Towards Improved Characterization of Brain Tumors by ²³Na-MR Neuroimaging at 7 Tesla

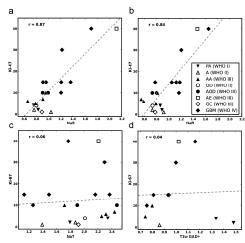
Armin Biller^{1,2}, Jens Kleesiek³, Jan Oliver Neumann³, Felix Sahm⁴, Anne Dorothea Hertenstein³, and Armin Michael Nagel⁵

¹Neuroradiology, University of Heidelberg, Heidelberg, Badem-Württemberg, Germany, ²Radiology, German Cancer Research Center DKFZ, Heidelberg, Badem-Württemberg, Germany, ³University of Heidelberg, Baden-Württemberg, Germany, ⁴Neuropathology, Baden-Württemberg, Germany, ⁵Medical Physics in Radiology, German Cancer Research Center DKFZ, Baden-Württemberg, Germany

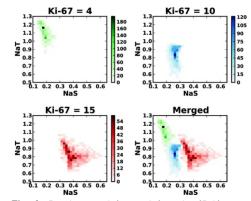
Target Audience: Physicians and scientists interested in clinical applications of non-proton MRI

Purpose: Sodium (²³Na)-MRI can provide three different image contrasts, which reflect the average tissue ²³Na concentration (NaT contrast) and ²³Na ions with short relaxation times (NaR and NaS contrast). The NaR signal is obtained by an inversion-recovery pulse, whereas the NaS contrast is based on weighted subtraction of images at different echo times [1]. Previous work demonstrated a strong association between the Ki-67 proliferation index of brain tumor cells and both, the NaR and NaS signal [1]. This finding emphasizes the added benefit of ²³Na-MRI to canonical neuro-oncological imaging as used in clinical routine. In this study, we examined a larger patient population suffering from brain tumors to evaluate the robustness of the Ki-67/NaR association. Furthermore, ²³Na-MRI is compared to conventional T1-weighted gadolinium enhanced (T1w GAD+), T2-weighted (T2w) and FLAIR imaging.

Methods: ²³Na-MRI was conducted on a 7 Tesla MR system (Magnetom 7T, Siemens Healthcare, Erlangen, Germany) using a double-resonant (1 H / 23 Na) quadrature birdcage coil (Rapid Biomed GmbH, Rimpar, Germany). ²³Na-MR sequences were based on a 3D density-adapted projection reconstruction technique [2]. To detect the tissue ²³Na signal (NaT) relaxation weighting was minimized using a short echo time (TE = 0.35 ms) and a long repetition time (TR = 160 ms; readout duration: T_{RO} = 10 ms; flip angle α = 90°). A nominal spatial resolution of 3 x 3 x 3 mm³ was achieved in an acquisition time of T_{AQ} = 10 min 40 s. A second echo (TE₂ = 12 ms) was used to calculate a weighted subtraction image (NaS) as described previously [1]. To suppress signal from extracellular fluids such as cerebrospinal fluid, an inversion recovery sequence (NaR) was applied with the following parameters: TE = 0.75 ms; TR = 185 ms; T_{RO} = 16.7 ms; inversion time: TI = 41 ms; T_{AQ} = 9 min 52 s; nominal spatial resolution: 4.4 x 4.4 x 4.4 mm³. Canonical T1w GAD+, T2w and FLAIR imaging was performed on a 3 Tesla MR system (Tim Trio 3T, Siemens Healthcare, Erlangen, Germany).


N = 20 patients suffering from naïve brain tumors WHO grade 1 to 4 were measured including 2 Pilocoytic Astrocytomas (PA), 2 Astrocytomas (A), 1 Oligodendroglioma (OD), 4 Anaplastic Astrocytomas (AA), 2 Anaplastic Oligodendrogliomas (AOD), 1 Anaplastic Ependymoma (AE), 1 Gliomatosis Cerebri (GC), 7 Glioblastomas (GBM). For all patients, histopathologic evaluation of tumor specimens was performed including Ki-67 monoclonal antibody staining. Ki-67 is a cellular marker for proliferation [3] and is known to correlate with tumor growth [4,5]. ²³Na and ¹H images were co-registered to the individual standard space using FLIRT (part of FSL) [6]. Tumors were manually masked in FSLView by a board-certified experienced neuroradiologist.

Results: Correlation analyses revealed a strong correlation between the NaR signal of the tumor and its Ki-67 index (r = 0.85, p < 0.001; Fig. 1a) and between the NaS signal and the Ki-67 index (r = 0.87, p < 0.001; Fig. 1b). This is visualized by the distinct distributions of the NaS signal for exemplary Ki-67 rates (Fig. 2). There was no correlation between histopathologic tissue parameters and NaT (Fig. 1c), conventional T1w GAD+ (Fig. 1d), T2w and FLAIR imaging (data not shown).


Discussion and Conclusion: In this study, we are able to reproduce previous findings [1] on the association between the relaxation-weighted ²³Na signals (NaR and NaS) and the Ki-67 proliferation index of brain tumors, despite the differing tumor subtypes between both studies. A local cellular energetic breakdown mainly of the Na⁺/K⁺ ATPase, changes in Na⁺/H⁺ exchange kinetics [7] and a sustained cell depolarization initiating cell division might represent the pathophysiological correlates of this association [8]. All mechanisms result in an elevated intracellular Na⁺ concentration, which is reflected by the NaR and NaS contrast. NaT, T2, T1 GAD+ and FLAIR signals of tumor tissue failed to exhibit correlations with the Ki-67 proliferation index. This underlines the limited specificity [9] in tumor characterization of these sequences but also emphasizes the added value of NaR and NaS imaging to conventional neuro-oncological MRI. Figure 3 exemplarily demonstrates the benefit of ²³Na-MRI in neuro-oncology: Both, the PA and the GBM exhibit vivid contrast enhancement and elevated NaT signals. However, the NaR contrast revealed a low signal in the low grade tumor and a high signal in the GBM. This allowed for correctly diagnosing a PA (histology proven) and discarding the differential diagnosis of a GBM. ¹H-MRI GAD+ data were of limited use in the diagnosis. The fact that ²³Na-MRI does not require contrast media further underlines its potential for clinical applications in neuro-oncology.

References

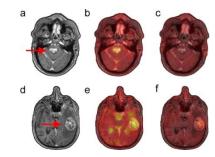

- 1. Nagel et al. Invest Radiol (2011) 46: pp 539-547.
- 2. Nagel et al. Magn Reson Med (2009) 62: pp 1565-1573.
- 3. Scholzen and Gerdes. J Cell Physiol (2000) 182: pp 3311-322.
- 4. Giangaspero et al. Acta Neuropathol (1987) 74: pp 179-182.
- 5. Louis et al. Acta Neuropathol (2007) 114: pp 97-109.
- 6. Jenkinson M et al. FSL. Neuroimage (2012) 62: p 782-790.
- 7. Spector et al. J Biol Chem (1980) 255: pp 8370-8373.
- 8. Boada et al. Curr Top Dev Biol (2005) 70: pp 77-101.

Fig. 1: Correlation analyses showed an association between NaS and Ki-67 (**a**) and between NaR and Ki-67 (**b**). There was no correlation between Ki-67 and NaT (**c**), T1w GAD+ (**d**), T2w or FLAIR imaging (data not shown).

Fig. 2: Based upon their correlation, the 2D-histograms demonstrate a distinct NaS distribution for exemplary Ki-67 proliferation indices [%]. Bins are intensity-coded.

Fig. 3: Exemplary T1w GAD+ (**a, d**), NaT (**b, e**) and NaR (**c, f**) data of a *Pilocytic Astrozytoma* (PA, WHO 1, **a-c**) and a *Glioblastoma* (GBM, WHO 4, **d-f**) demonstrate the benefit of ²³Na-MRI: In contrast to T1w GAD+ imaging, the ²⁵NaR contrast enables a distinction between PA (low signal, **c**) and its main differential diagnosis of a high grade glioma (high signal, **f**).