric field
measured on CDS-23 and CDS-25. CDS-23 was cut from the center of the diamond disk
and CDS-25 was cut from the rim of the disk. The charge collection distance is shown for
the depumped and for the pumped state. In the pumped state and at 1 V/µm the charge
collection distance was 142 µm in CDS-23 and 106 µm in CDS-25. In the depumped state and
at 1 V/µm the charge collection distance was 70 µm in CDS-23 and 29 µm in CDS-25. Two
observations can be made: first the charge collection distance, pumped and depumped, for
the center sample is higher than for the rim sample. Second the sample from the rim pumps
by a factor of 3.6 whereas the center sample pumps by a factor of 2.0. Table 4.4 summarizes
the measured charge collection distances at an electric field of 1 V/µm. The table also lists
the measurements from another group (group A) [85]. The measurements from group A are
given in the depumped state. It can be seen that the depumped values for CDS-23 and
CDS-25 from group A agree with the depumped values measured here (group B). The charge
collection distance of CDS-24 from group A is also given. The charge collection distance is
51 µm for CDS-24 which is slightly larger than the average of 47 µm obtained from CDS-23
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thickness size mask measurement

sample [µm] [cm × cm]

CDS-23 775 1 × 1 dot ccd with 90Sr

CDS-24 765 1 × 1 dot ccd with 90Sr

CDS-25 785 1 × 1 dot ccd with 90Sr

UTS-1 660 2 × 4 none thickness variation

CDS-44 650 2 × 4 strips in beam and ccd with 90Sr

CDS-55 452 2 × 4 strips in beam and ccd with 90Sr

CDS-56 435 2 × 4 strips failed

Table 4.3: Overview of samples and the measurements performed (ccd abbreviates
charge collection distance).

and CDS-25. The charge collection distance appears to increase from the rim of the diamond
disk to the center.
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Figure 4.49: Charge collection dis-
tance as a function of the applied
electric field in two samples from
different regions of the diamond
disk measured in the depumped and
pumped state. Sample CDS-23 was
cut from the center, sample CDS-25
was cut from the rim.

The leakage current was measured as well. The 1 cm2 samples had equal leakage currents
of 0.2 nA at 1 V/µm measured on round contacts with a size of 20 mm2 corresponding to a
current density of 10 pA/mm2.

4.3.4 Results: Charge Signal of CDS-44 in Beam

CDS-44 was operated at an electric field of 0.3 V/µm in the beam. The total leakage
current was 500 nA. At higher electric field the leakage current went above several microam-
peres. High leakage current was observed later on other 2 × 4 cm2 strip detectors as well
(on CDS-55 and CDS-56). The leakage current was high because the metallization partially
covered the corners of the diamond which provided a conductive path to the backplane. This
effect was cured later by leaving sufficient margin between the guard ring and the corner,
and on the other side between the back plane and the diamond corner.

Fig. 4.50 shows the transparent signal charge distribution of CDS-44 in the beam and
the 3-strip cluster charge distribution from CDS-44 measured with a 90Sr source. The figure
also shows the 3-strip cluster charge distributions from two silicon strip detectors measured
with a 90Sr source. The transparent signal of CDS-44 has a mean value of 209 ADC. It has
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thickness charge collection distance
sample [µm] [µm] at 1 V/µm location on disk

group A group B

CDS-23 775 62 70..142 center

CDS-24 765 51 - between center and rim

CDS-25 785 32 29..106 rim

Table 4.4: Charge collection distance measured on three 1 cm2 samples with a 90Sr
source from different locations on the diamond disk. The measurements of group A are
shown for the depumped state only. The measurements of group B are shown for the
depumped and pumped state. The measurement on CDS-24 from group B is missing.

a few pedestal entries around 0 ADC due to broken or shorted strips or shorted bonds in the
fiducial region. The equivalent noise charge was measured between 6 ADC and 7 ADC. Hence
the mean signal-to-noise ratio was between 30-to-1 and 35-to-1. The 3-strip cluster signal
from the 90Sr measurement, at the same electronic gain and bias voltage, has a distribution
of similar shape as the transparent signal. The mean 3-strip cluster charge is 198 ADC as
read from the figure.
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Figure 4.50: Distribution of the transparent 3-strip signal charge in CDS-44 measured
in the pion beam and the 3-strip cluster signal measured with a 90Sr source. The 3-strip
cluster signal distributions measured with 90Sr on 175 µm and 300 µm thick silicon
strip detectors at the same gain are overlayed.

The 3-strip cluster charge distributions from two silicon detectors with a thickness of
175 µm and 300 µm were measured later with a 90Sr β-source at the same electronic gain
using the same sirocco ADC. The most probable charge of the distributions is (1000±40) ADC
for 300 µm and (575 ± 30) ADC for 175 µm thick silicon read from Fig. 4.50. Using the ‘in-
use’ most probable charge collected of 22500 e in 300 µm thick silicon (see Sec. 3.3.5) one
obtains the gain of (22.7 ± 1) e/ADC. One therefore infers the mean transparent charge of
the diamond detector to be 4730 e corresponding to a bulk average charge collection distance
of 132 µm at 0.3 V/µm. From the measured equivalent noise charge in ADC units one infers
the equivalent noise charge to be between 136 e and 159 e. This noise measurement includes
strips from both length, 1.9 cm and 3.8 cm.
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4.3.5 Results: Charge Signal of CDS-55 in Beam

The second large area strip detector, CDS-55, was tested half a year later in the pion
beam. CDS-55 was from a different disk than CDS-44. CDS-55 had the same strip pattern
as CDS-44. CDS-55 was lapped and polished on both sides and had a thickness of 452 µm.
CDS-55 was operated at 300 V corresponding to an electric field strength of 0.66 V/µm. It
should be noted that the electric field for CDS-55 is higher than the electric field for CDS-44
in the previous test.

Fig. 4.51 shows the transparent 3-strip charge distribution measured from CDS-55 in
two different regions of the detector. The second region was offset to the first region by 1 cm.
The offset was realized by moving the detector vertically along the direction of the strips and
mounting it 1 cm higher than the first position. The fiducialization area analyzed in both
positions had a rectangular area size of 19 mm2. It can be seen that both distributions have
the same shape and approximately the same mean value. This indicates that the detector
has the same signal response under lateral translation by 1 cm. It should be noted that the
area averaged over has a size of 19 mm2 for both positions. The size is relevant since for small
areas the mean signal charge can change as a function of the size of the area as described in
Sec. 4.4. Fig. 4.51 shows the mean charge collected of 193 ADC in region 1 and of 212 ADC
in region 2. The average charge collected from both regions is 203 ADC. The most probable
charge collected is 122 ADC in region 1 and 140 ADC in region 2 giving an average most
probable charge of 131 ADC. The single strip equivalent noise charge was measured to be
4.0 ADC on 1.9 cm long strips and 5.1 ADC on 3.8 cm long strips (see below). Using the noise
measurement of 4.0 ADC for 1.9 cm long strips one obtains the most probable signal to noise
ratio of 33-to-1 and the mean signal to noise ratio of 51-to-1. Using the noise measurement of
5.1 ADC for 3.8 cm long strips one obtains the most probable signal to noise ratio of 26-to-1
and mean signal-to-noise ratio of 40-to-1.
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Figure 4.51: Distribution of the transparent
signal charge from 3-strips in the 2 × 4 cm2

diamond strip detector CDS-55 measured in
two regions 1 cm apart.

Figure 4.52: Signal charge distribution mea-
sured with a 90Sr β-source on a rectangular
contact on the large diamond strip detector
CDS-55.

Fig. 4.52 shows the signal charge distribution from CDS-55 at 0.7 V/µm measured using a
90Sr β−source. The signal was measured on the rectangular electrode in the characterization
station described in Sec. 3.4.5. The distribution was measured before wire bonding the
detector to the readout electronics and installation in the beam. The distribution has a most
probable charge of about 5100 e and a mean signal charge of 6890 e. The mean signal charge
corresponds to a charge collection distance of 191 µm. Based on the agreement between
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the signal obtained in CDS-44 using the beam and using the 90Sr source we infer the mean
of CDS-55 in the beam to be at 6890 e. Based on the experience with other sensors the
reliability (error) is approximately 15 %. Using the average measured mean of 203 ADC
from Fig. 4.51 one derives the gain of (34 ± 5) e/ADC for CDS-55 in the beam.

4.3.6 Results: Comparison between CDS-44 and CDS-55

The electrical quality of CDS-44 and CDS-55 can be compared. One must consider that
CDS-44 and CDS-55 were operated at different electric fields. The electric field was 0.3 V/µm
for CDS-44 and 0.66 V/µm for CDS-55. In order to compare the signal charge from CDS-44
with CDS-55 one has to scale the signal charge of CDS-44 to the electric field of CDS-55.
Scaling of CDS-44 is possible by using the measured mean signal charge from CDS-23 and
CDS-25 as a function of the electric field. CDS-23 to CDS-25 where from the same disk as
CDS-44. Therefore one can assume the same shape of the mean signal charge as a function
of the electric field for CDS-44 and CDS-23 to CDS-25. Using the shape of the mean signal
charge as a function of the electric field from CDS-23 to CDS-25 one can derive the scaling
factor between the signal charge at 0.66 V/µm and 0.3 V/µm.

thickness charge collection distance ratio
sample [µm] [µm] at 0.3 V/µm [µm] at 0.66 V/µm

CDS-23 775 77 115 1.49

CDS-24 765 - - -

CDS-25 785 66 90 1.36

CDS-44 650 132 -
CDS-55 452 - 191

1.45

Table 4.5: Comparison of CDS-44 and CDS-55 based on the measurements on CDS-23
and CDS-25.

Table 4.5 shows the charge collection distance from CDS-23, CDS-25, CDS-44 and CDS-
55 at an electric field of 0.3 V/µm and 0.66 V/µm. The values for CDS-23 and CDS-25 were
obtained from the measurement shown in Fig. 4.49. The values for CDS-44 and CDS-55 were
obtained from the measurements shown above. The scaling factor is the ratio between the
charge collection distance at 0.66 V/µm and 0.3 V/µm. The scaling factor is 1.49 for CDS-23
and 1.36 for CDS-25. The average scaling factor for these two samples is 1.4. The charge
collection distance measured for CDS-44 was 132 µm at 0.3 V/µm. Using the scaling factor
of 1.4 obtained from CDS-23 and CDS-25 one derives the scaled charge collection distance
of 185 µm for CDS-44 at 0.66 V/µm. The scaled charge collection distance for CDS-44 at
0.66 V/µm is approximately equal to the charge collection distance of 191 µm for CDS-55 at
0.66 V/µm. We conclude that CDS-44 has comparable electrical quality to CDS-55. It should
be noted that CDS-55 had less leakage current than CDS-44. The lower leakage current of
CDS-55 is likely due to a more accurate metallization which allowed to operate CDS-55 at
higher electric field than CDS-44.

4.3.7 Results: Noise

Fig. 4.53 shows the single strip noise measured in fiducial regions on L1 = 3.8 cm long
strips and L2 = 1.9 cm long strips. The distributions are Gaussian and centered around
zero with a standard deviation of 4.0 ADC on short strips and 5.1 ADC on the longer strips.
Using the gain calibration of (34 ± 5) e/ADC for CDS-55 one obtains an equivalent noise
charge of (136±20) e for 1.9 cm long strips and (173±25) e for 3.8 cm long strips. This noise
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is consistent with the noise measured on CDS-44 in the previous beam test. The leakage
current density 10 pA/mm2 at 1 V/µm was measured on CDS-23 and CDS-25. The DC
leakage current of ≈ 4.7 pA per 1.9 cm long and 25 µm wide strip was derived from the these
measurements. Using Eq. 3.140 one obtains a equivalent noise charge of 10 e at 2 µs signal
peaking time due to the leakage current of 4.7 pA into the amplifier. This noise adds in
quadrature to the total equivalent noise charge. One finds that the noise due to the diamond
detector leakage current can be neglected.

It can be seen that the noise charge is 1.1 ADC larger on 3.8 cm long strips than on
1.9 cm long strips. The excess noise charge of 1.1 ADC must be attributed to the extra
length of 1.9 cm. Using the gain calibration of (34 ± 5) e/ADC for CDS-55 one obtains an

excess noise charge of ∆
√

〈

q2
total

〉

= (37 ± 6) e. The parallel noise in the readout can be
neglected since the channel leakage current is of the order of picoampere and the feedback
resistor is of the order of hundred megohm. The excess equivalent noise charge can therefore
be approximated by the excess series equivalent noise charge

∆
√

〈

q2
total

〉

≈ ∆
√

〈

q2
series

〉

= [Ce(L1) − Ce(L2)]
√

〈u2
a〉 (4.70)

where the series noise is given by Eq. 4.66. The equivalent noise voltage for the VA2 is
√

〈u2
a〉 = 11 e/pF. Using Eq. 4.61 and Eq. 4.62 one finds the external capacitance

Ce(L) = 2Cs(L) + Cb(L) + Cstray (4.71)

where the interstrip capacitance, Cs(L), is given by Eq. 4.63 and the strip-to-backplane
capacitance, Cb(L), given by Eq. 4.64. It should be noted that Cs and Cb are linear in the
strip length, L, such that the external capacitance can be written

Ce = Cstray +
∆Cd

∆L
L (4.72)

where ∆Cd denotes the change of the detector capacitance when changing the length by ∆L.
Inserting Eq. 4.71 in Eq. 4.70 and rearranging gives the specific capacitance per unit length
for strips on diamond

∆Cd

∆L
=

∆
√

〈

q2
series

〉

√

〈u2
a〉 (L1 − L2)

. (4.73)

Using the measured excess noise charge one obtains

∆Cd

∆L
= (1.77 ± 0.3) pF/cm. (4.74)

It should be noted that this measurement is valid for diamond sensors with 50 µm pitch,
25 µm strip width and 452 µm thickness. The dependence of the noise on the thickness is
less than on the pitch and on the strip width. One also should note that the measurement is
independent of the stray capacitance, Cstray.

The measured specific noise allows one to derive the equivalent noise charge for 6.4 mm
long strips: Cd(L = 6.4 mm) = (1.13±0.2) pF. This measured capacitance is consistent with
the calculated capacitance in Sec. 4.2.2.

The calculation from Fig. 4.24 shows that the detector capacitance is Cd = 3.1 pF for
1.9 cm long strips and Cd = 6.1 pF for 3.8 cm long strips. The strip to backplane capacitance
is negligibly small compared to the interstrip capacitance as shown in Sec. 4.2.5. Using the
measured specific capacitance one finds Cd = (3.4 ± 0.6) pF for 1.9 cm long strips and
Cd = (6.7 ± 1.1) pF. The calculation is consistent with the measured specific capacitance.
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Figure 4.53: Distribution of the pedestal
subtracted, common mode corrected and hit
suppressed raw values (above) in the region
with 3.8 cm long strips and 1.9 cm long strips
and the distribution of common mode shifts
in one readout chip (below).

Figure 4.54: Pedestal subtracted, common
mode corrected and hit suppressed raw values
as a function of the readout channel index for
256 channels (two chips). The strips in region
a have a length of 3.8 cm and in region b a
length of 1.9 cm.

Fig. 4.53 also shows the distribution of the common mode shifts. It can be seen that the
common mode variation (or common mode noise) is 1.9 ADC corresponding to a variation
of 65 e. The common mode correction was applied to correct the pedestal subtracted charge
raw values.

Fig. 4.54 shows noise charge values (the pedestal subtracted, common mode corrected
and hit suppressed raw values) versus the strip number. It can be seen that the mean
noise charge values are centered around zero. The figure should be compared with the same
measurement of the noise charge values from UTS-5 in Fig. 4.27. One can see that CDS-55
has more channels with larger noise charge than UTS-5. The channels with larger noise
charge are channels with bond wire shorts or shorts between two adjacent strips on the strip
mask.

4.3.8 Results: Spatial Resolution

The digital method and the K-strip center of gravity method (c.o.g.) were used to
measure the position of hit clusters. The K-strip c.o.g. method uses K strips where K
depends on the seed strip and neighbour strip thresholds chosen. The signal-to-noise threshold
was 8-to-1 for seed strips and 4-to-1 for neighbour strips. The thresholds determine the
distribution of K. The distribution of K was (28 %, 30 %, 18 %, 13 %, 7 %) for K =
(1, 2, 3, 4, 5). One can see that the mean number of strips in a cluster is approximately two:
〈K〉 = 1.96.

Fig. 4.55 shows the K-strip c.o.g. residual distribution (solid histogram) and the digital
residual distribution (dotted histogram). The K-strip c.o.g. residual distribution is fitted by
a Gaussian function in the interval of residuals smaller than 30 µm. The standard deviation
gives the spatial resolution of 15.9 µm for the K-strip c.o.g. method. This result is comparable
with the spatial resolution observed in 1×1 cm2 strip sensors using the K-strip c.o.g. method.
The distribution of the residuals obtained using the digital method is shown for comparison.
The digital residual distribution has a flat top as observed in UTS-5 using the digital method.
The digital residual distribution has approximately the same width as the residual distribution
obtained with the K-strip c.o.g. method.
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Figure 4.55: Residual distribution in CDS-
55. The Gaussian fit (solid line) has a stan-
dard deviation of σ = 15.9 µm and represents
the spatial resolution of the K-strip center of
gravity method.

Figure 4.56: Residuals, uh−ut, as a function
of the predicted hit position, ut, perpendicular
to the strips. Two regions, a and b, were cho-
sen for the residual distribution in Fig. 4.55.

Fig. 4.56 shows the residuals versus the position ut. In some regions there are contiguous
strips where the residuals are centered around zero. In other regions the residuals extend
over two or three strips along a ‘line’ with inclination -1. This ‘line’-effect was observed in
UTS-5 [Fig. 4.33] and is explained by electrically shorted or missing strips (see Sec. 4.2.6).
The fiducial regions chosen for the residual distribution are drawn in the figure (region a and
b). Region a contains a few strips which have residuals on a line. These events cause the tails
in the residual distribution in Fig. 4.55.

4.3.9 Summary on Large Area Diamond Strip Sensors

Results from two 2 × 4 cm2 diamond strip detectors (CDS-44 and CDS-55) with low
noise VA2 readout electronics have been presented. The charge collection of 191 µm at
0.66 V/µm was measured on CDS-55. The same charge collection distance was measured in
two regions one centimeter apart averaged over a rectangular area of 19 mm2. This indicates
that CDS-55 is uniform on a length scale comparable to a rectangular area of 19 mm2. The
charge collection distance of 132 µm at 0.3 V/µm was measured on CDS-44 using the pion
beam and a 90Sr β-source. Using two samples (CDS-23 and CDS-25) the charge collection
distance of CDS-44 was scaled to 185 µm at 0.66 V/µm and compared with CDS-55. CDS-
44 and CDS-55 have the same charge collection distance at the same electric field. This
implies that both samples have comparable electrical quality. CDS-44 was cut from a disk
together with 1× 1 cm2 samples, CDS-23 (center), CDS-24 (middle) and CDS-25 (rim). The
charge collection measurement of the 1 × 1 cm2 samples showed increasing charge collection
distance from 106 µm at the rim to 142 µm at the center. Using the 3-strip transparent
analysis the mean signal-to-noise ratio between 30-to-1 and 35-to-1 were measured on CDS-
44 at 0.3 V/µm. The analysis on CDS-44 did not distinguish between 1.9 cm long strips and
3.8 cm long strips. The distinction between long and short strips was made in the analysis
of CDS-55 (operated at 0.66 V/µm). A mean signal to noise ratio of 51-to-1 was measured
on CDS-55 in the region of 1.9 cm long strips and a mean signal-to-noise ratio of 40-to-1 was
measured in the region of 3.8 cm long strips due to higher noise.

The noise was measured on the strips in CDS-55. The additional noise on longer strips
allowed an estimate of the specific detector capacitance, ∆Cd, per strip length, ∆L, on the dia-
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mond surface. For 25 µm wide with 50 µm pitch the result was ∆Cd/∆L = (1.77±0.3) pF/cm.
This measurement is consistent with the calculated detector capacitance [Sec. 4.2.2].

The spatial resolution was measured on CDS-55 and CDS-44. The results of CDS-55 were
reported here. The analysis of CDS-55 used a K-strip c.o.g. method and attained a spatial
resolution of 15.9 µm. The residual distribution using the digital method was comparable to
the residual distribution using the K-strip c.o.g. method. This result is consistent with the
spatial resolution obtained in other CVD diamonds. In the analysis of UTS-5 reported in
Sec. 4.2.10 it was shown that the 2-strip center of gravity method gives smaller residuals than
the K-strip c.o.g. method. Preliminary work on CDS-55 confirms that the spatial resolution
can be improved by using the 2-strip center of gravity method.

Finally it should be noted that other large diamond samples with a size of 3×3 cm2 were
delivered in the past for a diamond-tungsten calorimeter [106] and to collaborators in RD42
for heavy ion experiments where they were used as trigger counters (as in the HADES/GSI
experiment) and for beam diagnostics [107]. This shows that the production of large detector
grade CVD diamond is becoming routine.

4.4 Study of Signal Uniformity

CVD diamond is inherently polycrystalline in nature. Silicon in comparison
is mono-crystalline. One may ask whether this morphological difference in-
fluences the charge collection properties laterally across the sensor. Pictures
of mean charge collected laterally across the sensor can be taken by illumina-
tion in particle beams. Regions of high mean signal and valleys of low mean
signal were observed in diamond detectors using this method. The level of
signal uniformity in a CVD diamond sensor and a silicon sensor were studied.
It was discovered that in the CVD diamond the level of uniformity changes
with length scale. The signal charge distribution from macroscopic regions
of several millimeters were found to be a convolution of signal distributions
with high and low signal charge from microscopic regions on a scale of several
100 micrometers. In diamond detectors which have macroscopic signal sepa-
ration from zero all microscopic regions give charge. Therefore macroscopic
signal separation from zero appears to be an important characteristic for a
CVD diamond detector.

4.4.1 Uniformity Maps

The lateral signal uniformity of a sensor can be studied by means of a signal map which
is prepared as follows: a rectangular fiducial region may be chosen with width, U , in direction
u perpendicular to the strips and the length, V , in direction v along the strips. The area is
then divided into bins, with a size of δu×δv each, which defines the number of bins Bu = U/δu

in direction of u and Bv = V/δv in direction of v and the total number of bins B = Bu · Bv.
The fiducial region is uniformly illuminated by N =

∑B
b=1 nb beam particles such that the

number of entries in any bin is estimated by the mean number of entries which is n̄ = N/B.
The mean charge Q̄b in bin b with nb entries of measured charges Qj is then Q̄b = 1

nb

∑nb
j=1 Qj.

Fig. 4.57 shows the the mean collected 3-strip charge signal, Q̄b, in one silicon plane of
the beam reference telescope and in the diamond strip detector UTS-5 as a function of the
position of the particle track measured in run 911. The regions of both detectors are divided
into rectangular bins with a size of δu × δv = 100 µm × 100 µm. The bins have a mean
number of n̄ = 52.3 entries for silicon and diamond. The mean charge signals are gray scale
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Figure 4.57: Mean collected charge in a silicon (left) and diamond (right) detector as
a function of the position of the particle track. The mean charge is gray scale coded
and measured in bins of 100 µm × 100 µm. The charge was measured on three strip
in the transparent analysis.

coded and given in ADC units. It can be seen that the mean signal charge in individual
bins of the silicon detector and in the diamond detector differ from one bin to the other. It
should be noted that the ADC range controls the contrast of the mean signal map. To make
a qualitative visual comparison between the silicon and the diamond it is necessary to chose
the ADC range (a combination of contrast and brightness) properly. The following limits,
Qmin and Qmax, of the ADC range are proposed

Qmin = 0 and Qmax = Q̂ + 3 × FWHM. (4.75)

Using the 3-strip most probable signal of Q̂(si) = 44 ADC and FWHM(si)=20 ADC in silicon

read from Fig. 4.19 one obtains Q
(si)
max = 104 ADC. Using the 3-strip most probable signal

of Q̂(di) = 215 ADC and FWHM(di)=270 ADC in UTS-5 read from Fig. 4.35 one obtains

Q
(di)
max = 1025 ADC. One can see that the ADC range chosen in Fig. 4.57 is close to the

proposed ADC range. With the ADC range chosen here there appear to be stronger variations
in CVD diamond than in silicon.

It is possible to prepare signal maps with finer bin scales by using more beam events.
Fig. 4.58 shows the illumination of the diamond detector UTS-5 by the particle beam. This
histogram has been prepared by counting the number of tracks traversing in each bin where
the bins had a size of 25 × 25 µm2 using data from runs 945, 954, 955, 961 and 962. From
this figure one can infer that the detector was illuminated uniformly with pions. The line
at v ≈ 0 µm is due to a missing bond in one of the silicon planes. The missing bond is the
reason that only a few tracks were reconstructed when passing this strip. There is a small
triangular region in the upper left corner of UTS-5 where no tracks where predicted. The
‘line’ and the ‘triangular region’ should not be considered in the following pictures since the
number of tracks is too low. From the uniform illumination of UTS-5 it can be concluded
that the silicon detectors of the beam reference telescope were illuminated uniformly as well.
The mean signal response of a silicon strip detector of the reference telescope to uniform
illumination is shown in Fig. 4.59. For this presentation the range is chosen according to
Eq. 4.75. No systematic variations in mean signal are observed in silicon on the bin scale of
25 µm × 25 µm.

Fig 4.60 shows the mean signal map of the diamond detector UTS-5 on a bin scale of
δu × δv = 25 µm × 25 µm. Each bin contains on average 11.5 entries. The data is shown
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Figure 4.59: Mean collected charge in a sil-
icon detector as a function of the position of
the particle track. The mean charge is mea-
sured in bins of 25 µm × 25 µm.

for four ADC ranges where the lower limit is always 0 ADC. The upper limits were chosen
to be, Qmax = 1200 ADC (upper left), which is higher than proposed by Eq. 4.75, and
Qmax = 160 ADC (lower right), which is lower than the most probable signal value of UTS-5.
Also maps for Qmax = 800 ADC and Qmax = 400 ADC are shown. One can see that the
contrast changes depending on the range chosen. In the upper maps one observes regions
of higher and lower mean signal. It can be seen that the mean signal fluctuates from bin
to bin. It can also be seen that there are contiguous regions where the bins have the same
gray-scale-code. There are dark regions (spots) and light regions. The dark regions have a
typical size of the order of 100 µm for Qmax = 800 ADC. The lower maps were prepared
in order to emphasize regions with mean signals at the lower end of the charge distribution
(around the most probable signal and below the most probable signal charge). The map with
Qmax = 160 ADC is mainly dark and shows very few bins which have a mean signal below
100 ADC. It should be noted that bins with zero entries are coded white. It should also be
noted that with n̄ = 11.5 entries per bin on average one does expect a few bins with n = 0
entries. The number of bins with zero entries in the figure is about 17.

The maps were prepared using data from runs 945, 954, 955, 961 and 962. Run 911 (used
in Fig. 4.57) was recorded a few hours earlier. The map from run 911 should be overlayed
to Fig. 4.60 (upper right) in order to compare the positions of dark spots and light regions
in both maps. It can be seen that many dark spots from one map correspond to dark spots
in the other map. This observation is an indication for systematic signal variations in the
diamond.

The variations from bin to bin may have various reasons. There are statistical variations
and systematic variations. The statistical variations are due to noise and fluctuations of the
energy loss (Landau fluctuations). The systematic variations may be due to variations of the
signal response laterally across the sample. These variations are due to fluctuations in the
local properties of the detector.

Signal maps from CVD diamond detectors have been prepared in the past [108, 3] with
100 µm×100 µm bin size from particle beam tests with diamond strip detectors. Quantifica-
tion of the level of uniformity and the length scale of variations were preliminary and not yet
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Figure 4.60: Mean collected charge in diamond detector UTS-5 as a function of the
position of the particle track. The mean charge is gray scale coded and measured in
bins of 25 µm× 25 µm. Four maps are shown. The maps are based on the same data.
The maps differ in the ADC range chosen.

presented. This was mainly due to limited statistics. It should be noted that it is not obvious
to extract ‘uniformity results’ based on images only. In the section below a possibility to
quantify uniformity is proposed.

In other work the beam induced current from 2 MeV He+ in 250 µm thick polycrystalline
diamond films was measured [109] and “high resolution images of single grains in films” having
peaks in locally distinct regions of the sample were observed. In again other work the induced
current from a proton micro-beam was measured [110] and a few “hot spots” under a solid
electrode were observed. The measurements of induced currents are difficult to perform and
not obvious to compare with the measurements of the induced charge as they were shown
here.

4.4.2 Signals from Selected Regions

Fig. 4.61 shows a magnification of the mean signal map of the diamond detector UTS-5.
The bin size is 25 µm×25 µm. The rectangular region was chosen from −500 µm to +500 µm
in both the u and v direction. The figure identifies several spots of relatively high mean signal
and relatively low mean signal. Three regions were selected with graphical cuts in order to
analyze the signal distributions for predicted particle hits in these regions. The regions are
surrounded by solid lines and labeled a, b, c. The signal distributions for hits which were



4.4 Study of Signal Uniformity 167

predicted in these regions are shown in Fig. 4.62. Region a contains bins with relatively low
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Figure 4.62: Charge signal distributions in
selected regions of UTS-5 from Fig. 4.61: a
low signal, b high signal and c medium signal.
The number N of entries and the mean value
is given for each histogram.

mean values in the signal map. The distribution of signals in this region has a mean value
of 251 ADC which is smaller by a factor 2 compared to the mean value from signals in the
highest region b. The ratio of mean-to-most probable value in region a is 1.19 ± 0.16. The
smallest signal in the distribution from a is still separated from 0. Region b was chosen from
the signal map because it shows bins with relative high mean values. The signal distribution
has a mean of 512 ADC. The measured mean-to-most probable value is 1.14 ± 0.13. Region
c has bins with medium mean signals. The signal distribution from this region has a mean of
311 ADC which is slightly lower than the arithmetic mean from the highest and the lowest
signal regions. The mean-to-most probable value in region c is 1.24±0.15. Therefore a signal
distribution measured on a macroscopic scale appears as a convolution of signal distributions
from microscopic regions. The signal distributions from regions have mean-to-most probable
ratios of on average 1.19± 0.15 which is smaller than the mean-to-most probable ratio of the
convoluted distribution from the macroscopic scale.

4.4.3 The Level of Uniformity

Fig. 4.63 shows a histogram of the normalized mean values from signal maps of a silicon
and a CVD diamond strip detector. The mean values were measured using a bin size of
100 µm×100 µm. The mean value of each distribution is normalized to the average mean over
all bins, Q̄ = 1

B

∑B
b=1 Q̄b. The measured distribution is a convolution of two distributions:

firstly statistical variations of the inherent Landau fluctuations and the noise fluctuations
which have the variance VAR(Qb). Secondly there is a systematic variation from bin to bin
whose distribution is unknown. The systematic variation of the mean signal has the variance
VAR(Q̄b). The normalized mean signal variation, σ̂m, measured from the histogram rms of
Fig.4.63 is then expressed in terms of the statistical variation and the bin-to-bin variation:

σ̂2
m =

1

n̄
· VAR(Qb)

Q̄2
+

VAR(Q̄b)

Q̄2
. (4.76)
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Figure 4.64: Normalized variation, σ̂m, of
mean signals from silicon and diamond (UTS-
5) as a function of the mean number of entries
in bins. The bin size is 100 µm×100 µm. The
points are measurements, the solid line is a fit
from the model [Eq. 4.76].

The term containing statistical variations decreases asymptotically as 1/n̄, since for any
quantity X with VAR(X) < ∞ its mean X̄ is asymptotically Gaussian distributed such that
in n measurements VAR(X̄) = VAR(X)/n [97]. No information about the actual distribution
of Qb in a bin is necessary for Eq. 4.76 to hold. The systematic variation does not decrease
as 1/n̄ and is independent of the number of entries per bin.

A measurement of the normalized variation as a function of the mean number of entries
per bin is shown in Fig. 4.64. The variation in diamond and silicon decrease as expected
asymptotically with increasing number of entries per bin. At entries n̄ ≥ 5 the measured
variation is well approximated by Eq. 4.76 which is shown as a fit to the data. At the given
scale of 100 µm× 100 µm the value for infinite number of entries per bin is 0.31 in diamond
and close to zero in silicon. The value for infinite number of entries was found from the fit
to the data. We associate in the fit the asymptotic value with the systematic variation. The
systematic variation allows one to define the signal uniformity of the detector

µ
def
= 1 − 1

Q̄
·
√

VAR(Q̄b)
Eq. 4.76

= lim
n̄→∞

(1 − σ̂m). (4.77)

where µ takes values between 0 to 1 or 0 % to 100 %. On the chosen scale of 100 µm×100 µm
the uniformity of silicon is close to 100 % and the uniformity of the diamond UTS-5 is ≈69 %.

4.4.4 The Scale of Uniformity

In Sec. 4.3.5 CDS-55 was analysed in the beam. Two different regions of 19 mm2 and
1 cm apart were studied. On a macroscopic length scale CDS-55 appeared to be uniform.
The previous analysis on uniformity of UTS-5 was performed with a bin size of 100×100 µm2

and 25 × 25 µm2. It is of interest to investigate the uniformity (that means the systematic
term of signal variations) as a function of the length scale.

It was observed that the mean signal variations change with the bin size chosen. This
means that the uniformity is a function of a length scale. This observation was verified by
measuring the uniformity using relatively large bin size. Fig. 4.65 shows the mean signal map
with bins of 500×500 µm2. The upper limit of the ADC range was chosen to satisfy Eq. 4.75.
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UTS-5 appears more uniform than on the signal maps shown previously. It can also be seen
that the mean charge is on average bigger on the left side (vt ≤ 1000 µm) of the detector
than on the right side. The reason for this observation is the strip width which is narrower
on the right side than on the left side. The strip width of UTS-5 used here was described
in Sec. 4.2.9. On the larger bin scale shown in Fig. 4.65 it is important to remember that
the strip width changes along the direction of the strips. In order to exclude the effect of
the variable strip width one should either restrict oneself to consider the left or the right side
separately or perform tests with continuous strips.

The length scale chosen here is
√

δu · δv. The uniformity was studied as a function of√
δu · δv by measuring σ̂m either at constant n̄ which means a constant offset to the measured

mean signal variation (Eq. 4.76) or at any n̄ which then requires correction for the statistical
variations. The uniformity, µ, for any n̄ is obtained from Eq. 4.76

µ = 1 −
√

σ̂2
m − ŝ2

n̄
(4.78)

where ŝ2 = VAR(Qb)/Q̄
2 was obtained from the fit to the data in Fig. 4.64.

Fig. 4.66 shows a measurement of the uniformity according to Eq. 4.78 as a function of
the length scale,

√
δu · δv . At the 100 µm scale the uniformity is 69 % as shown in the previous

section. The uniformity decreases to 61 % at a length scale of 23 µm. It can be seen that
on a scale of 1 mm the method used here gives a uniformity of 90 %. This underestimates
the actual uniformity since the strip width varies along the direction of the strips. From
Fig. 4.65 it can be seen that the uniformity is close to 100 % at a length scale of 500 µm in
regions with the same strip width. Generally it is found that the uniformity decreases with
decreasing length scale.
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4.4.5 Summary on Uniformity

A signal map was measured from a CVD diamond sensor in a pion beam. The map
shows regions of higher and lower signal response. Signal fluctuations (variations) laterally
across the sample were observed. The variations have a statistical term and a systematic
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term. The statistical term was found to decrease with the number of entries per bin. The
signal variations due to statistical fluctuations was calculated and then subtracted from the
measured fluctuations. The remaining systematic term is due to systematic variations of
properties in the sensor. The term signal uniformity was defined in order to quantify the
systematic variations: the signal uniformity is one minus the normalized variation of the
mean signal charge for on average infinite number of entries per bin.

It was found that the uniformity depends on the lateral scale (the binning). The uni-
formity in the first diamond measured was between 60 % and 80 % on the length scale from
23 µm to 200 µm. The uniformity was between 80 % and 100 % on the length scale above
200 µm. For comparison silicon detectors had a signal uniformity of 100 % at 2 mm length
scale. Regions with higher and lower mean signal have individual signal distributions which
are Landau-like distributed. The mean-to-most probable value of distributions from indi-
vidual regions was on average 1.19 ± 0.15. This ratio comes close to what is seen in silicon
detectors. Charge signal distributions measured on a macroscopic scale (several millimeters)
are convolutions of signal distributions from microscopic regions (below several 100 µm) with
shifted mean values. The convolution could account for the wider signal distribution ob-
served on macroscopic diamond detector regions. Regions with smallest mean signal show
signal distributions which are still separated from zero.

The signal variations may be due to grain boundaries or lattice orientations in grains.
The grain size on the growth side reaches up to 300 µm as observed visually from diamonds
of similar growth. Contamination of the diamond surface or in the bulk may also cause
signal variation. The uniformity should be measured on other CVD diamond samples and
eventually on samples from different manufacturers in order to find out whether systematic
variations are specific to certain growths or a general property of CVD diamonds.
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4.5 Diamond Sensor with Analogue SCT/DMILL Readout

Diamond sensors with good results on VA2 electronics were tested with fast
front end electronics (SCT/DMILL) in the beam. The SCT/DMILL chips
were manufactured in a radiation hard DMILL technology. Each amplifier has
a bipolar input transistor followed by a shaper with 25 ns signal peaking time.
The charge signals of diamond strip detectors with SCT readout and their
spatial resolution have been measured in pion beams and results are shown in
this section.

4.5.1 Introduction to the Analogue SCT/DMILL Readout

The high radiation level in the inner regions of LHC detectors requires radiation hardened
electronics. Research on radiation hard electronics was performed in the RD29 collaboration.
Its goal was to develop and industrialize Durci Mixte sur Isolant Logico-Lineaire (DMILL), a
new radiation hard analogue-digital technology especially designed to meet the High Energy
Physics requirements [111]. DMILL uses a silicon on insulator (SOI) substrate and integrates
monolithically 7 radiation hard anolog-digital CMOS, JFET and bipolar transistors. In 1993 a
first multi-project wafer run was organized to allow the development of prototype circuits [112,
113]. In 1997 the Matra MHS company transfered the DMILL technology to its 6” silicon
foundry. Prototype chips for the analogue readout of silicon strip detectors in the ATLAS
semiconductor tracker (SCT) have been designed and manufactured, in 32 channel and 128
channel versions using the radiation hard BiCMOS DMILL process [114]. Combined neutron
and gamma irradiation tests have been performed for the manufactured bipolar devices which
show acceptable values of the current gain, β, of bipolar transistors after 1014 n/cm2 and
12 Mrad of ionizing radiation [115].

Fig. 4.67 shows a block diagram of the analogue SCT chip. This diagram shows the
components which are of importance for the description here. A more detailed diagram can
be found in reference [116]. The front-end circuit contains a fast transimpedance amplifier
with a bipolar npn-transistor at the input. It is followed by an integrator, providing a semi-
Gaussian shaping with a peaking time of ≈25 ns. The shaped signal peak values are sampled
at 40 MHz rate and stored in the analogue pipeline. The pipeline is a chain of capacitors
which store signal charges from successive samplings. The depth of the pipeline is 128 cells
for the SCTA128 and 112 cells at the SCTA32. This means that a signal is available in the
pipeline for 128/(40 MHz) = 3.2 µs. The pipeline is an analogue delay buffer (ADB). Upon
arrival of the trigger the voltage from a cell in the ADB is sampled in the sample and hold
buffer and sent out through the analogue multiplexer (MUX). The multiplexer sends the
analogue sequence of signals from all channels with 40 MHz into the output buffer. Fig. 4.68
shows a simulated readout sequence from the multiplexer. It is important to notice the header
and trailer sequence with the channel data in between. The header was used here to recognize
the correct start of the data sequence and effectively allowed one to correct jitters between
the MUX clock and the recording sampling clock.

Analogue SCT chips are under development and are available as 32 channel (SCTA32)
and 128 channel (SCTA128) versions. The SCTA128 exists in a high capacitance version
(SCTA128HC), optimized for 15 pF to 20 pF, and a low capacitance version (SCTA128LC),
optimized for 2 pF to 5 pF. The LC version is a very attractive readout for diamond sensors
but was not available for the beam tests reported here.

7monolithic [greek: mónos = single, ĺıthos = stone]: small electronic components on a single device sub-
strate.
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Figure 4.68: Readout sequence from the mul-
tiplexer of the SCTA128HC/LC chip [117].

4.5.2 Signal Formation in the BJT Transresistance Amplifier

The principle of charge control in a bipolar transistor is illustrated on an idealized npn
structure in Fig. 4.69. The emitter is an n doped implant in an n doped bulk. The bulk
is the collector. The base is a thin p doped implant that separates the emitter from the
collector. The base-emitter is a pn-junction and electrons have to pass the potential energy
barrier eUBE. In a normal operating condition the collector-base junction is reversed biased
and the emitter-base junction is forward biased. At the temperature, T , and base-emitter
voltage, UBE, the Boltzmann distribution of electron energies determines the current across
the junction (channel current) [118]

Ic = Ic0 e+eUBE/kBT (4.79)

where Ic0 is the thermally generated current. Electrons which are injected from the emitter
into the base diffuse across the base and are swept away by the field between the base and
the positively biased collector. In the equilibrium state (without any charge signal from the
detector) the trans-conductance is obtained from Eq. 4.79

gm
def
=

dIc

dUBE

Eq. 4.79
=

Ice

kBT
see text

=
Ic

25 mV
. (4.80)

The last equation is true at room temperature where kBT = (1/40) eV . The base is normally
connected to a collecting electrode of the detector. After the passage of a charged particle,
the signal charge, Qind, injects the signal current into the base

iind(t) = Qind δ(t) (4.81)

which is amplified with the DC current gain, β, of the input transistor.
Fig. 4.70 shows the schematic diagram of the input transistor of a channel in the

SCT/DMILL chip [114]. The npn transistor, T1, is connected as a common-emitter am-
plifier: the emitter potential is the common reference potential for both, the detector at the
base input and the output which leads to the shaper. An electrode from a detector was
directly coupled to the ‘CHARGE in’ connection at the basis of the transistor. The signal
charge is collected on the feedback capacitor Cfp ≈ 30 fF. The capacitor and the resistors,
R, form are a feedback loop from the signal output at the emitter of T2 back to the base of
T1. The chain of feedback resistors has 80 kΩ in the SCTA128HC. The capacitor discharges
theoretically in 6 ns to the fraction 1/e. In practice this time is about 20 ns due to additional
stray capacitances. The voltage output signal, uout, appears at the emitter of T2 in order to
be feed into the signal shaper (which is not shown). The circuit is called a trans-resistance
amplifier since it amplifies the signal input current, iind, and converts to the output voltage,
uout. The ratio uout/iind is called the trans-resistance since it has the units of a resistance.
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Figure 4.70: Schematic diagram of the front
of the front-end circuit in each amplifier chan-
nel of the SCTA128HC chip [114].

4.5.3 Noise in the BJT Transresistance Amplifier

The equivalent noise charge,
√

〈

q2
total

〉

, in a charge sensitive detector with bipolar junction

transistor is given by [119, 114]

〈

q2
total

〉

=
1

2
· 4 kBT

(

rbb′ +
1

2 gm

)

(Ca + CD)2 Aseries

+
1

2
·
(

2 e Ic

β
+ 2 e ID +

4kBT

RB
+

4kBT

RF

)

Aparallel.

(4.82)

The first term is the series noise and contains the thermal noise in the base spreading re-
sistance, rbb′ , between the base contact and the active region of the base and the shot noise
from the collector current, Ic, because carriers are randomly injected from the emitter into
the base. The constants are the electron charge, e = 1.602 × 10−19 C, and at room tem-
perature the factor kBT = (1/40) eV. The series noise is linear in the sum of capacitances
which are the detector capacitance, CD, and the amplifier input capacitance, Ca. The second
term is the parallel noise and contains the shot noise due to the base current, Ic/β, the shot
noise from the detector leakage current, ID, and the thermal noise from the feedback resistor,
RF, and the detector biasing resistor, RB. The factors, Aseries and Aparallel, depend on the
signal shape at the output of the shaper. They can be calculated by integrations in the time
or frequency domain as described in [79, 119]. The calculation for the ‘cusp’ signal shape,
e−|t|/τp , gives Aseries = 1/τp and Aparallel = τp where τp is the signal peaking time. Hence, the
series noise decreases with increasing signal peaking time whereas the parallel noise increases.
Eq. 4.82 also shows that the noise decreases with increasing detector biasing and feedback
resistor. The factors for the series and the parallel noise in Eq. 4.82 are given by the transfer
function, h(t), of the shaper in the time domain [119]
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Aseries =

∫ +∞

−∞

(

dh(t)

dt

)2

dt (4.83)

and the factor for the parallel noise

Aparallel =

∫ +∞

−∞
h2(t)dt. (4.84)

The integrals can be calculated analytically for semi Gaussian signals as described in [79] in
the time or frequency domain or numerically by integration of the measured signal pulseshape.

4.5.4 Experimental Method

Three sensors were studied in the beam: a silicon pad detector, a CVD diamond sen-
sor CDS-40 (alias D39) with SCTA32 readout and the CVD diamond sensor UTS-5 with
SCTA128HC readout. The detectors were prepared for testing in the 100 GeV/c pion beam
as described in Sec. 4.2.3. The measurement setup with the beam telescope and data acqui-
sition were described in Sec. 4.1. The tracking analysis was done similar to the analysis used
for VA2 readout.

During the experiment, the charge signal from the shaper was continuously clocked with
a frequency of 40 MHz into the ADB. The signal readout from the chips was triggered by a
beam particle using a scintillator. The beam trigger was asynchronous with the 40 MHz clock.
The time between the trigger and the clock phase was recorded using a timer (LeCroy model
1176, 16 bit VME multi-hit TDC with 1 ns time resolution [81]). The time was recorded
on tape, together with the charge signal data from the strips. The TDC time information
was used in the analysis to select signals which were sampled at the maximum of the shaped
signal.

4.5.5 Results: Noise in the SCTA128HC Frontend

Noise measurements were performed on the SCTA128HC using channels with open inputs
and channels which were bonded first to silicon pads and later to the diamond strip detector
UTS-5. The measurements were performed in the beam setup to ensure the same gain as for
the signal measurements.

Fig. 4.71 shows the measurement of the equivalence noise charge from the SCTA128HC
as a function of the collector bias current, Ic. It can be seen that the equivalent noise charge
on open channels is (580±50) e at Ic = 50 µA and increases to (700±50) e at Ic = 250 µA. The
increase with collector bias current is mainly due to the increase in base current, Ib = Ic/β,
were β is the current gain of the bipolar input transistor. The noise on channels which were
bonded to silicon pads is higher than on open channels. The noise on the silicon pads can be
understood from the geometry and size of the pads. The silicon pad detector had a thickness
of 300 µm and pads with a size of 1× 1 mm2. The pads were surrounded by neighbour pads
which were at virtual ground potential via the amplifier inputs and hence had a defined pad
capacitance. For the noise measurement the pads were fully depleted with a biasing voltage
of 150 V. The capacitance of a single pad seen by the amplifier was about 2.0 pF calculated
from the sum of the pad-to-backplane capacitance of 0.36 pF and about 1.5 pF of the pad-to-
neighbour capacitance. The measured equivalent noise charge was (740±50) e at Ic = 50 µA
and increased to (900±50) e at Ic = 250 µA. The reason for higher noise on bonded channels
is mainly due to the detector capacitance which is an additional load capacitance at the input
amplifier in addition to the ‘open’ amplifier capacitance. The detector leakage current and
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the feedback resistor contribute to the noise as well. The noise increase with silicon pads
is about 110 e independent of the collector bias current. The noise in the diamond strip
detector (UTS-5) at a collector bias current of 100 µA was (620 ± 50) e in the same setup
using the gain factor obtained from the measurement on silicon. The noise on diamond was
slightly smaller than the noise with the silicon pads.

Fig 4.72 shows a measurement of the signal gain as a function of the preamplifier bias
current. The measurement was performed using the silicon pad detector in the beam. The
gain was obtained under the following assumptions: the pad detector was fully depleted at
the bias voltage of 150 V. All created charges were collected within the signal peaking time of
25 ns. The most probable charge collected from a pion in the beam was taken to be 22500 e.
Then the gain is the most probable collected charge in ADC units per most probable number
of electrons. The measurement in the beam showed an increase of the charge signal with
increasing collector bias current. Since the collected charge at the input of the pre-amplifier
is the same for all collector current settings one infers that the gain increases with collector
current. The increase of the gain can be seen in Fig. 4.72. The gain was used to convert the
measured noise from ADC units to electron units.
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Figure 4.71: Equivalent noise charge in rms
ADC as a function of the collector bias current
in the input transistor measured from single
channels of the SCTA128HC with and without
detector. The dashed line is from calculating
Eq. 4.82 using the parameters given.

Figure 4.72: Measurement of the gain from
SCTA128HC as a function of the collector bias
current in the pre-amplifier.

The equivalence noise charge was calculated using Eq. 4.82. Fig. 4.71 shows the result of
the calculation for open channels of the SCTA128HC. For the noise calculation the parameters
shown in the figure were used: the SCTA128HC has a feedback resistor of RF = 80 kΩ as can
be seen from the design layout [117], the value β = 180 is slightly higher than given in [114]
but correct for this chip, the amplifier capacitance, Ca = 0.5 pF, and the base spreading
resistance, rbb′ = 100 Ω, are the usual values for this design. Using Eq. 4.82 the calculated
noise is 100 e lower than the noise measured. The difference between the calculated and
the measured noise may be due to deviations from the assumed parameters used for the
calculation (listed in Fig. 4.71) or missing noise contributions. It may be that the ADB
contributes to noise which is not considered in the calculation.
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4.5.6 Results: Silicon Pad Detector with SCTA128HC

Fig. 4.73 shows the mean single pad charge measured in the silicon pads as a function
of the TDC value. A single pad hit cluster charge contains the charge from the seed pad
where the seed is the pad with the largest signal charge. The number of events with charge
sharing to to neighbour pads is negligibly small in this geometry. The measurement is shown
for the time interval from 0 ns to 75 ns corresponding to 3 cells of the ADB. It can be
seen that the mean signal increases steeply at 0 ns, peaks at about 25 ns and decreases
again. The measurement illustrates the semi-Gaussian shape of the signal as it is produced
after the shaping amplifier. Superimposed on the measured charge signal are semi-Gaussian
functions [79]

h(t) =
qAnnn

Cfpn!

(

t

τp

)n

e−nt/τp (4.85)

where Cfp is the feedback capacitance, A the DC gain of the charge integrator and τp the
peaking time of the shaper. The semi-Gaussian fits have the orders n = 1, n = 2 and n = 3.
The shaping time is a free parameter in the fit. The measurement is well described by the
semi-Gaussian function of third order and 24 ns signal peaking time. The first order fit
yields a signal peaking time of 22 ns. The signal shape in Eq. 4.85 allows one to determine
the factors Aseries and Aparallel by integration over the squared semi-Gaussian and squared
deviation of the semi-Gaussian charge signal as described by Eq. 4.83 and Eq. 4.84. The
numerical integration of the pulse shape gives Aseries = 1/(32 ns) and Aparallel = 34 ns.
Both factors were then used in Eq. 4.82 to calculate the equivalent noise charge as shown in
Fig. 4.71 (dashed line).

Fig. 4.74 shows the single pad signal charge distribution measured on the silicon pad
detector. The preamplifier current for the measurement shown was Ic = 150 µA. The distri-
bution contains only events with TDC values in the time interval from 16 ns to 28 ns which is
around the peak of the semi-Gaussian signal shape. The charge signal is Landau distributed.
The most probable signal is 199 ADC, the mean signal is 256 ADC. Using the measured
equivalent noise charge of 5.6 ADC one obtains a most probable signal to noise of 35-to-1
and a mean signal to noise of 46-to-1.

4.5.7 Results: Diamond Strip Detector with SCTA32

The 32 channel version of the SCTA/DMILL chip was available earlier than the 128
channel versions. The diamond strip detector D39 was tested as one of the first diamond
detectors on this chip (results from the very first test with another diamond were reported in
[4] and later in [3]). Fig. 4.75 shows the measured signal charge distribution from D39 with
SCTA32 readout in the pion beam. The signal charge is the sum from 3-strips. The signal
charge distribution from the cluster analysis is overlayed to the charge signal distribution
from the transparent analysis. A cut on TDC values which are around the peak of the
shaped signal is applied in both distributions. The mean and most probable values of the
transparent signal distribution are 36 ADC and 26 ADC at a single strip noise of 6.2 ADC.
Therefore the mean and most probable signal-to-noise ratios are 6-to-1 and 4.2-to-1. The
ratio between mean and most probable is about 1.4 which is similar to the ratio measured
with a source but smaller than the value of 1.7 measured using VA readout on this diamond
in the beam. The transparent signal overlaps with 0 ADC due to noise broadening. The
noise of about (800 ± 100) e was measured in the lab and assigns a mean charge signal of
about (5000 ± 625) e to this diamond. In the cluster analysis a signal-to-noise threshold cut
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Figure 4.74: Signal distribution from single
pads of the silicon detector with SCT128HC
readout. The charge signals are taken from
the seed pad. The mean value is calculated
for charge signals bigger then 100 ADC.

of 3-to-1 was applied on the seed strip which explains less events around 0 ADC. However,
the noise on neighbour strips in the cluster is sufficiently high to broaden the distribution at
the rising edge with entries at around 0 ADC.

Fig. 4.76 shows the distribution of the residuals. The distribution is centered at 0 µm
with normal distributed residuals and a standard deviation of 22.5 µm as obtained from a
Gaussian fit to the residual distribution. The distribution shows many entries at high and
low residuals which are caused by false estimations of hit positions due to relatively high
noise on strips in hit clusters.
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Figure 4.75: Distribution of the charge sig-
nals from 3 strips measured on the diamond
strip detector D39 with SCTA32/DMILL
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Figure 4.76: Distribution of the residuals
measured on D39 with SCTA32/DMILL read-
out.

This test with analogue SCT/DMILL readout electronics, which was originally designed
for silicon detectors, was encouraging to continue tests with further SCT readout.
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4.5.8 Results: Diamond Strip Detector with SCTA128HC

The diamond strip sensor UTS-5 was tested using the 128 channel high capacitance (HC)
version of the SCT/DMILL chip. This diamond was studied previously with VA electronics
in the beam and with a source [Sec. 4.2]. UTS-5 was bonded to exactly the same SCTA128HC
readout chip which was used in Sec. 4.5.6 for the measurement with the silicon pad detector.
The chip was operated at the same pre-amplifier current as for silicon and the gain on UTS-5
is assumed to be equal to the gain in the silicon pad detector. The collector current was
100 µA. UTS-5 was operated at 1 V/µm.

Fig. 4.77 shows the 3-strip transparent signal as a function of time from the TDC in an
interval from 0 ns to 100 ns. The same semi-Gaussian shape is observed as on the silicon
pad detector as can be seen from the FWHM of ≈37 ns. The signal peaking time of 25 ns
and the recommended time cut on the interval from 40 ns to 50 ns can be read from this
figure. The corresponding signal distribution from the transparent and cluster analysis are
shown in Fig. 4.78. The mean and most probable values of the transparent signal distribution
are 50 ADC and 36 ADC at a single strip noise of 5.0 ADC. The mean and most probable
signal-to-noise ratios are therefor 10-to-1 and 7.2-to-1. The ratio between mean and most
probable is about 1.4 and agrees with the ratio obtained with a source on this sample, but
is narrower than the VA measurement in the beam. Using the gain measurement [Fig. 4.72]
one obtains a mean signal of 6000 e which is 30 % less than what is observed on this diamond
in VA measurements in the lab or in the beam. The cluster signal starts out separated from
0 ADC due to the seed signal-to-noise threshold cut of 5-to-1.
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Figure 4.78: Charge signal distribution
from the diamond strip detector (UTS-5)
with DMILL/SCTA128HC readout electron-
ics. The charge signals are the sum from 3
strips.

Fig 4.79 shows the distribution of the residuals. The distribution peaks at 0 µm and
the Gaussian fit gives the spatial resolution of 16.5 µm. The tails of the distribution show a
negligible amount of noise hits.

4.5.9 Summary and Discussion

Two diamond strip sensors and one silicon pad detector have been tested in the beam
with fast, analogue SCT/DMILL readout electronics. Table 4.6 summarizes the beam results
in terms of equivalent noise charge on a single strip, the most probable signal to noise ratio
and the mean signal to noise ratio at the given parameters for the pre-amplifier bias current
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Figure 4.79: Residual distribution from the diamond strip detector UTS-5 with
DMILL/SCTA128HC readout electronics. The K-strip center of gravity method was
used for hit finding. The measured residual distribution is fitted by a Gaussian function
(solid line) with a standard deviation of σ = 16.5 µm.

and the bias voltage of the detector. The most probable signal-to-noise of the diamond UTS-
5 on SCTA128HC electronics was 7.2-to-1, its mean signal-to-noise was 10-to-1. The mean
signal obtained from D39 and UTS-5 on SCTA32 and SCTA128HC electronics was lower
than the mean signal obtained with the same sensors on VA2 electronics. The difference was
between 20 % to 30 %. This observation requires confirmation in future beam tests.

device SCT Ic [µA] ENC [e] Smp/N Smean/N detector bias

Si-pads 128HC 100 680 ± 50 35 46 150 V

UTS-5 128HC 100 620 ± 50 7.2 10 1 V/µm

D39 32 22 800 ± 50 4.2 6 1 V/µm

Table 4.6: Summary on signal to noise ratios using SCT/DMILL readout in the beam.

Using the center of gravity method for hit position finding the spatial resolution was
similar to the digital resolution for a 50 µm pitch strip detector. Improvements in signal-to-
noise ratio and spatial resolution were seen in the SCTA128HC compared to SCTA32 readout,
eventually due to a higher quality diamond. Further improvements in signal-to-noise may be
expected using the low capacitance readout, SCTA128LC, and diamonds sensors with higher
signal charge.
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Chapter 5

Irradiations

The inherent properties of diamond indicate that it may be a radiation resistant
sensor material. CVD diamond samples were irradiated above LHC particle
fluences in order to study their radiation resistance. Fig. 5.1 shows the sample
stand at the ISIS neutron irradiation facility a few minutes before several CVD
diamonds were inserted for a 1 month long irradiation with neutrons.

Figure 5.1: Photograph of the neutron irradiation stand. The diamonds are in boxes
at the base of the stand. The picture was taken during installation of the 11/97
irradiation at ISIS at the Rutherford Appleton Laboratory (RAL).
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5.1 Introduction to Radiation Damage

Radiation hardness is required for particle detectors in future particle physics
experiments at the LHC/CERN or Tevatron/FNAL. In particular solid state
tracking devices have to retain a minimum signal-to-noise ratio after receiv-
ing large fluences of damaging radiation. Solid state devices are damaged by
particle irradiation. Damage in solid state detectors causes, on one hand, an
increase in leakage current and therefore an increase in noise and, on the other
hand, a reduction in the amount of collected charge, which leads to a smaller
signal. The signal-to-noise ratio therefore decreases with damage. The inher-
ent properties of diamond indicate that it may be a radiation resistant sensor
material. Excessive radiation induces point defects in the sensor material. The
point defect concentration is one factor which determines electrical properties
of the sensor. Defect types in general and the mechanism of defect creation
under irradiation are briefly described below.

5.1.1 Point Defects

Many important properties of diamond depend heavily upon the concentration of point
defects. The thermal and electrical conductivities, the carrier mobilities, the color and lu-
minescence and also radiation hardness are affected by point defects [120]. A point defect is
a ‘zero-dimensional’ deviation from the periodicity of the crystal lattice. A point defect is
typically localized within the cubic cell, but can cause the lattice to be under tension (stress)
over several lattice sites. Fig. 5.2 illustrates point defects in diamond. The illustrated defects
are foreign substitutional and foreign interstitial atoms, self interstitials and vacancies. Point
defects introduce energy levels for charged carriers in the band gap. These energy levels can
act as acceptors, donors or charge traps. Point defects affect the lifetime of charge carriers.
The lifetime of the carrier is related to the concentration of defects, m, by [65]

τ
(R)
def =

1
vthσmm

(5.1)

where vth is the thermal velocity of charge carriers as given by Eq. 3.24 and σ is the cross
section of the point defect for affecting the charge carrier.

a

b

c

d

e

Figure 5.2: Schematic of point defects in the diamond lattice: a) foreign interstitial
atom (e.g. H, Li), b) vacancy, c) and d) foreign substitutional atom (e.g. N,P,B), e)
self interstitial [120].
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5.1.2 Radiation Effects

Particle irradiation induces defects in solids which may alter the electrical characteristics
of electrical devices and detectors. Radiation causes two types of effects: the first is ionization
creating electron hole pairs. The pairs may separate by diffusion or due to an external
electric field and migrate. They either leave the solid via contacts or get trapped in trapping
centers. Trapping centers are often more abundant at surfaces or boundaries between surfaces.
Ionization therefore causes surface effects. Effects due to ionization do not alter the crystal
structure and are normally reversible.

The second type of effect, caused by irradiation, are crystal defects as illustrated in
Fig. 5.3. Incident particles transfer energy to atoms in the lattice. An atom may get knocked
from its lattice site, in the case of sufficient energy transfer from the incident particle. Such
an atom is called a ‘primary knock on atom’ (PKA). The PKA leaves its lattice site (creating
a vacancy), starts migrating in the lattice and may donate its kinetic energy to other lattice
atoms which may cause secondary knock on atoms (SKA). The PKA eventually comes to
rest at a free lattice site or at an interstitial lattice site. Vacancies or interstitials form point
defects in the crystal. Point defects may recombine due to permanent migration (beneficial
annealing). Secondary knock on atoms leave vacancies and form interstitials which then
appear as cluster defects. It is possible that point defects ‘catch’ foreign atoms, that are
always present by natural occurrence or intentional doping, hence causing complex-defects.
The crystal defects occur in the bulk due to non-ionizing interaction of radiation in comparison
to the surface effects caused by ionizing radiation. Crystal defects are often irreversible and
remain as permanent radiation damage [121].

b)a)

Figure 5.3: Model of atomic displacement: a) electromagnetic radiation (e.g. e, γ)
knocks an atom from its lattice site and creates a vacancy-interstitial pair, b) a hadron
(e.g. n, p, π) knocks an atom from its lattice site with creation of a cascade of secondary
knock on atoms [122].

The concentration of point defects and cluster defects after irradiation depends on the
energy spectrum of the radiation. The production rate of PKAs depends on the cross section
for the interaction and the intensity of the incident radiation. The cross section is energy
dependent. For example, irradiation of diamond with energetic particles (fast neutrons,
deuterons, γ-rays and 1 MeV to 2 MeV electrons) can displace carbon atoms from their
equilibrium lattice sites to interstitial positions, thus creating vacancies and interstitial atoms.
When irradiated samples are annealed at high temperatures (> 500 ◦C) vacancies can become
mobile and can be trapped at other defects which create optical centers. The theoretical
estimate for the formation of a vacancy-interstitial pair in diamond is ≈ 35 eV [120]. It
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has been measured that the threshold energy for the production of defects in diamond by
irradiation is between 37 eV to 47 eV [120].

After irradiation with a particle fluence, F , the concentration of radiation induced point
defects is

m ∝ F. (5.2)

With the creation of point defects by irradiation additional mechanisms for carrier destruction
are introduced which limit the carrier lifetime. The various independent mechanisms can
be combined and described by a single lifetime, τ (R), given by the ‘Matthiessen-like’ sum-
rule [35, 36] as explained in Sec. 3.1.

Eq. 5.1 relates the concentration of point defects to the carrier lifetime. If the carrier
had an initial lifetime, τ

(R)
0 , before irradiation one obtains from Eq. 3.36 a dependence of the

lifetime on the fluence

1
τ (R)

Eq. 3.36
=

1

τ
(R)
0

+
1

τ
(R)
def

Eq. 5.1
=

1

τ
(R)
0

+ κF (5.3)

where the last term contains the carrier lifetime damage constant, κ [123, 65]. The carrier
lifetime decreases like (κF )−1 for large fluence. Eq. 5.3 can be solved for τ (R) and using
Eq. 3.44 one obtains the carrier drift length as a function of the fluence

s(F ) = μτ (R)| �E| =
μτ

(R)
0 | �E|

1 + τ
(R)
0 κF

. (5.4)

Hence the bulk averaged carrier drift length [Eq. 3.48] is

s̄(F ) =

⎧⎪⎨
⎪⎩

μτ̄
(R)
0 | �E| : τ

(R)
0 κF � 1

μ| �E|
κF

: τ
(R)
0 κF > 1

. (5.5)

Two cases are distinguished: the case of low fluence and the case of large fluence. A fluence,
Ft, may be defined

Ft
def=

1

κτ
(R)
0

. (5.6)

The fluence Ft specifies at which fluence the carrier drift length may undergo a transition from
the carrier drift length, s0 = μτ

(R)
0 | �E|, of the unirradiated state to the carrier drift length at

large fluence. Eq. 5.6 indicates that the fluence where a transition may occur depends on the
carrier lifetime before irradiation: Ft decreases for larger τ

(R)
0 .

It was shown in Sec. 3.3.6.4 that the charge collection distance can be identified with
the carrier drift length if s < D for all positions, z, along the drift path

s(z) = d(z) if s(z) < D ∀z ∈ [0,D]. (5.7)

Under the assumption that the carrier drift length is smaller than the thickness of the material
one obtains for the charge collection distance

d̄(F )
d̄0

=

⎧⎪⎨
⎪⎩

1 : F � Ft
1

τ̄
(R)
0 κF

: F > Ft
. (5.8)
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It should be noted that τ
(R)
0 may depend on the position, z, along the direction of growth.

Hence Ft may depend on z as well. It is therefore useful to define

F̄t
def=

1

κτ̄
(R)
0

(5.9)

which allows one to rewrite Eq. 5.8 as follows

d̄(F )
d̄0

=

⎧⎨
⎩

1 : F � F̄t

F̄t

F
: F > F̄t

. (5.10)

One infers that the charge collection distance decreases as 1/F for F > F̄t.
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5.2 Irradiation with Protons

The dominant source of radiation at LHC will be charged hadrons coming
directly from proton-proton interactions. It is therefore necessary to study
the ionizing and non-ionizing effects of charged particles. In June 1997 CVD
diamond samples were irradiated with 24 GeV/c protons at the Proton Syn-
chrotron (PS) at CERN in Switzerland up to a total fluence of 5× 1015 p/cm2.
Results of the first proton irradiation of CVD diamonds at TRIUMF were re-
ported in reference [8, 124]. Results from the proton irradiation at CERN were
reported in reference [124] and are presented in more detail here.

5.2.1 Interaction of Protons with Matter

Protons are hadrons with an electric charge. They can interact electromagnetically with
matter (Coulomb-interaction) and due to their hadronic character they also interact with
matter via the strong interaction. The nuclear interaction cross section for 24 GeV/c protons
with hadrons (either neutrons or protons) is ≈ 40 mb [9]. Carbon has 12 hadrons in its
nucleus and therefore a higher cross section which is expected to be between 400 mb and
500 mb. For comparison, the inelastic cross section of neutrons above 5 MeV with carbon
is ≈ 400 mb as can be seen from Fig. 5.17 which is the same order of magnitude as the
estimated proton carbon cross section.

The rate of proton interactions in carbon can be calculated using Eq. 5.13 multiplied by
A = 12.011 (nuclei per carbon atom). Under the typical irradiation conditions with a proton
flux of on average 4.2 × 109 p/cm2/s one obtains for a diamond sample with a thickness of
500 μm an average interaction rate of ≈ 2 × 107/cm2/s.

5.2.2 Proton Synchrotron (PS) Irradiation Area

The proton synchrotron (PS) at CERN was used as the proton source for the irradiation.
The PS delivered protons with a momentum of 24.2 GeV/c. The protons have a negligible
momentum spread. Two or three proton spills were extracted per PS super cycle into the
irradiation area. The PS super cycle had a length of 14 s. Each spill had a length of 300 ms.
The average number of protons per spill was 2.9 × 1010 p/cm2/spill. The proton beam had
the shape of a narrow line with a height of 4 cm. It swept across the samples starting on one
side and moving by about 1.5 cm. The PS irradiation facility has been used in parallel for
irradiation of silicon detectors by the ATLAS experiment.

5.2.3 Experimental Method: Installation

A schematic view of the irradiation setup is shown in Fig. 5.4. The beam enters from the
left and is directed by a beam splitter into the T7 beam line where the irradiation took place.
The diamond samples were mounted with copper clips on ceramic PCBs in an aluminium
box. Flux attenuation along the sample stack is negligible since the proton momentum is
sufficiently high.

5.2.4 Experimental Method: Flux Monitoring

The flux was measured by two secondary emission chambers (SEC). These chambers give
a signal charge proportional to the number of passing protons. The beam position could be
verified using two glass plates in front and behind the samples which darkened at the beam
spot. In order to monitor the presence and actual beam position a luminescence screen was
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CD12-P1, P2, P3, CD17, Silicon

dosimeter foils
Secondary Emission
Chambers

luminescence
screen

protons
24 GeV/c

diamond samples

#1

#3

other beamline

glassglass

Figure 5.4: Schematic view of the proton irradiation setup. The samples were located
about 3 m behind the end of the beam pipe exit.

used which was mounted a few centimetres in front of the irradiation stage. The luminescence
light from the proton beam could be observed with a camera as soon as protons were present.
The temperature during irradiation was stable between 23◦C and 27◦C.

A current signal was obtained from SEC3 after each spill. The current was the discharge
of a capacitor which collected charge during the 300 ms spill. The current signal was recorded.
Fig. 5.5 shows the current from SEC3 as a function of time during the first 60 hours. The
measured current is about 1.5 μA for a typical spill and dropped to a few nanoampere at
spill breaks when no protons were delivered. A few spill breaks of 1/2 hour to 1 hour are
visible and the samples remained unirradiated during these periods.
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Figure 5.5: Top: current
in the secondary emission
chamber 3 (SEC3) dur-
ing the first 60 hours.
The current is propor-
tional to the proton flux
on the samples. Bot-
tom: magnification of a
time interval which illus-
trates the spill structure,
a data point was taken
every 7 seconds when a
spill passed by.

5.2.5 Experimental Method: Dosimetry

The absolute proton fluence was measured using an aluminium foil activation method.
The amount of 24Na generated in the Al-foil under proton irradiation is proportional to the
fluence. 24Na decays with a half life time of 15 hours and emits photons of 1.368 MeV. The
intensity of this γ-line was measured in a spectrometer and gives the proton fluences. A set
of two foils was always used, one foil with a size of 5 × 5 mm2 the other with 10 × 10 mm2.
These sizes corresponded to the area of the irradiated samples.

During the first 60 hours the PS delivered two spills per cycle. Fig. 5.6 shows the
accumulated fluence during the first 60 hours as a function of time. The fluence increases
linearly up to 0.91 × 1015 p/cm2 on the 5× 5 mm2 dosimeters and 0.83 × 1015 p/cm2 on the
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10 × 10 mm2 dosimeters. The proton flux on the 5 × 5 mm2 samples is 4.2 × 109 p/cm2/s
corresponding to on average 2.9×1010 p/cm2/spill. The fluence measured with the small foils
is systematically higher than the fluence on the bigger foils since the intensity was higher in
the middle of the beam. The samples were adjusted in the beam to receive a maximum flux
which was measured to be in the lower center of the sweep area.

The second method for dosimetry was by numerically integrating the current from SEC3
[Fig. 5.5]. The integrated current is expected to be proportional to the fluence. If one
normalizes the current sum to reach the fluence given by the foil activation method one indeed
obtains a linear dependence and agreement between the intermediate foil measurements and
the current sum. A third method for dosimetry was by counting pulses delivered from the
secondary emission chamber SEC1. The number of counts per spill is proportional to the
induced charge in this chamber. Summation of pulses from SEC1 gives the fluence as a
function of time which is shown in Fig. 5.6 as well. The graphs for SEC1 and SEC3 interpolate
the data taken with the foil activation method and can be used to predict the fluence at each
time between foil measurements. All three methods agree within an error of ±2×1013 p/cm2.
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Figure 5.6: Proton fluence on diamond samples CD12-P1,P2,P3 and CD17 as a func-
tion of time up to 0.9×1015 p/cm2 (left) and up to 5×1015 p/cm2 (right). The proton
fluence was measured every 20 hours using Al-foils. Two sets of markers correspond
to the measured fluence on foils of different size. They differ slightly since the proton
beam has its highest intensity in the center. The foil measurements below 60 hours
(left) are confirmed by two other independent methods using SECs. The slope of the
fluence increases above 70 hours (right) since the extraction changed from 2 spills to
3 spills per cycle. The graph (right) shows the final fluences reached on each sample.

Fig. 5.6 shows the fluence on samples for the irradiation period up to 5 × 1015 p/cm2.
After 70 hours the number of particle extractions was increased from two spills to three spills
per 14 s cycle. The diamond strip detector CD17 received a fluence of 3×1015 p/cm2. Sample
CD12-P1 received the highest proton fluence of 5 × 1015 p/cm2.

5.2.6 Experimental Method: Current Measurements

All diamond samples were biased during irradiation. The current during irradiation was
measured with a setup shown in Fig. 5.7. The circuitry was similar to the one used for the
neutron irradiation [Fig. 5.21] with 10 kΩ resistors instead of 10 MΩ in order to account
for the higher current during irradiation. The bias voltage during irradiation was U=100 V,
constant. The proton induced current was measured ON-spill, when a proton spill swept over
the samples, and OFF-spill during spill breaks. Care was taken to distinguish both states
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and to measure them correctly in time.

R =  10  K

pA

R

R

R

R

C

U

+

Al-box Al-box

Diamond
sample

1 2

C = 10 nF
U = 100 V Figure 5.7: Circuitry for biasing

diamond and silicon samples and
measuring currents during proton
irradiation.

The currents from several samples were recorded using a picoamperemeter (Keithley
6517 [66]) with a 10 channel scanner card (Keithley 6521 [66]). The acquisition was au-
tomated using a portable PC running a Labview program [67]. PC and picoamperemeters
communicated via GPIBus. The data was transferred during acquisition to the analyzing
host via Ethernet.

5.2.7 Experimental Method: Charge Collection Measurement

Fig. 5.8 shows a characteristic signal from an irradiated diamond CD12-P1 measured at
an applied electric field of 1 V/μm in response to an electron from a 90Sr β-source: the upper
waveform, trace A, shows the shaped signal from the VA2, the lower waveform is the waveform
average over several event samplings. The amplitude is 85.6 mV (read from the mean between
both cursors at the peak of the signal). Using the electronic gain of 26 e/mV one obtains a
mean collected charge of 2227 e which corresponds to a charge collection distance of 62 μm.

Figure 5.8: Signal response to a
β particle as measured on CVD di-
amond sample CD12-P1 after pro-
ton irradiation. The signal is read
out using one amplification channel
of a VA2 readout chip. The shaped
signal has a peaking time of 2 μs.
The waveform of trace B is aver-
aged over several events. The sig-
nal size can be read from the mean
value between the cursors labeled
as ‘mean(B)’. The cursors are sepa-
rated by 0.1 μs.

5.2.8 Irradiated Samples

The samples for this irradiation were provided by De Beers [34]. Two samples, CDS-12
and CDS-17 (in abbreviation also labeled CD12 and CD17), were cut from 4” diamond disks,
both with a size of 10 × 10 mm2. CD12 and CD17 were originally grown to a thickness of
738 μm and 743 μm, respectively. Both samples were processed before irradiation: Sample
CDS-12 was lapped on its nucleation side by about 20 μm to a final thickness of ≈ 715 μm
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and cut in four equal rectangular pieces CD12-P1,P2,P3 and P4 with a size of 5 × 5 mm2.
Pieces P1,P2,P3 were taken for irradiation, P4 remained unirradiated as a reference. Sample
CD17 was lapped on its nucleation side by ≈ 300 μm and 50 μm on its growth side to a
final thickness of 492 μm. Fig. 3.9 in Sec. 3.2 shows a photo of an irradiated CVD diamond
sample and an irradiated silicon diode. The diamond samples were metallized on both sides
with Cr/Au contacts. The irradiated diamond samples have a central dot with a guard ring.
Sample CD17 was metallized with a dot and strip tracker mask on the growth side and a
solid electrode on its back.

Table 5.1 lists the final fluences which were reached for each sample. All samples were
removed for an intermediate characterisation at a fluence of 0.9 × 1015 p/cm2. The silicon
diode was taken out of the irradiation at that level. The diamond samples and the diamond
strip tracker were reinserted and irradiated up to several 1015 p/cm2. Sample CD12-P1
received the highest fluence of 5 × 1015 p/cm2. The diamond strip detector CD17 received a
fluence of 3 × 1015 p/cm2.

sample thickness center electrode final fluence
name [μm] size

[
mm2

] [
1012 p/cm2

]
CD12-P1 716 7.1 5064 ± 111
CD12-P2 726 7.1 4146 ± 99
CD12-P3 709 7.1 3222 ± 84
CD17 492 2.9 3000 ± 30
Si-Diode 350 16.0 905 ± 30

Table 5.1: Final proton fluences on samples.

5.2.9 Results: Induced Currents during Proton Irradiation

Protons interact in diamond and generate electron-hole pairs. The number of electron-
hole pairs generated by one proton has on average a charge, Q̄

(p)
gen. Using the charge collection

distance, d̄, and assuming that the beam uniformly irradiates the contact area, A, one obtains
the particle induced current, Ipic, in diamond

Ipic ≈ d̄ · A

D
fpQ̄

(p)
gen, (5.11)

with the proton flux, fp, and sample thickness D. This equation relates the charge collection
distance to the particle induced current. The induced current depends on the bias voltage,
U , via d̄(U). The bias voltage was U = 100 V.

Fig. 5.9 shows the proton flux, measured by the secondary emission chamber, and current
measured on CD17 during the first 55 hours of the proton irradiation at CERN. Protons were
only present during a spill of 300 ms. During this time the ON-spill current and the proton
flux could be measured. The OFF-spill current was measured in breaks between spills. The
difference between the ON- and OFF-spill current is the particle induced current. This current
correlates with the proton flux. The OFF-spill current shown on the same scale as the ON-
spill current is negligibly small. It remains constant during irradiation for all samples. The
graph also shows that the induced current in diamond does not change with time and proton
fluence which reached 1×1015 p/cm2 [see Fig. 5.6] after 70 hours. At some points the induced
current is low although protons were present (e.g. from 30 h to 35 h). This occured because
beam steering magnets changed temporarily and shifted the beam spot by several millimetres
to essentially miss the detectors. Fig. 5.10 shows the same measurement on the p-on-n silicon
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Figure 5.9: Proton flux as measured by the
SEC and current on a 2.9 mm2 contact pad
on the diamond strip detector CD17 during
proton irradiation. The thickness of the di-
amond detector is 490 μm. The current was
measured ON- and OFF-spill.

Figure 5.10: Proton flux and current in a sil-
icon diode during proton irradiation for com-
parison with the current in a diamond detec-
tor.

diode behind the diamonds. The induced current, the difference between ON- and OFF-spill
current, correlates with the proton flux and recognizes the beam shift mentioned above, as
well. The dark current in silicon increases from its original value of 60 μA to 110 μA and
is also visible as an offset to the ON-spill current. During the extended periods when the
beam was off the silicon diode anneals and the dark current decreases exponentially but
increases immediately and non-linearly when the beam comes back. It should be noted that
the radiation damage induced OFF-spill current for the silicon diode is comparable to the
difference between the ON-spill and OFF-spill currents pointing out the difficulty of using
silicon detectors in high fluence regions.

Eq. 5.11 can be transformed to predict the charge collection distance at a given proton
flux and an induced current. Using the characteristic flux of 2.9 × 1010 p/cm2/spill and an
induced current of (1.5±0.3) μA [Fig. 5.9] in CD17 (which corresponds to 0.5 μC in the 0.3 s
spill period) one finds a collected charge of (3320 ± 650) e which implies a charge collection
distance of ≈ (87 ± 17) μm for CD17 at 100 V in agreement with the 90Sr measurement of
(72±4) μm at 100 V. A similar calculation for the silicon diode with a particle induced current
of (40 ± 7) μA [Fig. 5.10] implies a charge of (16150 ± 3000) e which is less than one would
expect for an unirradiated, fully depleted silicon diode of 300 μm thickness (≈ 27200 e). This
is indicative of damage in the silicon diode above a fluence of 1.5 × 1014 p/cm2.

5.2.10 Results: Charge Collection Distance

Fig. 5.11 shows a characteristic signal charge distribution measured on sample CD12-P1
before irradiation, after 0.9 × 1015 p/cm2 and after 5 × 1015 p/cm2. The sample was mea-
sured in its electron pumped state before irradiation and in the proton pumped state after
irradiation. Pumping occurs at a relatively low dose e.g. from 90Sr during a measurement of
charge collection distance [125, 11] and during proton beam exposure. The charge distribu-
tions are fit by a convolution of Landau’s energy loss distribution function for thin detectors
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and a Gaussian associated with the noise. The measured noise in the characterization setup
is about 350 e independent of the irradiation dose. The most probable charge signal, corre-
sponding to the peak of the fit curve, and the mean signal increase slightly after a dose of
0.9× 1015 p/cm2 compared to before irradiation. This may be due to additional pumping by
the proton beam. Other samples show no change in pulse height distribution at this fluence
compared to before proton irradiation. After the highest fluence of 5 × 1015 p/cm2 the most
probable charge signal is decreased by 20% compared to before irradiation, while the mean
value decreases by about 40% due to fewer events with high charge signals in the Landau
tail.

Fig. 5.12 shows the pumped charge collection distance as a function of the applied electric
field at different proton fluences on CD12-P2. In a range from 0 to ±0.8 V/μm charge
collection distance increases. Above ≈ ±0.8 V/μm the velocity of charge carriers saturates
and charge collection remains nearly constant.
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Figure 5.11: Measured charge signal distri-
bution (histogram and fit) at 1 V/μm before
proton irradiation, after 0.9×1015 p/cm2 and
after 5 × 1015 p/cm2.

Figure 5.12: Charge Collection distance as a
function of the applied electric field at differ-
ent proton fluences on sample CD12-P2.

The voltage is applied in a loop starting at 0 V, increasing slowly to +1 V/μm, then
decreasing to -1 V/μm and back to 0 V. The measured curve shows a hysteresis because of
the inherent resistivity and capacitance of the diamond. Before proton irradiation charge
collection distance of sample CD12-P2 is (92 ± 4) μm at 1 V/μm. After irradiation with
0.9×1015 p/cm2 the charge collection distance is increased by about 10% compared to before
proton irradiation. Other samples show less increase in charge collection distance at this
fluence. CD12-P2 was irradiated up to 4×1015 p/cm2. After this fluence its charge collection
was decreased by about 27% to (68 ± 3) μm.

5.2.11 Results: Charge Collection versus Proton Fluence

Fig. 5.13 shows the charge collection distance as a function of the proton fluence. The
measurements (left) were performed immediately after proton irradiation. Care was taken
to keep the samples in absolute darkness for about 2 hours until their radio activity was
sufficiently low to be safely characterized. The measurements (right) were performed in the
electron pumped state. The samples were depumped under fluorescent light and then pumped
under 90Sr. The measurements shown were taken in the fully pumped state of each sample.
The fully pumped (saturated) charge collection distance is equal to the value immediately
after proton irradiation which means that the diamond pumped during irradiation. It is likely



194 CHAPTER 5. IRRADIATIONS

that pumping during proton irradiation occurred within the first minutes since the proton
flux was much higher than what could be achieved by the 37 MBq 90Sr source in the lab.
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Figure 5.13: Charge collection distance in CVD diamond samples as a function of
the proton fluence. Left: the samples were immediately measured after irradiation,
care was taken to keep the samples in darkness. Right: the samples were depumped
under fluorescent light and then measured several times under constant exposure to
90Sr. After saturation (fully pumped) the Current voltage characteristic was measured
as shown here.

Fig. 5.14 shows the relative charge collection distance as a function of proton fluence
for the diamond samples. After irradiation with 0.9 × 1015 p/cm2 the pumped values may
be slightly increased compared to before proton irradiation. The next measurement at 3 ×
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Figure 5.14: Charge collection distance in CVD diamond as a function of the pro-
ton fluence. The charge collection distance is normalized to its pumped value before
irradiation.

1015 p/cm2 shows a decrease by 10% compared to before proton irradiation. Measurements
on the other samples at higher fluence show a decreasing charge collection distance. A linear
fit to the values above 3× 1015 p/cm2 intersects the ordinate value one at a fluence of ≈ 2×
1015 p/cm2. This indicates a transition between 1×1015 p/cm2 and 3×1015 p/cm2 where the
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slope of the charge collection distance versus fluence changes. The charge collection distance
normalized to the pumped value before proton irradiation appears to decrease linearly above
≈ 2× 1015 p/cm2 and reaches 60 % of its initial value at 5× 1015 p/cm2. The linear decrease
has a slope of 14 % per 1015 p/cm2. As noted earlier the decrease of the most probable
value is 20% at a fluence of 5 × 1015 p/cm2. No decrease in charge collection distance below
1 × 1015 p/cm2 is observed.

Table 5.2 lists the measured charge collection values at different proton fluences and com-
pares the measurement immediately after irradiation with the pumped value after a depump-
ing and pumping cycle. It shows the decrease in charge collection distance mentioned above
and confirms that charge collection measurements are reproducible after depumping and
pumping on all samples and that samples were in a pumped state during proton irradiation.
The charge collection distances as a function of the applied electric field at different proton
fluences for the various samples are shown in Fig. 5.15. The signal charge distributions are
shown in Fig. 5.16.

sample fluence state Q̄ind d̄
name [1012 p/cm2] at 1 V/μm [e] [μm]
CD12-P1 0 pumped 3852 107

905 immediate 3560 99
5064 immediate 2196 61

pumped 2232 62
CD12-P2 0 pumped 3312 92

905 immediate 3672 102
4146 immediate 2480 69

pumped 2412 67
CD12-P3 0 pumped 3240 90

905 immediate 3492 97
3222 immediate 2556 71

pumped 2660 74
CD17- 0 pumped 3276 91
Tracker 3000 immediate 2988 83

pumped 2920 81
Silicon- 0 30500
Diode 905 immediate no signal

Table 5.2: Mean induced charge, Q̄ind, and charge collection distance, d̄, of diamond
samples and silicon diode at different proton fluences.

5.2.12 Summary and Discussion

CVD diamond detector samples were irradiated with 24 GeV/c protons up to a fluence of
5×1015 p/cm2 at the proton synchrotron at CERN. No decrease in charge collection distance
was observed below 1× 1015 p/cm2. Between 1× 1015 p/cm2 and 3× 1015 p/cm2 a transition
from constant charge collection distance to a decreasing charge collection distance occured.
Beyond a fluence of 2 × 1015 p/cm2, the charge collection distance appeared to decrease
linearly with a slope of 14 %/(1015 p/cm2) to 60% of the initial value at 5× 1015 p/cm2. It is
important to notice that the most probable charge signal of the detectors decreased by only
20% at the highest fluence compared to before irradiation. This indicates that for a fixed
threshold cut below the most probable value there would be no loss of efficiency compared
to before irradiation. The dark current on diamond samples before and after irradiation was
unchanged, being of the order of a few picoamperes. The current during irradiation showed
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Figure 5.15: Charge collection distance as a function of the applied electric field at
different proton fluences. Before irradiation samples were measured in their pumped
state. The charge collection measurement after receiving a certain proton fluence
was done immediately and without any exposure to light, which could have caused
depumping.

a prompt response to protons and was proportional to the flux. In contrast to the fluence
dependence observed in the leakage current in silicon detectors, the OFF-spill current for the
diamond detectors was independent of proton fluence. The ON-spill current was of the order
of microamperes and its response to protons did not change. The results indicate that the
present state CVD diamond detectors are radiation hard up to proton fluences of at least
1 × 1015 p/cm2.

5.3 Irradiation with Neutrons

CVD diamonds were irradiated with neutrons at the ISIS facility at the Ruther-
ford Appleton Laboratory in England. Five ISIS run periods in 1/95, 10/95,
12/95, 11/96 and 11/97 were used for the irradiations. A typical ISIS run
period had a length of 30 days. The neutron kinetic energy spectrum peaked
at 1 MeV. Neutrons with such energy will be present close to the interaction
region of high luminosity experiments at the LHC. Irradiations with thermal
neutrons were performed at ISIS as well. Such irradiations are important since
thermal neutrons will be present in the albedo background at LHC experi-
ments. The leakage current in diamond was recorded before, during and after
irradiations. The charge collection distance was measured before and after
each irradiation period. Results from these neutron irradiations were reported
in references [126, 127].
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Figure 5.16: Charge signal distribution at a bias voltage of 1 V/μm from four irradi-
ated diamond samples at different fluences immediately after proton irradiation.

5.3.1 Interaction of Neutrons with Matter

The neutron has no electric charge. Unlike charged particles, its dominant means of
interaction with matter is through the strong interaction. Strong interactions are much ‘rarer’
in comparison to electromagnetic interactions of charged particles due to the short distance
range of the strong interactions. Neutrons must approach a nucleus within O(10−13) cm in
order to interact. When a neutron interacts, however, it may undergo a variety of nuclear
processes depending on its energy [71]:

• Elastic scattering from nuclei, A(n, n)A. Elastic scattering is the most important mech-
anism of energy loss for neutrons in the MeV energy range.

• Inelastic scattering, A(n, n′)A∗ or A(n, 2n′)An−1. In such reactions, the nucleus is left in
an excited state which may later decay by γ−ray emission or another form of radiative
emission. Inelastic reactions can occur if the neutron has sufficient energy to excite the
nucleus, usually of the order of 1 MeV or more.

• Radiative neutron capture, n + (Z,A) → γ + (Z,A + 1). The cross section for neutron
capture is proportional to 1/velocity of the neutron. Therefore the capture is most
likely at low kinetic energies.

• Nuclear reactions, (n, p), (n, d), (n, α), (n, t), (n, αp), etc.. In these reactions the neu-
tron is captured and charged particles are emitted. These interactions occur in the eV
to keV energy range. The cross section generally falls like 1/velocity. Resonances may
occur depending on the element.
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• High energy hadron shower production can occur at the very high energy range above
100 MeV.

• Fission, is most likely for thermal neutrons with kinetic energies below 10 keV. It can
only occur in matter with proton number Z > 56.

Neutrons are classified according to their energy. High energy neutrons have energies
above ≈ 100 MeV. Neutrons between a few 100 keV and several 10’s MeV are called fast
neutrons. Nuclear resonances occur between 0.1 eV and ≈ 100 keV and neutrons of that
energy range are referred to as epithermal neutrons. At energies lower than the thermal
agitation energy at room temperature (1/40 eV) neutrons are called slow or thermal. At even
lower energies neutrons are called cold or ultra-cold. However, in this section neutrons with
energies above 10 keV are called fast neutrons and neutrons with energies below 10 keV are
referred to as thermal. This convention was chosen since the dosimetry distinguished between
neutrons with kinetic energies below 10 keV and above 10 keV.

Fig. 5.17 shows the inelastic cross sections of neutrons in carbon and the inelastic cross
section of neutrons with hydrogen. The cross sections for thermal neutrons are not included.
The cross section for the individual nuclear reactions are visible.

1

10

10 2

10 3

10 10
2

neutron kinetic energy [MeV]

cr
o

ss
 s

ec
ti

o
n

 [m
b

]

Figure 5.17: Inelastic cross sections of neu-
trons with carbon and the inelastic cross sec-
tion of neutrons with hydrogen [128].

The most prominent interaction is (n, γ)
which sets in at ≈ 5 MeV. The total inelastic
cross section is the sum of the cross sections,
σk, of the individual processes

σtot =
∑

k:process

σk. (5.12)

Using the cross section, σtot, and the neutron
flux, fn, the rate of neutron interactions with
matter can be calculated

r = σtot fn 

NA

A
V. (5.13)

The number of atoms in the sample is

V NA/A, with the mass density, 
, the sam-
ple volume, V , the Avogadro constant, NA,
and the molar mass, A. Under typical irra-
diation conditions with a fast neutron flux
on average of fn ≈ 108 n/cm2/s, and a total
cross section of σtot ≈ 100 mb, one obtains
for a 500 μm thick diamond sample an average interaction rate of r ≈ 1 × 105/cm2/s.

5.3.2 Neutron Irradiation Facility at ISIS

The diamond samples were irradiated at ISIS, the 800 MeV proton synchrotron at the
Rutherford Appleton Laboratory. The ISIS facility provides a pulsed neutron source for
neutron diffraction measurements in material science, biology, chemistry and physics. The
neutron irradiation facility that was used here was a parasitic installation that ran in parallel
with the beam program at ISIS. The neutrons at the irradiation facility were produced in a
spallation process from a graphite block backed with copper. The graphite block was mounted
in a collector box along the proton beam pipe between the injection and extraction lines of
the proton synchrotron ring. This collector was designed to stop the 70 MeV protons from
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Figure 5.18: Kinetic energy spectrum of neu-
trons at ISIS taken at different heights. The
height was measured relative to the base of
the sample irradiation stand. This data was
taken from the corresponding table in refer-
ence [129].

Figure 5.19: Measured neutron fluence ver-
sus distance from the graphite block. The
fluence was accumulated in one irradiation
period. The open markers are measure-
ments from foils on the slat, solid markers are
from foils which were attached to the sample
boxes. The measurements are fitted with a
∝ 1/distance2 curve (dashed line).

the injector which were not captured by the radio frequency during the acceleration phase
of the ISIS cycle. Those protons which were lost by the accelerating radio frequency fields
could interact in the graphite block to produce neutrons. Fig. 5.18 shows the kinetic energy
spectrum of neutrons measured at the location for samples above the spallation source [129].
The spectrum contains fast neutrons with kinetic energy above 10 keV. The spectrum of
fast neutrons peaks at 1 MeV and decreases to half the maximum at 10 MeV. Neutrons
with kinetic energy below 10 keV were present as well. For kinetic energies below 1 keV the
spectrum rises. The integral under the flux curve gives the energy integrated flux.

In order to estimate the neutron flux two proton currents are important: the injected
beam proton current, Ip,inj, and the trapped beam proton current, Ip,trap. The difference
is lost by the accelerating RF field and ‘scraped off’ by the collector box where protons
can interact with the graphite block to produce neutrons. The number, ΔNp, is defined
to be the number of protons which are lost by the accelerating field and interact in the
graphite block. The protons produce ΔNn neutrons in a time interval Δt. Then the lost
proton current, eΔNp/Δt, is proportional to the injected proton current, Ip,inj, and therefore
ΔNn/Δt ∝ Ip,inj. The neutron flux, fn = ΔNn/(ΔAΔt), is given by the number of neutrons
passing an area element ΔA = r2dΩ at distance r from the graphite block during the time
Δt, where neutrons are emitted into solid angles ΔΩ. Hence one obtains the neutron flux

fn(t) ∝ Ip,inj(t)
r2

. (5.14)

Integration of the neutron flux over the irradiation time interval from t0 to the end of the
irradiation at t gives the neutron fluence
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Fn(t) ≡
∫ t

t0
fn(t′) dt′ ∝ 1

r2

∫ t

t0
Ip,inj(t′) dt′. (5.15)

The fluence depends on the distance, r, from the spallation source as 1/r2. Fig. 5.19 shows
the measured fluence for fast and thermal neutrons as a function of the distance from the
spallation source. The measurement from fast neutrons is fitted by a 1/r2 function (Eq. 5.15,
dashed line). It can be seen that the measured data is well approximated by the fit function.
The fluence obtained during an ISIS irradiation period of ≈ 30 days at the lowest mounting
point for samples was several 1014 n/cm2. The actual fluence was also dependent on the
proton current and the stability of the beam operation during the irradiation period. The
number of neutrons with energies below 10 keV was measured higher than the number of
neutrons with energies above 10 keV. One reason for the large fluence of neutrons with
energies below 10 keV is that the energy integrated neutron flux from Fig. 5.18 is larger for
kinetic energies below 10 keV than it is for all neutrons with energies above 10 keV. Another
reason for the large amount of thermal neutrons is that fast neutrons thermalize in successive
scatterings in the surrounding material.

Eq. 5.15 indicates that recording the proton beam current allows the fluence values to be
obtained for any time during irradiation if the integrated beam current value is normalized
to the total fluence.

5.3.3 Experimental Method: Installation

The diamond samples were mounted on a sample stand as shown in Fig. 5.1: the sample
stand is the light aluminium frame in front of the concrete. The boxes with samples inside
were attached to the frame at various heights. The frame itself was sat vertically on the
bench in the background, between the concrete blocks, and was dragged by a chain to the
spallation source five meters away. The stand was placed directly above the spallation source,
about 50 cm away from the source. The photo also shows a peltier cooling box mounted in
the frame. This box allowed the samples to be cooled to -8◦C in a nitrogen atmosphere.
The peltier and fans survived the fluence at that location of at least one irradiation period
without difficulties [130]. Those samples assigned to study the effects of thermal neutrons
only were placed outside of the concrete wall, at the place where the photo was taken. An
aluminium box containing the diamond samples for thermal irradiation is visible on the floor
underneath the lamp.

Fig. 5.20 shows a drawing of the side view of the lower part of the sample stand and
the mounting of the sample boxes. The lowest sample box was about 50 cm above the
graphite block. Other boxes were mounted higher in the sample stand. The proton beam
is shown to enter from the left. The protons had an energy of 70 MeV coming from the
injector. The environment temperature was continuously measured during irradiation by a
temperature sensor close to a beam magnet using existing ISIS monitoring software. The
measured temperature was stable between (18 ± 1)◦C and (19 ± 1)◦C.

The region near the spallation source could not be accessed since the gamma irradiation
level exceeded the allowable threshold in a radiation area by many orders of magnitude.
The equivalent dose rate at the location where photo Fig. 5.1 was taken was 40 μSv/h
maximum during installation (depending on the position relative to the beamline and bending
magnets) 1. The time required for installation was about 30 minutes. During the installation

1The unit sievert: 1 Sv = 1 J/kg×w, is the equivalent absorbed dose, w is the biological radiation weighting
factor, for γ, e, μ: w = 1.
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Figure 5.20: Side view of the sample stand
and spallation target at ISIS. The samples
were mounted at different distances from the
collector box where the graphite block was
mounted inside.

time the typically accumulated dose by a person was below 6 μSv which is lower than the
maximum value given.

5.3.4 Experimental Method: Dosimetry

The total neutron fluence accumulated by each sample was measured after irradiation
from the γ-activity of metal (cobalt) foils which were attached to the aluminium boxes con-
taining the samples. The samples themselves and the aluminium boxes were γ radioactive
after neutron irradiation (typically 40 μSv/h, 8 days after the end of the irradiation). The
activity of an individual diamond sample was negligibly small (typically 40 Bq after 20 days).
The main source of radioactivity was the gold contacts and the copper BNC connectors. The
samples were removed from the boxes about half a month after the end of a neutron irra-
diation period. The γ-activity of the foils was measured when their activity was within the
dynamic range of the γ-counter [131] which was typically one month after the end of the
irradiation. The dosimetry was verified for one irradiation period by measuring the 1/r2

characteristics of the fluence (as described above and shown in Fig. 5.19). The measurement
of fast neutrons agrees within errors with the 1/r2 behaviour. The error on the neutron dose
measurement from foil dosimetry was typically 15 % to 30 %. The fluence of thermal neutrons
was one order of magnitude higher than the fluence of fast neutrons since the neutron energy
spectrum rises for energies below 1 keV.

The typical neutron flux for neutrons above 10 keV was of the order of 108 n/cm2/s.
For example during an 820 hour irradiation in 11/96 a final fluence of (2± 0.6)× 1014 n/cm2

was reached on a sample located at the base of the stand. This implies a neutron flux of
(6.8 ± 2) × 107 n/cm2/s.

5.3.5 Experimental Method: Current Measurements

During irradiation all diamond samples were biased with batteries at a voltage of 100 V
between the electrodes. Biasing of samples in realistic operating conditions allows one to
measure the induced currents during irradiation. Silicon diodes were biased above depletion
voltage before irradiation in equivalent setups, like diamond, but with bias resistors of 10 kΩ,
instead of 10 MΩ, in order to avoid the voltage drop at the higher silicon leakage current.
Fig. 5.21 shows the schematic for voltage biasing and current measurement for one sample.
Box 1 contained the biasing voltage with a picoamperemeter (Keithley 6517 [66]). Box 2,
with the diamond sample inside, was located ≈ 80 m away inside the proton hall at the
irradiation zone. The sample in box 2 was connected with two BNC lines to the biasing
in box 1. Two BNC lines were used in order to minimize the noise current. The current
through each sample was measured with an accuracy of a fraction of a picoampere during
irradiation. The current was recorded manually in the first irradiation period [131]. In later



202 CHAPTER 5. IRRADIATIONS

irradiations the currents were recorded using a 10 channel scanner card (Keithley 6521 [66]).
The acquisition was automated using a portable PC running Labview [67]. The portable PC
had battery power-backup in order to continue recording during short (< 3 hours) power
failures.

R =  10  M
C = 10 nF
U = 100 V

2

pA

R

R

R

R

C

U

+

Al-box Al-box

Diamond
sample

distance
of  80m

1

Figure 5.21: Circuitry for biasing
diamond and silicon samples and
measuring currents during neutron
irradiation. The current was mea-
sured with fractions of picoampere
accuracy over a cable distance of
80 m.

5.3.6 Experimental Method: Charge Collection Measurement

The charge collection distance was measured before and after each irradiation period.
Fig. 5.22 shows a characteristic signal from an irradiated diamond sample, U7, measured
at an applied electric field of 1 V/μm in response to an electron from a 90Sr β-source: the
upper waveform, trace A, shows the shaped signal from the VA2, the lower waveform is the
waveform average over several event samplings. The averaged amplitude is 63 mV. Using
the measured electronic gain of 25.5 e/mV one obtains a mean collected charge of 1610 e
corresponding to a charge collection distance of 45 μm.

            

Figure 5.22: A high signal re-
sponse to an electron from a 90Sr β-
source measured on CVD diamond
sample U7 after neutron irradia-
tion. The signal was read out using
one amplifier channel of a VA2 read-
out chip. The shaped signal had a
peaking time of 2 μs. The waveform
of trace B is the average of trace A
over several events. The signal size
can be read from the peak-to-peak
value between the cursors labeled as
‘pkpk(B)’. The averaged amplitude
is lower than the amplitude of the
selected single event.

5.3.7 Irradiated Samples and Fluences

The CVD diamond samples were produced by Norton [33] and De Beers [34]. The
samples were cut from diamond disks, similar to the disk shown in Fig. 4.21. After cutting,
the samples had rectangular sizes between 5 × 5 mm2 and 10 × 10 mm2. The samples
were metallized on both sides with circular electrodes with a diameter between 3 mm and
5 mm. The electrodes were made of Cr/Au or Ti/Au forming ohmic contacts to the diamond
substrate.
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Table 7.3 in Appendix 7.1 on page 232 lists all irradiated samples, their thickness, elec-
trode type, size and neutron fluence received during an irradiation period. Diamond samples
Y4 and YB were exposed to thermal neutrons only. The other samples received both ther-
mal and fast neutrons. Several samples were irradiated twice or three times in order to
reach fluences of several 1014 n/cm2. The neutron fluences in Table 7.3 are from a single
irradiation period. Several silicon diodes were irradiated for comparison. A typical fluence
of 3 × 1014 n/cm2 was reached in one irradiation period at the base of the sample stand.
The error on the measured fluence was between 15 % and 30 %. Normally the measured
fluences were consistent with the locations of the samples at the stand. Only one sample,
Y1, may have had a systematic measuring error. The fluence in the initial irradiation of Y1
was inconsistent with the fluences obtained for other samples in irradiations of similar time
period.

5.3.8 Results: Current during Irradiation

Fig. 5.23 shows the current through two diamond samples after installation in the irra-
diation area but before the start of the neutron irradiation. No neutrons were present at that
time. The bias voltage was applied at the time ≈ 13.5 h. Between application of the bias
voltage and start of the irradiation, the currents decreased exponentially and saturated at
44 pA and 65 pA. The contact area was 12.6 mm2 for U6 and 19.6 mm2 for YF. Therefore,
the saturated current densities in the samples were 3.5 pA/mm2 and 3.3 pA/mm2 which are
essentially equal. This current was higher by a factor ≈ 3 than that normally measured for
the dark current in diamond. This indicates that the remaining γ-background induced charge
in the diamond samples. The neutron irradiation started at the time ≈ 15.8 h and neutrons
became present. It can be seen that the current in the diamond increased at the start of the
irradiation.
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Figure 5.23: Current in diamond samples,
YF and U6, a few hours before start of the
irradiation in 10/95.

Figure 5.24: Induced current in diamond
samples, YF (abbreviated as F) and U6,
during n-irradiation 10/95. The current in
both samples decreases exponentially with the
same time constant.

Fig. 5.24 shows the induced current measured in U6 and YF during an irradiation period
of ≈ 790 h (≈ 33 d). Both samples were irradiated for the first time in this irradiation
period. The current was measured manually every two days. As soon as the irradiation
started and neutrons were present the currents raised to 2.0 nA and 2.75 nA corresponding
to 158 pA/mm2 and 140 pA/mm2 which can be considered as equal. During irradiation
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currents in both samples decreased. A decrease can not be due to decreasing biasing voltage
since the batteries had the same voltage at the end of the irradiation as before. The measured
induced current can be fitted by an exponential function

Iind = Isat + I0 e−(t−t0)/τ . (5.16)

The current in both samples decreased with the same time constant τ ≈ 110 h. At the
beginning of the irradiation (t = t0 ≈ 50 h) the currents were I0 + Isat ≈ 2 nA in U6 and
I0 + Isat ≈ 2.7 nA in YF. The exponential fit gives a saturation current of Isat ≈ 0.62 nA
in U6 and Isat ≈ 0.95 nA in YF. The saturation currents correspond to current densities in
U6 and YF of 49.2 pA/mm2 and 48.5 pA/mm2. Fig. 5.24 also shows the fast neutron flux in
both samples, as deduced from the proton beam current according to Eq. 5.14. It can be seen
that the flux of fast neutrons on both samples remained nearly constant during irradiation.
It can also be seen that the flux on sample YF was higher by a factor 1.77 than the flux on
U6. Although sample YF was exposed to a higher neutron flux than U6 the current densities
and the exponential time constants were equal. This may indicate that the induced current
and the exponential decrease are not related to the neutron flux. Both diamond samples had
about the same charge collection distance as can be seen in the measured data below. The
fact that the induced current densities were equal although they received different neutron
flux leads to conclude that the current induced in diamond is not due to an interaction of
neutrons in diamond. The only remaining source of radiation was photons. We conclude that
the induced current in diamond during irradiation is mainly due to photons.

Fig. 5.25 shows the induced current measured in diamond sample U7 during a neutron
irradiation in 12/95. The sample U7 was irradiated for the first time in 12/95. The current
was measured every 5 minutes using a PC. The neutron flux was deduced from the proton
current and is also shown. Before irradiation U7 was depumped under fluorescent light
and had a dark current of ≈ 3 pA at 100 V. The current increased at the beginning of
the irradiation to about 2.2 nA corresponding to a current density of 175 pA/mm2. This
behaviour is similar to the current measured on U6 manually in the previous irradiation as
reported above [Fig. 5.24]. The induced current in U7 decreased exponentially as observed
on U6. In addition one can see that the current often fell off. The fall-off is explained by
spill breaks in the proton accelerator (see below). The current acquisition stopped recording
after 660 hours. The irradiation continued until t ≈ 980 hours. The logarithmic ordinate in
Fig. 5.25 allows one an extrapolation of the current to 980 hours. The extrapolated induced
current for the end of the 12/95 irradiation is (0.45 ± 0.1) nA corresponding to a current
density of 36 pA/mm2.

U7 was irradiated for a second time in 11/96. Fig. 5.26 shows the measured induced
current in U7 in 11/96. At the start of the irradiation the induced current was about 0.48 nA
corresponding to a current density of 38 pA/mm2 which is equal to the induced current from
the end of the irradiation in 12/95. Fig. 5.26 also shows the ‘lost’ proton current measured
from the difference between the injected and the trapped beam proton currents. The lost
proton current was proportional to the neutron flux. It can be seen that the current in U7
fell off during spill breaks. The current in U7 is correlated with the neutron flux. It can also
be seen that the induced current in U7 did not decrease further during the 11/96 irradiation.
The induced current saturated at 0.3 nA corresponding to 24 pA/mm2.

Fig. 5.27 shows the induced currents in the samples N1 and N3 during neutron irradi-
ation in 11/96. Both samples were irradiated previously in 12/95. The induced currents in
both samples were constant during irradiation. Both samples already reached the saturated
induced current during their first irradiation. Two other samples CD15-P3 and CD15-P4
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Figure 5.25: Induced current in CVD dia-
mond samples, U7, during neutron irradiation
12/95. The neutron flux is shown as well. U7
was irradiated the first time in 12/95.

Figure 5.26: Induced current in sample
U7 during irradiation in 11/96 (top) versus
time during irradiation. Proton beam current
which is proportional to the n-flux versus time
(bottom). U7 was irradiated the second time
in 11/96.
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Figure 5.27: Induced currents in diamond samples N1 (left) and N3 (right) during
neutron irradiation 11/96.

from a different manufacturer were irradiated the first time in 11/96 with the induced cur-
rents shown in Fig. 5.28. The currents decreased as well. They show the same correlation
with the neutron flux as the current from other samples in the same irradiation. It can be
seen that the beam-off current decreased in successive spill breaks during the irradiation pe-
riod as well. Therefore, one concludes that not only the induced currents but also the dark
currents decrease during irradiation.

Fig. 5.29 shows two current measurements in diamond, one current measurement in
silicon and the neutron flux versus time during an irradiation in 11/97. The currents were
measured on the diamonds U7, N3 and N1 which were all irradiated before, so that the
induced current had already saturated. The currents in samples U7 and N3 were in parallel
thus the current of ≈ 0.6 nA is the sum of both samples (consistent with the sum of ≈ 0.2 nA
in N3 from Fig. 5.27 (right) and 0.3 nA in U7 from Fig. 5.26). U7 and N3 were mounted on
the aluminium frame and exposed to fast and thermal neutrons. N1 was located ≈ 7 m away
from the spallation source instead, outside the concrete wall where only thermal neutrons were
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Figure 5.28: Induced current in diamond samples CD15-P3 (left) and CD15-P4 (right)
during neutron irradiation 11/96.

present. The induced current in N1 was about 0.3 pA during beam-on periods and drops
fractions of a picoampere below zero during spill breaks (not shown on the logarithmic scale).
The induced currents follow the neutron flux. The induced current behind the concrete wall
is lower by 3 orders of magnitude than the current in samples close to the spallation source.

A silicon diode was irradiated as well. The silicon diode had a thickness of 350 μm and a
p-implant of 4×4 mm2 in an n-bulk. The diode was biased with 61 V, sufficient to deplete the
diode before irradiation. The bias voltage was still at 61 V at the end of the irradiation. The
diode was kept in the peltier cooler in an N2-atmosphere at -8 ◦C. The current in the cooled
silicon diode increased during irradiation. It can be seen that the current did not follow
the spill breaks as it was the case in diamond. The current in silicon was dominated by
leakage current whereas the current in diamond was mostly an induced current. The current
in silicon annealed during spill breaks. A short power-cut occurred at the time ≈ 580 h.
After the main power returned, the current meter automatically re-initialized and the PC
kept recording thanks to its battery. However, the accelerator was off for about 24 hours
and the peltier silicon cooling was off for the time of the power cut. During this power cut
the silicon diode warmed up to +18 ◦C which caused a leakage current increase in the silicon
diode by a factor of 10. The leakage current returned to the value from before the power-cut
after the cooling returned.

Another silicon diode, of the same type as above, was neutron irradiated at room tem-
perature. The leakage current typical for a silicon diode before and after neutron irradiation
(at room temperature) is shown in Fig 5.30. Before irradiation the current had the char-
acteristic of a reversed biased diode: the current increased from 0 to 1 nA proportional to√

Ubias between Ubias = 0 V and 70 V. The diode was fully depleted at 50 V (as known
from a capacitance measurement). Above 80 V the current increased linearly to 6 nA at
100 V. This behaviour was normally observed on unirradiated silicon diodes from this man-
ufacturer, CSEM, and is an avalanche effect. After irradiation with 3.2 × 1014 n/cm2 and
further 6 months at room temperature in darkness the current was 100 nA at 60 V, a factor
100 higher than before irradiation. It can be seen that, after irradiation, the current ranges
from -1 μA to 1 μA for bias voltages between -300 V and 300 V. The current depends linearly
on the voltage. After irradiation the silicon diode had the characteristic of an ohmic resistor
with a resistance of R = 330 MΩ corresponding to a resistivity of ρ = 1.5 GΩcm. This
example illustrates qualitatively how a silicon diode behaves if it is handled in exactly the
same way as a diamond. However, it is known that silicon behaves ‘better’ given a more
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Figure 5.29: Top: to-
tal induced current in
CVD diamond samples,
U7 measured in paral-
lel to N3, located at the
base of the sample stand
(‘1 MeV neutrons’). Also
top: induced current in
N1, located outside the
concrete (‘thermal neu-
trons’). Middle: leak-
age current in the silicon
diode, cooled to −8 ◦C,
located few centimetres
above the diamond sam-
ples U7 and N3. Bot-
tom: 1 MeV neutron flux
at the location of U7 and
N3 and the silicon diode.
This data was measured
in the neutron irradiation
11/97.

controlled treatment after irradiation than was done here.
Fig. 5.31 shows the mean signal due to electrons from 90Sr measured in the silicon diode

before and after irradiation. The mean signal charge was measured using the setup for
measuring charge collection distances in diamond (VA2, 2 μs signal peaking time). Before
irradiation a mean number of 35000 e was collected when an electron from the 90Sr source
traversed the fully depleted diode. This is about 10 % higher than expected if one assumes
26250 e as the most probable value for minimum ionizing particles in the 350 μm thick silicon
diode. Below 50 V the diode was not depleted and only a fraction of the generated charge
was collected. After irradiation with 3.2 × 1014 n/cm2 no charge could be detected. In this
figure the data is plotted at the applied voltage which does not take into account the voltage
drop on the biasing resistors shown in the setup Fig. 3.27. At 200 V applied the effective
voltage across the diode was still 100 V and no signal was observed from the diode at that
voltage.

5.3.9 Results: Induced Current compared to Neutron Flux and Fluence

Fig. 5.32 shows a magnification of the induced current, Ipic, in the diamond sample and
the difference between the injected and trapped proton current as a function of time. It
can be seen that the induced current and the proton current are correlated: Ipic ∝ Ip,inj.
Even small (10 % level) changes in the proton current are seen by the diamond sample. The
diamond sample acts as a monitor for the neutron or photon flux. Only those samples which
were irradiated once before worked as a flux monitor. Integration of the induced current in
diamond versus time gives the induced charge

Qpic (t) =
∫ t

0
Ipic

(
t′
)
dt′ ∝

∫ t

0
Ip,inj

(
t′
)
dt′

Eq. 5.15∝ Fn (t) . (5.17)
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Figure 5.30: Current versus voltage charac-
teristic in a silicon diode before and after n-
irradiation. The diode received a fluence of
3.2 × 1014 n/cm2.

Figure 5.31: Charge collected in a silicon
diode before and after n-irradiation.

That means that the induced charge is proportional to the proton beam fluence which allowed
to deduce the neutron fluence.

Fig. 5.33 shows the measured induced charge in diamond and the measured neutron
fluence as a function of time. The neutron fluence was measured by integration of the proton
flux onto the spallation source. Both graphs have different slope, however, their ratio is
nearly constant. Fig. 5.34 shows the current in the silicon diode and diamond sample U7
during neutron irradiation. The silicon diode was continuously at room temperature during
irradiation. It can be seen that the current in the silicon diode increases non-linearly in time
from a few nA to more than 60 μA. This current can be directly compared to the lower current
(8 μA) in the cooled silicon diode in Fig. 5.29. Both silicon diodes were from the same silicon
wafer and had equivalent geometrical dimensions. The superimposed current in diamond was
at 300 pA constant in time when neutrons were generated. During beam-off periods, which
are visible in diamond when the current has a few picoampere, a decreasing current in silicon
was measured due to annealing. The leakage current in silicon versus neutron fluence, Fn, is
normally described by the following empirical expression [65, 132]

Ileak(Fn) = Ileak(Fn = 0) + αFn AD (5.18)

with the active area, A, and the sensor thickness, D. The value α is the leakage current
constant which describes the slope of the leakage current as a function of the fluence. The
measurement of the leakage current in silicon diodes during irradiation indeed shows a linear
increase with neutron fluence up to about 1 × 1014 n/cm2. The damage constant is in this
range measured to be α = 1 × 10−17 A/cm in agreement with measurements listed in [65].
The voltage required to deplete the silicon diode normally increases under irradiation. In the
situation here the bias voltage could not be increased. Instead the voltage linearly decreased
from originally 84 V to 72 V due to battery discharge as can be seen in the same figure. The
silicon diode was certainly under-depleted for most of the irradiation.

Using the integrated induced current from the diamond U7 it was possible to measure
the neutron fluence. Fig. 5.35 shows the leakage current in the silicon diode as a function of
the normalized fluence deduced from the current induced in the diamond. The normalization
fluence for U7 used is Fn = 2.05×1014 n/cm2. Assuming linear relation between the induced
current in diamond and the neutron fluence one finds a linear increase in the current in silicon
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Figure 5.32: Top: induced current in sam-
ple U7 in 11/96 for an arbitrary time interval.
Bottom: the difference between injected and
trapped proton current that is proportional
to the neutron flux. The current in diamond
correlates with the neutron flux.

Figure 5.33: Neutron fluence and time inte-
grated current in diamond versus time. The
neutron fluence was measured by the num-
ber of protons which interact in the graphite
block.
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Figure 5.34: Leakage current and bias volt-
age in silicon diode S-16 and induced current
in diamond U7 versus time during neutron ir-
radiation (at room temperature). The diode is
biased with a battery and its voltage decreases
linearly due to the high current in the diode,
whereas the voltage applied to the diamond
stays constant at 100V.

Figure 5.35: Current in silicon diode S-16
under irradiation at room temperature versus
integrated current in diamond U7 during neu-
tron irradiation. The solid line is the measure-
ment, the broken line is a linear fit to the mea-
sured graph. The scaled fluence Fn/Fn,total =
1 corresponds to 2.05 × 1014 n/cm2.
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up to a scaled value of 0.6 which represents a fluence of 1.2 × 1014 n/cm2.

5.3.10 Results: Dark Current

The dark current density, jdark, on diamond samples depends on the bulk conductiv-
ity, σbulk, and on the surface conduction. Surface currents can not be neglected as shown
in Sec. 3.2.3. However, here one may assume that the current is in a first approximation
proportional to the applied electric field E and given by Ohm’s law jdark = σbulkE. The
influence of fringe fields on the dark current and a non uniform field strength between the
contacts are unknown and not considered. Fig. 5.36 shows a measurement of the dark current
in diamond before and after irradiation as a function of the applied electric field. The dark
current shows hysteresis which means that the current depends on the size of the voltage step
and the time between steps. This effect is explained by resistivity and capacitance introduced
by the contacts (Sec.3.2.3). The current before irradiation was typically higher by a factor
2 compared to after irradiation. The decrease in dark current measured in the lab confirms
the decreasing current observed in the current measurements during irradiation.
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sample is depumped Figure 5.36: Dark current in diamond
sample CD15-P4 as a function of the ap-
plied electric field before and after neu-
tron irradiation. The sample was in the
depumped state for both measurements.
The current was measured in darkness,
at room temperature and under normal
atmospheric conditions.

Table 5.3 lists the conductivity of several diamond samples before and after irradiation.
The conductivity was derived from the current measured at 1 V/μm. The dark current
in diamond and therefore its conductivity depends on the pumping state. This effect can
be seen on irradiated and unirradiated samples. The conductivity measured in both states
decreased after irradiation compared to before irradiation. The difference in conductivity
between pumped and depumped states after irradiation is smaller than before irradiation.

sample σbefore [10−11 Ω−1cm−1] ± 10% σafter [10−11 Ω−1cm−1] ± 10%
name depumped pumped depumped pumped
Y1 4.0 5.5 3.0 4.8
U6 5.5 14.3 3.0 4.0
U7 4.8 11.9 3.6 3.6
N1 2.7 13.3 1.2 2.3
N2 3.0 9.7 1.3 1.5
N3 - 11.1 2.8 2.8
CD15-P3 43.5 142.8 16.9 19.6
CD15-P4 62.5 250.0 33.3 38.5

Table 5.3: Conductivity, σ, before and after neutron irradiation 11/96.
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Figure 5.37: Charge collec-
tion distance on sample YB as
a function of the applied elec-
tric field before and after irra-
diation with thermal neutrons.

5.3.11 Results: Charge Collection after Irradiation with Thermal Neu-
trons

Two samples, YB and Y4, were irradiated with thermal neutrons only. Both sam-
ples were placed outside of the concrete shielding, 7 m away from the spallation source.
Fig. 5.37 shows the charge collection distance of YB as a function of the applied electric
field before and after irradiation with thermal neutrons. The thermal neutrons fluence on
YB was 4.8 × 1014 n/cm2 in 10/95 with an immeasurable fraction of fast neutrons. The
charge collection distance was (54 ± 3) μm at 1 V/μm before irradiation and (59 ± 3) μm at
1 V/μm after irradiation. The charge collection distance after irradiation increased slightly.
Another sample (Y4) received thermal neutrons up to 2.7 × 1015 n/cm2 and fast neutrons
of 6.0 × 1013 n/cm2. The charge collection after thermal irradiation also increased slightly
compared to before irradiation. Since no decrease in charge collection distance was observed
one can conclude that there is no radiation damage due to only thermal neutrons up to
2.7 × 1015 n/cm2.

5.3.12 Results: Charge Collection after Irradiation with Fast Neutrons

Fig. 5.38 shows the charge collection distance from sample U6 as a function of the applied
electric field before and after irradiation with 3.2× 1014 n/cm2 in 10/95. The sample was in
both measurements in the electron pumped state. A charge collection distance of (52±3) μm
at 1 V/μm was measured before irradiation. After irradiation, the charge collection distance
was (51 ± 3) μm at 1 V/μm which is the same as before irradiation. The measurement on
U6 after its second irradiation in 11/96 (not shown), when it received an additional fluence
of 1.7 × 1014 showed (50 ± 3) μm, the same as before irradiation.

Fig. 5.39 shows the signal charge distribution on the pumped sample U7 before neutron
irradiation, after 7.5×1014 n/cm2 and after 1.32×1015 n/cm2. The mean value in the unirra-
diated state was 1900 e corresponding to a charge collection distance of (53±3) μm. After its
first irradiation the mean value was 1700 e (47±3 μm) indicating a slight decrease compared
to the unirradiated state. After the second irradiation the mean was 1130 e corresponding
to a charge collection distance of (31± 3) μm. The mean signal decreased by 41 % compared
to the unirradiated state. The most probable value decreased by about 30 % compared to
before irradiation. The histogram is also narrower after the last irradiation compared to
before irradiation.
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Figure 5.38: Charge collection distance on
sample U6 as a function of the applied electric
field before and after n-irradiation 10/95.

Figure 5.39: Signal distribution on sample
U7 before and after two n-irradiations, mea-
sured after 11/96. The sample acquired a flu-
ence of ≈ 1 × 1015 n/cm2. The mean signal
decreased by 10%.

5.3.13 Results: Charge Collection versus Neutron Fluence

The charge collection distance corresponding to the mean value of the signal charge dis-
tribution was measured on all irradiated samples before and after each irradiation. Care was
taken to fully pump the samples with electrons from a 90Sr for the measurements shown here.
A sample was considered as fully pumped when the charge collection distance was unchanged
in several successive measurements of the signal charge mean value. One measurement of the
mean value contained typically 800 trigger events.

Fig. 5.40 shows the charge collection distance as measured on two samples, U6 and U7,
as a function of the neutron fluence. The initial charge collection distance was (53 ± 3) μm
on U6 and (53 ± 3) μm on U7 as stated above. Up to 0.4 × 1015 n/cm2 the there was no
decrease in charge collection distance observed and the normalized charge collection distance
was constant. There appears to be a transition between 0.4×1015 n/cm2 and 0.5×1015 n/cm2.
A sizeable decrease is observed on these samples above 1.32 × 1015 n/cm2 where the charge
collection distance is decreased between 40 % and 45 %.

Fig. 5.41 shows the charge collection distance from three other CVD diamond samples,
N1, N2 and N3, as a function of the neutron fluence. The initial charge collection distance was
about 45 μm on N1 and N2 and 36 μm on N3. The charge collection distance was unchanged
up to 4× 1014 n/cm2. There is a transition between 0.4 × 1015 n/cm2 and 0.5 × 1015 n/cm2

as seen earlier with the samples U6 and U7. A decrease of 55 % is observed on N3 at
7 × 1014 n/cm2. The charge collection distance of N3 decreased further, though less rapidly,
after 1.3×1015 n/cm2. The tendency of decrease agrees with the measurements from U6 and
U7.

Another series of samples, Y1, Y2, YE, YF, was irradiated with neutrons. Y1 was
removed from the analysis due to its uncertain fluence value. The charge collection distance,
as shown in Fig. 5.42, was initially between 45 μm and 50 μm. The charge collection distance
was unchanged up to 3 × 1014 n/cm2 on these samples. The charge collection distance for
these samples shows a transition between 0.4 × 1015 n/cm2 and 0.6 × 1015 n/cm2.

Table 5.4 summarizes the charge collection distances of the samples as reported above.
It contains the value from Y1 and from two more samples, CD15-P3 and CD15-P4. The last
two samples are not included in the figures yet, since their first measurement has a large
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Figure 5.40: Charge collection distance in pumped CVD diamond samples U6 and
U7 as a function of the neutron fluence. Left: the absolute charge collection distance.
Right: the charge collection distance normalized to the initial electron pumped value
of the sample before irradiation.
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Figure 5.41: Charge collection distance in pumped CVD diamond samples N1, N2,
N3 as a function of the neutron fluence. Left: the absolute charge collection distance.
Right: the charge collection distance normalized to the initial electron pumped value
of the sample before irradiation.

error. However, their charge collection distance as a function of fluence agrees with the data
presented so far.

sample pumped ccd [μm]
name after each irradiation

0. 1. 2. 3.
Y1 ≈42 40 35 29
U6 52 51 50 30
U7 55 42 47 31
N1 45 46 39 -
N2 44 45 39 35
N3 36 32 19 17
CD15-P3 87 96 72
CD15-P4 86 55 45

Table 5.4: Charge collection distance
(ccd) in the pumped state measured on
diamond samples after neutron irradia-
tions. Each irradiation period is labeled
by a number. The number 0 is before
irradiation.

Fig. 5.43 overlays the normalized charge collection distances as a function of the fluence
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Figure 5.42: Charge collection distance in pumped CVD diamond samples Y2, YE and
YF as a function of the neutron fluence. Left: the absolute charge collection distance.
Right: the charge collection distance normalized to the initial electron pumped value
of the sample before irradiation.

with the data reported above. The combination of data suggests no change in charge collection
distance up to 0.4 × 1015 n/cm2. The charge collection distance has a transition between
0.4 × 1015 n/cm2 and 0.5 × 1015 n/cm2. Assuming a linear decrease one finds the slope
of about 60% per 1 × 1015 n/cm2. The charge collection distance may follow the 1/F -law
as suggested by Eq. 5.8. More data is required in order to experimentally confirm such a
decrease.

5.3.14 Summary and Discussion

CVD diamond samples were irradiated with neutrons at the ISIS irradiation facility.
The induced current in diamond was observed to decrease exponentially during irradiation
with a typical time constant of several hundred hours. The current eventually saturated.
The induced current correlated with the proton beam flux. The current measured in the
diamond samples is a real induced current, in contrast to the current in silicon where the
measured current is mainly a leakage current. The current response in diamond to neutrons
was prompt. When neutrons vanish, the current relaxed with a time constant determined by
the impedance of the measurement setup. After saturation of the initial exponential decrease
of the current it was found that the induced current can be used as a measure for the flux
and the fluence. Based on the scaling of the induced current with the contact and the fact
that the induced current density does not depend on the neutron flux one can conclude that
the current is caused by photons from the γ-background. Diamond is sensitive to γ-radiation
as could be qualitatively confirmed using an americium γ-source. The leakage current (dark
current) was typically in the picoampere range. It decreased after irradiation as well.

The charge collection distance of the samples reported here were about 50 μm before
irradiation. Irradiation with only thermal neutrons up to 2.7 × 1015 n/cm2 did not change
the charge collection properties. Many samples were exposed to fast neutrons with a kinetic
energy peaking at 1 MeV. The charge collection distance on these samples was constant up
to 0.4×1015 n/cm2. Between 0.4×1015 n/cm2 and 0.5×1015 n/cm2 the transition of charge
collection distance occured. At the highest fluence of 1.3 × 1015 n/cm2 the charge collection
distance decreased by 50 % compared to before irradiation. The most probable value of the
signal charge distribution typically decreased by 30 % at 1.3×1015 n/cm2. The most probable
value decreased less than the mean value.
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Figure 5.43: Charge collection distance in CVD diamonds of U,N and Y-series as a
function of the neutron fluence. The charge collection distance is normalized to its
pumped value before neutron irradiation.

It should be noted that these results are the first measurements obtained on CVD dia-
mond sensors which have been irradiated above the expected neutron fluence in LHC experi-
ments. The charge signal from silicon is usually sensitive to temperature due to temperature
dependent annealing of defects. No annealing studies have been made on diamond so far.
The samples were continuously kept at room temperature under ‘drawer-conditions’. Defect
studies using temperature stimulated current or luminescence methods could be of interest in
order to quantify trap levels and their concentration as a function of fluence. These methods
rely on heating the sample which could be of interest: silicon anneals at room temperature,
annealing of defects in diamond may be possible at higher temperatures. However, anti-
annealing at higher temperature may also occur. The carbide interface to diamond may
degrade. The study with new electrical contacts after irradiation is of interest. Irradiated
silicon sensors normally require higher depletion voltages after irradiation. The studies on
diamond were done at the same bias voltage before and after irradiation and no attempt
has been made yet to measure them at higher voltages. According to Eq. 5.8 the charge
collection distance is proportional to the electric field. However, the electric field strength
1 V/μm is typically the field where the charge carrier velocity saturates. Therefore the slope
of the charge collection distance versus voltage is small at 1 V/μm and no significant changes
can be expected. Finally it may be emphazised that the fluences given here are the ‘pure’
ISIS fluences as obtained from the foil dosimetry.
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5.4 Irradiation with Pions

The predominant source of radiation at LHC will be pions. They will
contribute 78 % to the total charged hadron flux from the interaction re-
gion [Sec. 1.3.2]. The transverse momentum distribution of charged particles
from proton-proton interactions peaks between 200 MeV/c and 300 MeV/c.
Such pions cause ≈ 1.5 times more damage in silicon detectors than 1 MeV
neutrons [132]. CVD diamond samples were irradiated with 300 MeV/c pions
(π+) at the Paul Scherrer Institute in Villigen. The first diamond samples
were irradiated by reference [133]. The samples reported in this work were
irradiated by the Vienna group [134]. The samples have been characterized
before and after irradiation by reference [134] and reference [85]. The section
here reports only on the results of the characterization at CERN.

5.4.1 Interaction of 300 MeV/c Pions with Matter

The pions under consideration here are positively charged (π+). Like all charged particles
they deposit energy according to their Coulomb interaction with matter [Eq. 3.68]. Pions
with kinetic energies below 300 MeV/c are not minimum ionizing. The η-ratio of momentum
to rest mass is below 2 which means that the energy deposited due to the electromagnetic
interaction is above minimum ionizing (see Fig. 3.15). Pions may also interact strongly with
nuclei. At ≈ 300 MeV/c, they can interact in resonance with nuclei forming the intermediate
Δ-Baryon state. The Δ-Baryons, Δ(1232)P33, have a rest mass of about 1231 MeV/c and a
width of about 100 MeV/c, depending on their electric charge [9]. The Δ-resonance decays
to π and the nucleus where the nucleus may have left its lattice site, to conserve momentum
in the interaction. The vacancy and the knock-on atom are point defects in the lattice and
may result in degradation of the electrical properties of the detector. The cross section at
the peak of the Δ(1231)-resonance is ≈ 200 mb. At the typical flux of 2.5 × 109 π+/cm2/s,
one obtains for a 500 μm thick diamond an average interaction rate of 5 × 108 π+/cm2/s.
Pions with higher momenta have lower cross sections. However, their non-ionizing energy
loss (NIEL), may be even larger depending on the material [135].

5.4.2 Irradiation Setup

Fig. 5.44 shows a drawing of the pion irradiation setup [133, 134]. The pion beam enters
from the left. It passes a polyethylene shield in order to reduce the proton contamination
of the beam below 1 %. The beam momentum was chosen to be 300 MeV/c with a 10 %
momentum spread. Contaminations to the beam were removed with a dog-leg 2 in the beam
line upstream of the samples. The electron and muon contaminations were reported to be
less than 5% and 10 % respectively [133]. An ionization chamber was used to measure the
pion flux. A typical pion flux was 2.5× 109 π+/cm2/s. The samples were glued onto ceramic
boards (Al2O3). The boards fit in a slide tray in the beam. The samples were centered in the
beam using a photo film that darkened at the beam spot. A light tight box covered the slide
tray such that the samples were in complete darkness during irradiation. The pion fluence on
each sample was measured using the foil activation method. Each sample was equipped with
Al-foils. The dosimetry used for pions was equivalent to the dosimetry used for the proton
irradiation described in Sec. 5.2.

2A dog-leg structure sweeps out (from the beam axis) secondary particle produced in collimators. A dog-leg
is a ‘magnetic chicane’.
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5.4.3 Samples and Fluence

The samples for irradiation were produced by Norton [33] and De Beers [34]. All samples
were equipped with circular electrical contacts on both sides. The samples had a thickness
between 300 μm and 800 μm. Table 7.2 in Appendix 7.1 lists all irradiated samples with
their fluences received in several irradiation runs. The samples were biased during irradiation
with voltages typically at 100 V. The current was monitored during irradiation. The samples
were irradiated at room temperature.

5.4.4 90Sr-Pumping on Pion Irradiated Diamond

Irradiated diamonds require more time under the β-source to fully pump-up than before
irradiation. The pump-up time increases for higher fluence. This observation has been made
with neutron irradiated samples in the past [85]. The observation can be quantified by
recording the ‘pump-up’ curves of the collected charge during exposure to electrons from the
90Sr β-source. Fig. 5.46 shows two pump-up curves from one diamond sample before and
after irradiation. The evolution of the mean collected charge versus time during constant
illumination from the β-source has been fitted by Eq. 3.148 from Sec. 3.4.7, here evaluated
for the mean induced charge

Q̄ind(t) = Q̄p · (1 − r e−t/τ ) with r
def=

Q̄p − Q̄0

Q̄p
(5.19)

Two observations can be made: The saturation value, Q̄p, for t → ∞ is higher
before irradiation compared to after irradiation. The second observation is the time constant
τbefore = 54 min, required for pumping, before irradiation is lower than the time constant
τafter = 148 min after irradiation. Care was taken to use the identical β-source in the same
position in the measurement setup before and after irradiation in order to ensure the same
electron dose rate.

Fig. 5.46 shows the time constant measured on several pion irradiated diamond samples
as a function of the pion fluence. It can be seen that the time constant increases linearly
with the pion fluence. A possible explanation is given by Eq. 5.2 which states that the defect
concentration increases with fluence. These type of defects correspond to those traps which
can be pumped by electrons from 90Sr. A higher number of traps requires more time for
pumping and passivating the traps.
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Figure 5.45: Collected charge from CVD dia-
mond CD38 as a function of time during expo-
sure to electrons from 90Sr. The upper graph
is before pion irradiation, the lower graph is
after pion irradiation. The measured data is
fitted with the function from Eq. 5.19.

Figure 5.46: Pumping time, τ , (from
Eq. 5.19) as a function of the pion fluence from
several CVD diamond samples. The measured
data is fitted by a linear curve (dashed line).

5.4.5 Charge Collection before and after Pion Irradiation

Fig. 5.47 shows the signal charge distribution measured several times on diamond sample
U3 at three different pion fluences. The sample was measured the first time after receiving
0.5 × 1015 π/cm2 with a mean signal charge of 2000 e at 1 V/μm corresponding to a charge
collection distance of 56 μm. Care was taken to fully pump the sample with electrons from
90Sr. Another measurement 7 months later shows an increase of the mean value by 10 %. The
shape of the signal charge distribution was unchanged compared to the distribution before
irradiation. The sample was then irradiated with 1.17 × 1015 π/cm2 and the total fluence
became 1.73 × 1015 π/cm2. The signal charge distribution immediately after irradiation is
shifted to lower values with a mean of 1670 e, corresponding to 46 μm. Another measurement
9 months later confirms the previous measurement. A third irradiation with only 0.8 ×
1014 π/cm2 on the same sample hardly changed the charge collection distance. Within the
measurement error of at most 10 % on this sample, it is difficult to argue any significant
decrease.

Fig. 5.48 shows the measured signal charge distribution on U3 and U4. The distribution
of U4 has a significant number of pedestal entries due to the smaller contact area and eventual
misalignment in the measurement setup. However, the mean signal charge can be obtained
from the fit with the given interval. the mean value after irradiation with 0.42× 1015 π/cm2

decreased by 15 % compared to before irradiation.
Further irradiations have been made with CVD diamond of initially 100 μm and later

up to 200 μm charge collection distance. Fig. 5.49 shows the signal charge distribution from
four pion irradiated samples. The distributions before irradiation were typically wide and
not Landau distributed. The fit has been made using a convolution of a Landau and a Gauss
function. Three samples (CD29-P1, CD29-P2 and CD38) received a pion fluence of about
1 × 1015 π/cm2. The distributions show that the relatively large charge signals are missing
in the Landau tail after irradiation. The distributions are narrower after irradiation. The
rising edge of the distribution is unchanged compared to before irradiation. The mean value
decreased by 30 % to 35 %. The most probable values decreased by 20 % to 30 %.

Fig. 5.50 shows the charge collection distance of the diamond samples CD29 and CD28
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Figure 5.48: Charge signal distribution at a bias voltage of 1 V/μm on irradiated
diamond samples at different fluences after pion irradiation.

as a function of the applied electric field before and after irradiation. The curves were taken
in the fully pumped state. The mean values from this voltage scan at 1 V/μm are equivalent
to the mean values from the signal charge distributions.

Fig. 5.51 shows the charge collection distance as a function of the pion fluence. The ab-
solute charge collection distance decreases with fluence. The charge collection distance nor-
malized to the initial value gives the relative change. For the given set of samples, the charge
collection distance is unchanged up to 0.4×1015 π/cm2. The charge collection distance makes
a transition between 0.4 × 1015 π/cm2 and 0.5 × 1015 π/cm2. Beyond 0.5 × 1015 π/cm2 the
charge collection distance decreases with fluence. At the highest fluence of 1.83 ×1015 π/cm2

the charge collection distance is decreased by 40 % compared to before irradiation. The rel-
ative decrease on samples with initially high charge collection distance is more pronounced
than on samples with originally lower charge collection distance.

5.4.6 Summary and Discussion

CVD diamond samples were irradiated with 300 MeV/c pions (π+). One observation
made was the increase in pumping time under illumination with electrons from a β-source af-
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Figure 5.49: Signal charge distribution from pion irradiated diamond samples at an
electric field of 1 V/μm. The measured distributions are fitted with a convolution of a
Landau and a Gauss distribution.

ter pion irradiation. The time constant obtained from the pumping curves increased linearly
with the pion fluences. This time constant is likely related to the concentration of defects.
The increase in pumping time is explained by the increasing concentration of defects under
irradiation with pions. Some defects can be passivated by exposing the diamond to electrons
from the β-source and the charge collection distance increases. Other defects can not be
passivated any more after irradiation and the charge collection distance eventually decreases.
The charge collection distance was observed to be constant after exposure with pions up to
about 0.4 × 1015 π/cm2. Beyond 0.5 × 1015 π/cm2 the charge collection distance decreased
with fluence. At the highest fluence of 1.83 × 1015 π/cm2 the charge collection distance was
decreased by 40 % compared to the value before irradiation. The signal charge distribution
after irradiation was observed to be narrower compared to before irradiation. The narrower
width after irradiation may indicate more uniform charge collection laterally across the sam-
ple. The remarks made in the summary for neutron irradiated samples also apply here. The
measurements require confirmation after eventual annealing and new contact preparation.
Defect studies using TSC and TL and their correlation to charge collection distance could be
helpful.
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Figure 5.50: Charge collection distance as a function of the applied electric field at
different pion fluences. The samples were in the pumped state during these measure-
ments.
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Figure 5.51: Charge collection distance in CVD diamond after irradiation at different
pion fluences. On the lower graph the charge collection distance is normalized to its
pumped value before irradiation.



Chapter 6

Summary

The goal of this work was to study the properties of CVD diamond for their
application in particle tracking. This work included material studies, electri-
cal characterizations and tests of diamond strip sensors in pion beams. The
motivation for using CVD diamond is its potential radiation hardness. It was
therefore essential to study electrical properties of CVD diamond under parti-
cle irradiations. A summary of the work performed and the important results
are given here followed by the conclusion.

            

Figure 6.1: From upper left to the lower right: growth side of a CVD diamond,
CVD diamond samples and a silicon diode with a variety of contact geometries, CVD
diamond strip sensor and at the lower right the setup for the neutron irradiation.
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6.1 Summary of Work Performed

During the course of this work I studied the electrical and material properties of CVD
diamond. The material studies, including X-ray diffraction, micro-Raman spectroscopy and
scanning electron microscopy, were performed using facilities of collaborators at RD42. The
electrical properties including current, capacitance and charge collection distance were mea-
sured at CERN. For the charge collection distance measurements I built the setup described
in Sec. 3.4.5. I automated the software for routine measurements of diamond samples. I built
a second setup, similar to the one described, and installed it at the CVD diamond manufac-
turer. The charge collection distance measurements served as a quick and reliable method
to characterize the electrical properties of CVD diamond samples. This setup was the basis
for further work on strip sensors and irradiated samples. An important achievement of this
work was the organization and the realization of beam tests at CERN and the analysis of
the data taken. After patterning the diamond strip sensors at Ohio State University the
sensors were delivered to CERN where I performed characterization, organized the bonding
to the readout electronics and assembly in general and did installation and tests in the beam.
I wrote new object oriented particle tracking and analysis software during this work. This
code has been used for the beam data analysis described in this thesis. Numerous CVD
diamond trackers were tested in the beam. I participated in beam tests of newly developed
fast analogue electronics for the ATLAS SCT which was tested for the first time on diamond
detectors. As a third important part of this work I performed irradiations of diamonds with
neutrons and protons. I characterized all samples before and after irradiation at CERN. For
the irradiations I automated the online current monitoring. The theoretical side of my work
included the development of the tracking algorithm using the non-linear hit finding method in
silicon and the development of the track fit and alignment method and its implementation in
the code. For the understanding of signal formation in diamond sensors I gave an alternative
proof of Ramo’s theorem for charge induction due to moving charges. I showed that this
theorem applies for the case of position dependent charge collection distance as it is the case
in CVD diamond.

6.2 Results

The results of this work may be quantified in four areas: material character-
izations, electrical characterizations, particle tracking and irradiations. The
summary of results is given below.

6.2.1 Material Characterizations

CVD diamond is polycrystalline in nature. It has different grains sizes on the nucleation
and on the growth side. This has been demonstrated by scanning electron microscopy. The
grain size on the nucleation side was found to be of the order of a few microns. The grain
size increases nearly linearly from the nucleation to the growth side. An average grain size on
the growth side is 70 μm for a 500 μm thick diamond. It was found that the nucleation side
of samples from one manufacturer exhibits gaps between grains whereas the nucleation side
of samples from another manufacturer may have a non-diamond surface layer. As a result
samples were almost always lapped on the nucleation side before preparation as a strip sensor.
The polycrystalline nature was further investigated using X-ray diffraction. The amount of
oriented grains was measured on the nucleation and on the growth side in a layer several tens
of microns in depth. It was found that the nucleation side is less oriented then the growth
side. The growth side is typically oriented in one crystal plane. The relative abundance
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of oriented grains on the nucleation side changes during growth and may be different on
the growth side. Four of five samples from one manufacturer had a preferential orientation
of (220) on the growth side. The survey is not yet sufficient to correlate the orientations
with other properties. The lattice constant of diamond has been measured based on a high
intensity X-ray diffraction peak to be a = (3.56604 ± 0.0006) Å.

The material quality has been defined by the width of the diamond micro-Raman line.
This line broadens when there is stress in the diamond lattice. The linewidth of a type IIa
natural diamond was measured to be (2.0 ± 0.1)/cm. The linewidths of the CVD diamond
samples here was on average 2.4/cm. A tendency of slightly broader lines for the nucleation
side was seen. The linewidths seen here are relatively narrow and similar to those CVD dia-
monds with high material quality from previous growths by other manufacturers as reported
in reference [11]. This indicates a high material quality with low amount of defects. The
extended Raman spectra demonstrated absence of graphite impurities. However, it should
be noted that a micro-Raman spectrum characterizes an area with a diameter smaller than
1 mm and it is possible that systematically focusing in grain boundaries would give on av-
erage broader lines. Focusing in grain boundaries has been tried several times but no line
broadening was observed.

6.2.2 Electrical Characterizations

The most important result of the electrical characterizations is the improvement of the
charge collection distance in CVD diamond. Whereas several years ago the charge collection
distance scale from one manufacturer was at 30 μm we measure now routinely 200 μm charge
collection distance, where the thickness of the samples is typically 400 μm to 1200 μm. On
this scale it is possible to infere the average carrier drift length from the average charge
collection distance: the average carrier drift length is equal to the average charge collection
distance. It was confirmed that the charge collection distance depends on the position along
the direction of growth. The charge collection distance was found to increase linearly from
the nucleation side to the growth side. The charge collection distance is nearly zero on the
nucleation side and twice the bulk average charge collection distance on the growth side.
The charge collection distance is the basic quantity that controls the charge induced at the
electrodes. It was shown that the mean induced charge for any distribution of local charge
collection distances is proportional to the bulk average charge collection distance. The mean
collected charge at the electrodes was typically above 6000 e at 1 V/μm. Samples with
higher signal charge exceeding 8000 e (220 μm charge collection distance) were also available.
The signal charge distribution from most diamonds was found to be separated from zero by
about 1200 e which is typically 1/5 of the most probable value. For comparison in silicon the
separation from zero is normally 3/4 of the most probable value.

For silicon of a single quality the FWHM of the signal charge distribution increases with
the most probable value. The signal charge distribution in silicon has a ratio of the FWHM
to most probable of approximately 0.5. For a sequential number of diamonds from a recent
delivery it was found that the FWHM increases with the most probable value as well. For
most CVD diamond samples the ratio of the FWHM to the most probable signal charge is
about one. The width from silicon sensors is therefore lower than it was observed for the
recent diamond samples. A possible explanation for the excess in width of CVD diamonds
over that from silicon is the variation of the collected charge laterally across the material.
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6.2.3 Tracking

The feasibility of CVD diamond strip sensors for particle tracking has been demonstrated
in the beam. When operated with VA2 readout electronics the strip sensors had a mean signal-
to-noise ratio between 30-to-1 and 90-to-1 depending on the electrical quality and the biasing
electric field. The hit recognition efficiency was between 98 % and 100 % for thresholds below
1000 e. Using the K-strip center of gravity hit position algorithm the spatial resolution was
between 14 μm and 16 μm at a strip pitch of 50 μm. Some trackers had an K-strip center
of gravity resolution above 20 μm. Using a two strip center of gravity algorithm (which is
equivalent to the two strip linear eta algorithm) a slightly better spatial resolution between
12 μm and 13 μm was obtained. 2 × 4 cm2 CVD diamond trackers have been tested with
most probable signal-to-noise ratio of 25-to-1 on 3.8 cm long strips. The spatial resolution
was the same as on 1× 1 cm2 sensors. The noise was typically (100 ± 15) e on ≈ 7 mm long
strips, (130±20) e on 1.9 cm long strips and (165±25) e on 3.8 cm long strips. Strip sensors
operated with analogue SCT/DMILL readout electronics had higher noise as expected due to
the fast signal peaking time of 25 ns. The measured noise was (620±50) e on 7 mm long strips.
Using the SCTA128HC a most probable signal-to-noise of 7.2-to-1 and a mean signal-to-noise
of 10-to-1 have been measured in the beam. Using the center of gravity algorithm a spatial
resolution of 16.5 μm has been obtained. Table 6.1 lists results obtained on a 1×1 cm2 and a
2×4 cm2 CVD diamond strip sensor with VA2 readout and a CVD diamond sensor with fast
LHC type readout. For the spatial resolution the values obtained using the K-strip center of
gravity algorithm are given. However, there are other algorithms that give better resolution
as has been demonstrated by using the 2-strip center of gravity method in Sec. 4.2.10.

device thickness strips readout τp ENC Smean/N c.o.g. spatial
[μm] length chip [e] resolution

(K-strips)
UTS-5 432 0.7 cm VA2 2 μs 100 ± 10 73 15.0 μm
CDS-55 452 3.8 cm VA2 2 μs 165 ± 25 39 15.9 μm
UTS-5 432 0.7 cm SCTA128HC 25 ns 620 ± 50 10 16.5 μm

Table 6.1: Selected results from one CVD diamond strip sensor with VA2 readout, one
2 × 4 cm2 sensor with two VA2 readout chips and one sensor with LHC type readout
electronics. The peaking time, τp, of the readout electronics, the measured equivalence
noise charge (ENC), the mean signal to noise ratio and the K-strip center of gravity
(c.o.g.) spatial resolution in the beam are given.

The lateral uniformity of the signal charge has been studied in a CVD diamond strip
sensor using VA2 readout electronics. Variations of the signal charge have been observed.
It was shown that the variation is a combination of statistical fluctuations and a variation
of properties of the CVD diamond sensor. The variations have been shown to remain for
‘infinite’ number of events. The uniformity was defined as a quantity between 0 and 100 %.
It was shown that a silicon sensor has 100 % uniformity. On this scale the uniformity of the
tested CVD diamond sensor was between 60 % and 100 % depending on the binning chosen.

6.2.4 Irradiations

The need of radiation hard sensors at high luminosity experiments has been verified by
an estimation of the particle flux from proton-proton interactions. The results for the fluxes
and the annual fluences at a luminosity of 1034/cm2/s are summarized in Table 6.2. The
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calculation was based on the primary amount of particles produced in single proton-proton
collisions and the angular distribution of the product particles. This estimation agrees with
simulations by ATLAS and CMS for distances between 7.5 cm and 20 cm from the interaction
point. It is important to notice that the flux and the primary fluence decrease like 1/r2 from
the interaction point which is essential for the survival of silicon sensors in the SCT and the
SST detectors in ATLAS and CMS. The fluence given at radii between 4 cm and 11 cm are
known to be a problem for the operation of silicon sensors. This is the reason for either
working out the optimal operation conditions like cooling and increasing the bias voltage
or pursuing defect engineering on silicon by optimizing certain impurities or search for new
sensor materials which could withstand longer under irradiation.

‘annual’ fluence (= 107 s)
radius angle charged flux charged primary neutral total
r r⊥ Θ φc ± 28 % Φc ± 28 % Φn ± 28 % Φt ± 28 %

[cm] [cm] [◦] [106/cm2/s] [1015/cm2] [1015/cm2] [1015/cm2]
4.0 4.0 90.0 70.2 0.70 0.47 1.17
11.0 11.0 90.0 0.09 0.09 0.06 0.16

Table 6.2: Results of the ‘naive’ model [Sec. 1.3.2] for the primary charged hadron flux
φc close to the beam interaction point at nominal luminosity of 1034/cm2/s. The error
is the statistical 1 σ variation of 28 % in the uncertainty of the number of interactions
per bunch crossing.

The behaviour of CVD diamond under irradiation is different from the behaviour of
silicon sensors. The irradiation of CVD diamonds at room temperature and under bias
voltage shows that there is no increase in leakage current in diamond. The current measured
is a particle induced current that is present as long as particles illuminate the diamond. The
current immediately returns to the dark current value when the irradiation stops. This is
very different from silicon where the leakage current increases and one observes beneficial
annealing during stops of the irradiation and anti-annealing. The induced current as well
as the dark current in diamond decrease during irradiation. The decrease was found in
the neutron irradiation and is exponential with fluence. A similar decrease was found in
pion irradiations. No decrease of the current was visible in the proton irradiation. In all
irradiations diamonds were exposed to fluences where charge collection distance was shown
to decrease. The charge collection distance was found to depend on the fluence. Table 6.3
gives the fluence up to where no decrease in charge collection distance was observed and the
highest fluence of the irradiation together with the relative decrease of the charge collection
distance and the most probable signal charge.

6.3 Conclusion

The CVD diamond samples used here had charge collection distances ranging from 30 μm
to more than 200 μm corresponding to mean signal charges ranging from 1080 e to more than
7200 e. It was shown that one can infer the carrier drift length from the charge collection
distance for the case of a drift length smaller than the sensor thickness. The carrier drift
length is a measure of the electrical quality since it is proportional to the carrier mobility and
to the carrier lifetime. The improvement of carrier drift length is therefore an improvement
of the electrical quality. For an application as a particle sensor with relatively ‘slow’ signal
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no change in d̄ highest irradiated decrease of d̄ decrease of m.p.
up to fluence fluence at highest fluence at highest fluence

[cm−2] [cm−2] [%] [%]

n(1 MeV) 0.4 × 1015 1.3 × 1015 50 30

p(24 GeV/c) 1 × 1015 5 × 1015 40 20
π+(300 MeV/c) 0.4 × 1015 1.9 × 1015 40 30

Table 6.3: Summary of the behaviour of the CVD diamond samples under irradiation
with protons (p), neutron (n) and pions (π+). The fluence up to where no decrease
in charge collection distance, d̄, was observed and the highest fluence are given. The
relative decrease of the charge collection distance and the relative decrease of the most
probable (m.p.) signal charge at the highest fluence are given.

peaking time of the order of 2 μs with an equivalent noise charge of about 100 e a mean-
signal-to noise ratio of 70-to-1 was obtained which is a very good result and enables particle
tracking as demonstrated here. For applications at LHC a faster signal shaping of 25 ns is
required due to the high interaction rate. The series noise in the readout of SCT electronics
used here was about 620 e which would result in a mean signal-to-noise ratio between 10-to-1
and 12-to-1 for a diamond sensor with 200 μm charge collection distance. A slightly higher
signal-to-noise ratio is desirable for a tracking application. This may be achieved by reducing
the noise or further increasing the charge collection distance. The progress made so far in
increasing the charge collection distance leads to the expectation that further improvement
in charge collection distance is possible.

The uniformity of the electrical quality across the area of a CVD diamond disk is a second
aspect of electrical quality. The results shown indicate variations of the charge collection
distance laterally accross the sample. This does not necessarily imply a difficulty for a
sensor with binary readout since any signal charge above threshold is sufficient to find the
digital hit postion. For analogue readout the situation is more complex. Lateral uniformity
may be important if it disturbes the hit position measurement. The analysis of uniformity
performed here is not sufficient to draw a conclusion about the uniformity of CVD diamond
in general. The variations in the mean charge collected shown here were found in a CVD
diamond sample of high electrical quality based on charge collection distance only. The study
of uniformity is therefore an additional mean of characterizing the electrical quality of CVD
diamond. It would be advantageous to find a way to access the electrical quality parameter
‘uniformity’ with a method easier and faster to use than shown here. One possibility could
be the characterization by the FWHM of the signal charge distribution.

Based on the results shown in Table 6.3 one can conclude that CVD diamond samples
of the quality as they were available here are radiation hard without decrease in charge
collection distance under irradiation with protons up to 1 × 1015 p/cm2, with neutrons up
to 0.4 × 1015 n/cm2 and with pions up to 0.4 × 1015 π/cm2. Taking into account that 78 %
of radiation from primary interactions at LHC are pions one finds from Table 6.2 an annual
pion fluence of 0.07×1015 π/cm2 at 11 cm and 0.5×1015 π/cm2 at 4 cm at the luminosity of
1034/cm2/s. This would allow one to operate a diamond sensor between one year and six years
depending on the position between 4 cm and 11 cm at a luminosity of 1034/cm2/s. Further
studies of radiation hardness of CVD diamond material with charge collection distance higher
than 200 μm are necessary.
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Appendix

7.1 Irradiation Fluences

sample thickness center electrode final fluence
name [μm] size

[
mm2

] [
1012 p/cm2

]
CD12-P1 716 7.1 5064 ± 111
CD12-P2 726 7.1 4146 ± 99
CD12-P3 709 7.1 3222 ± 84
CD17 492 2.9 3000 ± 30
Si-Diode 350 16.0 905 ± 30

Table 7.1: Proton irradiation: final proton fluences on samples.
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sample thickness electrode run fluence
name [μm] size

[
mm2

] [
1014 π+/cm2

]
NDF-2 710 19.6 9/95 1.6

9/96 8.5
NDF-4 557 16 9/95 0.96

9/96 6.9
NDF-5 570 9/95 0.79
P5 275 6/94 0.13

9/95 2.8
U3 447 19.6 6/94 0.43

9/95 5.2
9/96 11.7
11/97 0.8

U4 430 7.1 6/94 0.8
9/95 1.0
9/96 4.16
11/97 0.84

CD15-P1 737 7.1 9/96 5.24
11/97 9.06

CD15-P2 760 7.1 9/96 10.1
11/97 8.9

CD28-R1 603 3.0 11/97 10.4
CD28-R2 611 3.0 11/97 10.6
CD29-P1 611 7.1 11/97 11.0
CD29-P2 641 7.1 11/97 10.4
CD29-P3 583 7.1 11/97 0.75
CD38-Tracker 690 - 11/97 10.5

Table 7.2: Pion irradiation: irradiated CVD diamond samples, their thickness, size of
the electrode, irradiation period and pion fluences [136].



7.1 Irradiation Fluences 233

sample thickness electrode period measured fluence
[
n/cm2

]
name [μm] size at energy[

mm2
]

< 10 keV > 10 keV
Y1 a 407 12.6 1/95 (8.94 ± 0.15) × 1015 (1.29 ± 0.14) × 1015

10/95 (1.57 ± 0.03) × 1015 (5.62 ± 1.39) × 1014

11/96 (1.80 ± 0.03) × 1015 (2.05 ± 0.62) × 1014

Y2 418 15.9 1/95 (4.33 ± 0.09) × 1015 (2.90 ± 0.35) × 1014

10/95 (1.48 ± 0.03) × 1015 (3.17 ± 0.58) × 1014

Y4 414 19.6 1/95 (2.25 ± 0.4) × 1015 (6.00 ± 0.95) × 1013

10/95 4.8 × 1014 ≈ 0
YB 419 15.9 10/95 4.8 × 1014 ≈ 0
YE 419 19.6 10/95 (1.48 ± 0.03) × 1015 (3.17 ± 0.58) × 1014

YF 414 19.6 10/95 (1.57 ± 0.03) × 1015 (5.62 ± 1.39) × 1014

U6 436 12.6 10/95 (1.48 ± 0.03) × 1015 (3.17 ± 0.58) × 1014

11/96 (2.15 ± 0.04) × 1015 (1.68 ± 0.20) × 1014

11/97 (2.1 ± 0.04) × 1015 (4.25 ± 0.20) × 1014

U7 433 12.6 12/95 (2.01 ± 0.04) × 1015 (5.45 ± 1.79) × 1014

11/96 (1.80 ± 0.03) × 1015 (2.05 ± 0.62) × 1014

11/97 (2.26 ± 0.05) × 1015 (5.72 ± 1.4) × 1014

N1 329 19.6 12/95 (1.98 ± 0.04) × 1015 (4.02 ± 0.73) × 1014

11/96 (1.54 ± 0.03) × 1015 (1.11 ± 0.19) × 1014

11/97 ≈ 5 × 1014 ≈ 0
N2 333 19.6 12/95 (1.98 ± 0.04) × 1015 (4.02 ± 0.73) × 1014

11/96 (2.15 ± 0.04) × 1015 (1.68 ± 0.20) × 1014

11/97(*) (1.8 ± 0.04) × 1015 (2.95 ± 0.39) × 1014

N3 354 12.6 12/95 (2.01 ± 0.04) × 1015 (5.45 ± 1.79) × 1014

11/96 (2.03 ± 0.04) × 1015 (1.86 ± 0.65) × 1014

11/97 (2.26 ± 0.05) × 1015 (5.72 ± 1.4) × 1014

CD15-P3 755 7.1 11/96 (1.95 ± 0.03) × 1015 (1.30 ± 0.23) × 1014

11/97 (1.5 ± 0.02) × 1015 (2.9 ± 0.5) × 1014

CD15-P4 728 7.1 11/96 (2.03 ± 0.04) × 1015 (1.86 ± 0.65) × 1014

11/97 (2.55 ± 0.05) × 1015 (6.25 ± 1.45) × 1014

CD36-P1 640 11/97 (1.5 ± 0.02) × 1015 (2.9 ± 0.5) × 1014

CD36-P2 640 11/97 (2.1 ± 0.04) × 1015 (4.25 ± 0.65) × 1014

CD36-P3 640 11/97 (2.55 ± 0.05) × 1015 (6.25 ± 1.45) × 1014

S-9 350 16.0 10/95 (1.48 ± 0.03) × 1015 (3.17 ± 0.58) × 1014

S-10 350 16.0 10/95 (1.57 ± 0.03) × 1015 (5.62 ± 1.39) × 1014

S-16 350 16.0 11/96 (1.54 ± 0.03) × 1015 (1.11 ± 0.19) × 1014

S-24 350 16.0 11/96 (1.54 ± 0.03) × 1015 (1.11 ± 0.19) × 1014

SiStrip 350 11/96 (1.54 ± 0.03) × 1015 (1.11 ± 0.19) × 1014

Si9710 350 11/97(*) (1.8 ± 0.04) × 1015 (2.95 ± 0.39) × 1014

Table 7.3: Neutron irradiation: neutron fluences on diamond samples and silicon
(labels on silicon start with ‘S’). The fluences were measured with Al-foil dosimeters
at RAL [137]. The samples were irradiated at a stable temperature between 18 ◦C and
19 ◦C. Samples labelled with (*) were irradiated at -8 ◦C.

aThe fluence on Y1 in 1/95 was probably measured to high.
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