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ABSTRACT
Although NAND flash memory has become one of the most
popular storage media for portable devices, it has a serious
problem with respect to lifetime. Each block of NAND flash
memory has a limited number of program/erase cycles, usu-
ally 10,000–100,000, and data in a block become unreliable
after the limit. For this reason, distributing erase operations
evenly across the whole flash memory media is an important
concern in designing flash memory storage systems.

In this paper, we propose a memory-efficient group-based
wear-leveling algorithm. Our group-based algorithm achieves
a small memory footprint by grouping several logically se-
quential blocks and managing only the summary information
for each group. We also propose an effective group sum-
mary structure and a method to reduce unnecessary wear-
leveling operations in order to enhance the wear-leveling per-
formance. The evaluation results show that our group-based
algorithm consumes only 8.75% of memory space compared
to the previous scheme that manages per-block information,
while showing roughly the same wear-leveling performance.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—Garbage

collection; B.3.2 [Memory Structure]: Design Styles—
Mass storage
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1. INTRODUCTION
NAND flash memory has become one of the most popular

storage media for portable devices due to its non-volatility,
solid-state reliability, small and lightweight package, and
low-power consumption. Many manufacturers are currently
deploying flash memory cards and MP3 players with more
than several gigabytes of flash storage in the market.

Unlike standard block devices, flash memory media need
to be erased before subsequent write operations. An erase
operation is performed in a unit of a block, while read/write
accesses are handled in a unit of a page. Since a block is
composed of 32–128 pages, flash memory results in addi-
tional read and write accesses to keep live data in a block
when the block is erased. In addition, erase operation takes
much longer time than read or write operation. For this
reason, flash-based storage systems generally adopt a thin
software layer, called FTL (Flash Translation Layer) [3, 6,
5, 8], to provide the standard block device interface, hiding
the presence of erase operation.

Unfortunately, each block in flash memory has a limited
number of erase/write cycles and data in a block become
unreliable if the block reaches the limit. The current limit
for SLC (Single-Level Cell) NAND flash memory is around
100,000 erase/write cycles. The lifetime of flash memory
storage can be prolonged if each block in flash memory is
updated uniformly. In real systems, however, there is local-
ity in storage access patterns, revealing frequently updated
hot data and rarely updated cold data. Uneven distribu-
tion of erase cycles caused by hot data shortens the lifetime
of flash-based storage system. To make matters worse, the
new generation of NAND flash memory architecture, MLC
(Multi-Level Cell) NAND, has higher density, but the en-
durance cycle is degraded by an order of magnitude com-
pared to the SLC NAND architecture.

Many researchers have proposed various wear-leveling al-
gorithms to address this problem [2, 4, 6, 7, 9, 10, 11]. The
goal of the wear-leveling algorithm is to expand the life-
time of flash memory by distributing erase operations evenly
across the whole flash memory media. One of the most com-
mon approaches is to maintain cleaning index for each block
and use this information to move hot data into less worn
blocks (young blocks) or cold data into more worn blocks
(old blocks). The cleaning index is usually calculated based
on such factors as erase cycle, age, and utilization.

Although this approach is simple and effective, it requires
memory space proportional to the number of blocks to main-
tain per-block information. As the flash memory technology
advances, the amount of required memory can be significant
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due to the increased flash memory capacity. Especially, a
small memory footprint is considered an essential require-
ment for small flash controllers in order to lower the unit
cost. K-Leveling [10] lessens this problem by keeping only
the difference (level) from the least worn block instead of
maintaining the full erase cycle for each block. However,
K-Leveling still utilizes per-block information.

This paper proposes a memory-efficient group-based wear-
leveling algorithm for large-capacity flash memory storage
systems. To achieve low memory consumption, our algo-
rithm groups logically adjacent blocks into a single group
and only the summary information for each group is main-
tained. We also suggest an efficient representation for the
summary information. Our simulation results show that the
proposed algorithm consumes only 8.75% of memory space
compared to K-Leveling, while showing roughly the same
wear-leveling performance.

2. GROUP-BASED WEAR LEVELING

2.1 Basic Hot-Cold Swapping Algorithm
Block-mapped FTLs [1, 8] are widely used for large-capacity

flash storage because they require relatively smaller mem-
ory size than page-mapped FTLs. In a block-mapped FTL,
LBAs (Logical Block Addresses) are translated into physical
addresses in flash memory. Each LBA is divided into a logi-
cal block number and an offset. The logical block number is
mapped onto a physical flash block (data block) with the as-
sistance of address translation table, and the offset is used to
find the page inside the block which contains the designated
data. In order to update data, an update block (sometimes
called replacement block or log block) is assigned to the cor-
responding data block, and incoming data are written in
the update block. When there are not enough free update
blocks to allocate, a merge operation is triggered to reclaim
free blocks by merging a data block and the associated up-
date blocks.

Our group-based wear-leveling algorithm basically relies
on hot-cold swapping [4, 9, 10] in block-mapped FTLs. The
hot-cold swapping algorithm tries to balance erase cycles by
periodically swapping hot data in old blocks with cold data
in young blocks. We define data blocks with relatively low
erase cycles as young blocks, while data blocks with relatively
high erase cycles as old blocks. Since the data in a data block
imply that they are not updated for a long time, we regard
them as cold data. On the other hand, update blocks are
likely to be re-written and erased soon due to temporal and
spatial locality in storage access patterns. Therefore, the
data in update blocks are classified into hot data.

In the proposed scheme, the swapping condition is ex-
amined whenever a new update block is allocated to a data
block. As we described above, an update block will be erased
soon and the erase cycle of the block will grow faster than
blocks containing cold data. Before an update block is allo-
cated, the erase cycle of the update block is compared with
that of the youngest block. Swapping is performed when
the difference between the two erase cycles is greater than a
certain threshold, TH. Rather than explicitly swapping hot
data in an old block with cold data in a young block, the
algorithm only moves cold data into an old block, thus re-
ducing the number of flash memory operations caused by
swapping. Note that the proposed scheme can be also used
with other block-mapped FTLs.

2.2 Group-Based Algorithm
The main purpose of the group-based algorithm is to re-

duce memory requirement for storing wear information. The
basic idea is to organize several blocks into a group and to
keep only the summary information for each group in mem-
ory, instead of maintaining wear information for every block.

In the proposed algorithm, a group consists of a fixed
number of adjacent logical blocks, and a group summary
represents its overall wear status. The group summary infor-
mation is used to detect uneven wearing and to find victim
groups for wear leveling. Suppose that a group summary
shows that blocks in the particular group are much younger
than other blocks. Then, the group is selected as a victim
group for wear leveling, and a block in the group is swapped
with the other old block.

Since the proposed algorithm relies on the group summary
information, the effectiveness of wear leveling depends on
the accuracy of the summary information. This is because,
unlike other wear-leveling schemes that utilize per-block in-
formation, the group summary information only denotes the
overall wear status of blocks that belong to the group. In
order to minimize negative impact on wear leveling, the sum-
mary should be designed to represent the wear status of a
group as closely as possible.

One of the simplest approaches is to use the average erase
cycle of a group as the group summary. This is straightfor-
ward and easy to implement; the average can be recalculated
whenever a block is erased. For example, if one of the erase
cycle is updated from ec to ec′, the average, avg, would be
(avg × N + ec′ − ec) /N , where N is the number of blocks
in a group. However, this simple averaging scheme is not
accurate enough to express the wear status of a group. To il-
lustrate, suppose that several blocks in a group are swapped
with old blocks. In this case, the average erase cycle of
the group gets much higher than young blocks in the group,
and those young blocks may not be eligible for swapping any
more due to the increased average erase cycle.

In order to enhance the accuracy of the summary informa-
tion, we maintain two average values, namely a total aver-

age (AV GT ) and a partial average (AV GP ), for each group.
The total average denotes the average erase cycle for all the
blocks in a group, while the partial average refers to the av-
erage erase cycle for only those blocks that are not swapped
yet. Initially, AV GT and AV GP have the same value. When
a young block is swapped with an old update block, AV GT

and AV GP are recalculated as follows:

AV GT = AV GT + (ECold − ECyoung) /N (1)

AV GP = ((AV GP × n) − ECyoung) / (n − 1) (2)

ECyoung and ECold represent the erase cycle of the young
block and that of the old update block, respectively. N is
the number of blocks in a group and n denotes the number of
blocks which are not swapped yet. If all the blocks in a group
are swapped, AV GP and n are initialized to AV GT and 0,
respectively. Note that during the calculation of AV GT and
AV GP , update blocks are not considered.

To check the need for hot-cold swapping, the difference
between AV GP and the erase cycle of a newly allocated
update block is compared with respect to TH. If the hot-
cold swapping is necessary, the proposed scheme selects the
youngest group which has the lowest AV GP . Since the pre-
viously swapped blocks do not contribute to AV GP , it is
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Figure 1: Preventing false swapping

very likely that the youngest group has a block with the
lowest erase cycle.

Choosing the actual target block within a group is per-
formed in a round-robin manner. We maintain a round-

robin index for each group which points to the last selected
block in the group. The round-robin index makes it easy to
identify whether a block is swapped or not. In addition, the
round-robin index can be used for the value of n in Eq.(2).

2.3 Preventing False Swapping
Although the use of AV GP is effective in selecting the

victim group, there may be some unnecessary swapping (we
refer it to false swapping) since the individual erase cycle
for each block is not maintained in memory. Figure 1 illus-
trates a situation where false swapping can occur. Suppose
that TH = 30 and the group in figure 1 is selected as a
victim group. In this situation, B1, which is pointed to
by the current round-robin index, becomes the target block
for hot-cold swapping. Swapping B1 with a new update
block, however, has adverse effect on wear leveling because
the erase cycle of B1 is already 41, higher than the erase
cycle of the update block.

False swapping not only degrades the effectiveness of wear
leveling, but also produces unexpected overhead. Moreover,
the chance of false swapping increases as the group size is
getting bigger because a small number of blocks with high
erase cycles can be easily concealed in a group.

In order to prevent false swapping from happening, we do
not solely rely on AV GP of the group, but makes use of the
actual erase cycle for each block. If the difference between
the erase cycle of an update block and the actual erase cycle
of the target block is less than (1−λ)×TH, the target block
is skipped and the next block is considered for swapping. λ
represents the ratio of the margin in erase cycles with respect
to TH. This comparison is repeated until any subsequent
block in the victim group meets the condition.

To use the previous scheme, we need a way to obtain the
erase cycle of the individual block. We solve this problem
by storing the erase cycle of a block in the spare area and by
retrieving it during wear leveling. We reserve a three-byte
counter in the spare area of the first page in each block. The
counter is updated whenever the block is erased. Since the
spare area can be written along with the data area using
a single write operation, there is little overhead to update
the counter. Apparently, reading the spare area accompa-
nies additional overhead. According to our simulation re-
sults, this overhead is negligible compared to the cost of
false swapping. The use of the counter does not hurt our
goal of achieving a small memory footprint as the value of
the counter does not stay in memory.

To summarize, our group-based wear-leveling algorithm
works as follows.

1. When the FTL allocates a new update block, the youngest
group which has the minimum AV GP is selected as a
victim group.

2. In order to examine the wear-leveling condition, the
erase cycle of the update block is compared with AV GP

of the youngest group.

3. If the difference is greater than TH, the erase cycle of
the block pointed to by the round-robin index is read
from the spare area of the block. The erase cycle is
then compared with that of the new update block.

4. If the difference is greater than (1−λ)×TH, the block
is selected as a target block. Otherwise, the block is
skipped and the steps 3–4 are repeated.

5. The live data in the target block are copied to the up-
date block, and the address translation table is modi-
fied to point to the update block.

6. The young target block is erased and allocated as an
update block.

7. Finally, AV GT , AV GP , and the round-robin index are
recalculated. If the round-robin index reaches the last
block in the group, AV GP and the round-robin index
is reset to AV GT and 0, respectively.

2.4 Determining TH and λ

In the group-based algorithm, the threshold value TH
controls the degree of wear leveling. This is because the de-
cision whether the hold-cold swapping should be performed
or not depends on TH. As TH increases, the algorithm
performs less swapping operations and the standard devia-
tion of erase cycles will increase. In contrast, the smaller
TH value results in more swapping operations, lowering the
standard deviation. Although a smaller TH tends to uni-
formly distribute erase cycles across the whole flash memory
blocks, it is not always a good choice because a too small
TH value will cause a lot of swapping operations. In this
case, the average erase cycle grows fast and the wear-leveling
overhead becomes significant. According to our simulation
results, TH = 30 shows a balanced performance in terms
of the standard deviation, the average erase cycle, and the
wear-leveling overhead.

λ is a constant ranging from 0 to 1 and it tunes the de-
gree of false swapping prevention. If λ is 1, the algorithm
performs swapping whenever the erase cycle of a block in
the victim group is smaller than that of the update block.
On the other hand, λ = 0 means that the erase cycle of a
block should be smaller than the update block by at least
TH. Hence, the lower the λ value is, the younger block the
algorithm tries to find inside a group. Our simulation results
show that the values in 0 ≤ λ ≤ 0.2 perform quite well.

3. EXPERIMENTAL RESULTS

3.1 Methodology
To evaluate the proposed wear-leveling algorithm, we have

implemented a trace-driven simulator for large block NAND
flash memory. In our evaluation, the log block scheme [8] is
used as the underlying block-mapped FTL. For comparison,
the random wear-leveling scheme proposed in JFFS2 [11]
and K-Leveling are also implemented.
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Figure 2: The overall results of various wear-leveling schemes

The wear-leveling performance is investigated with the
same traces used in [5]. Three traces, PIC, MP3, and MOV,
model the storage access patterns of digital cameras, MP3
players, and video players, respectively. The PMP trace
models the workload of portable media players (PMPs),
where various image files, MP3 files, and movie files are
created and deleted. The PC trace is gathered from real
user activities on a notebook computer for one week which
involve web browsing, word processing, and playing games,
mp3 files, and video files. During the simulation, each trace
is repeated 50 times to produce a number of erase opera-
tions.

The effectiveness of wear leveling is measured using the
average and the standard deviation of erase cycles as in the
previous work [2, 7]. In addition, the maximum erase cy-
cle among all flash memory blocks is examined, as a block
becomes unreliable if it is worn out beyond the limit.

3.2 Overall Performance
Figure 2 compares the overall effectiveness of four wear-

leveling schemes: no wear leveling, random scheme, K-Leveling,
and our group-based algorithm. In figure 2, these four schemes
are labeled as ‘No WL’, ‘Random’, ‘K-Leveling’, and ‘Group’,
respectively. For the group-based algorithm, three differ-
ent configurations are studied. Two configurations, ‘1 Avg’
and ‘2 Avg’, denote the configuration with a single average
and one with two averages (AV GP and AV GT ), respec-
tively. The ‘Full’ configuration represents our final group-
based wear-leveling algorithm which adds a mechanism to
prevent false swapping. In figure 2, λ is set to 0.2 and the
group size is fixed as 128.

Figure 2(a) shows that the wear-leveling algorithm pro-
duces 1.0–3.5% of additional erase operations. According
to the simulation results, K-Leveling induces the largest
number of swapping operations, and as a result, it shows
the highest average erase cycle. This is because K-Leveling
strictly performs swapping operations whenever the differ-
ence in erase cycles reaches the threshold, while the others
do not.

The standard deviations of erase cycles are illustrated in
figure 2(b). K-Leveling and the group-based algorithm rep-
resent much less standard deviations than the other schemes.
As these wear-leveling algorithms distribute erase operations
explicitly by hot-cold swapping, they can achieve good wear
leveling. The small difference between K-Leveling and the
full version of group-based algorithm comes from the inac-
curacy of the group summary information. Even though the

erase cycle of a block is smaller than the current update
block by more than TH, the presence of the block may be
hidden due to the high average erase cycle. For this reason,
the number of swapping operations in the group-based algo-
rithm can be decreased, inflating the standard deviation.

We can notice that the group-based algorithm ‘Group(1
Avg)’ which relies only on the average erase cycle is not ef-
fective at all for wear leveling. This is because the average
alone cannot properly represent the wear status of a group
after several swapping operations. Even if there are young
blocks in the group, the average erase cycle of the group can-
not satisfy the wear-leveling condition because of a number
of old blocks.

The random scheme shows very limited effectiveness. Since
the scheme just randomly selects the wear-leveling victim,
there can be a lot of unnecessary swapping operations. In
addition, the random scheme only triggers wear-leveling op-
erations on one of every 100 garbage collections regardless
of the distribution of erase cycles. Therefore, the random
scheme does not have much effect on wear leveling.

Finally, figure 2(c) depicts the maximum erase cycle after
the simulation. In terms of the maximum erase cycle, the
group-based algorithm is almost comparable to K-Leveling.
While grouping reduces the number of swapping operations,
it is still effective in controlling the erase cycle of the oldest
block. The overall overhead of the proposed group-based
wear-leveling algorithm is measured to be only 8.3–10.3% of
the total garbage collection cost.

Comparing the results of ‘Group(2 Avg)’ and ‘Group(Full)’
in figure 2(a) and (b), we can observe that the average and
the standard deviation of erase cycles are improved by pre-
venting false swapping. The effect of λ will be analyzed in
detail in section 3.4.

3.3 The Effect of Group Size
Figure 3 illustrates the changes in the standard devia-

tion with respect to the group size in the group-based wear-
leveling algorithm. As the group size grows, the standard
deviation increases since the inaccuracy in the group sum-
mary information is getting exaggerated.

There is obvious trade-off between the effectiveness of
wear leveling and the size of the summary information that
should be maintained in memory. For instance, if we choose
a small group size, more memory space is required to store
the summary information, while achieving better wear lev-
eling. It is somewhat surprising that the group size of 1024
works quite well, keeping the standard deviation below 20.
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3.4 The Effect of False Swapping
Figure 4 exhibits the changes in the standard deviation

when we vary λ from 0 to 1. Compared to ‘Group (2 Avg)’
where false swapping is allowed, we can see that the preven-
tion scheme described in section 2.3 is effective in lowering
the standard deviation.

In general, a low λ value tends to decrease the standard
deviation, in which case the wear-leveling algorithm aggres-
sively tries to find the block inside a group whose erase cycle
differs from the update block by (1−λ)×TH. In most cases,
the results using λ = 0 or λ = 0.2 show the lowest standard
deviation.

Note that preventing false swapping has another benefit
that reduces the overhead of wear-leveling by eliminating
unnecessary flash memory operations. When λ = 0.2, the
wear-leveling cost is cut down by 23.6% on average for the
tested workloads. The cost of reading the spare area is re-
sponsible for only 0.15% of the total wear-leveling cost since
the access time for the spare area is much shorter than other
operations. Our simulation results show that 98.9% of swap-
ping operations find proper target blocks in four trials.

3.5 Memory Consumption
Storing erase cycles for all the blocks for wear leveling

requires a lot of memory space. At least, we need a 20-
bit counter for each block to represent the erase cycle up
to 1,000,000. The number of flash memory blocks for 64
GBytes is 512K, and the total memory space required be-
come 1.28 Mbytes. This is simply too big to fit into a small
flash controller.

K-Leveling keeps only the difference from the smallest
erase cycle [10]. If we assume the threshold K is 30, five bits
are required for each block. The resulting size of the wear in-
formation is 320 Kbytes (512K × 5bits = 320Kbytes) when
the size of flash memory is 64 Gbytes.

The proposed group-based scheme requires two averages
for each group. To represent an average ranging from 0
to 1,000,000, we allocate 24 bits for each average (AV GT

and AV GP ). In addition, the round-robin index for each
group occupies one byte. As a result, each group requires
7 bytes. If a group consists of 128 blocks, the number of
groups is 4,096 for 64 Gbytes flash memory and the total
size of the summary information is 28 Kbytes. Compared to
K-Leveling, the group-based algorithm requires only 8.75%
of memory space. Section 3.3 has shown that the group
size of 1,024 also works reasonably well, in which case the
required memory is reduced to 3.6 Kbytes.

4. CONCLUSIONS
In this paper, we have proposed a group-based wear-leveling

algorithm for large-capacity flash memory storage systems.
The algorithm basically relies on hot-cold swapping in block-
mapped FTLs. By grouping several logically adjacent blocks
into one group and by managing only the summary infor-
mation for each group, we significantly reduce the memory
footprint required for wear leveling. Our evaluation results
show that the group-based wear-leveling algorithm provides
roughly the same wear-leveling performance, while consum-
ing less than 8.75% of memory space compared to the exist-
ing K-Leveling scheme. We plan to investigate other metric
for the summary information that is more effective to wear
leveling.
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