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Perturbations in polyhedral partitions and the related fragility of piecewise
affine control

by
Rajesh Koduri(1), Sorin Olaru(1), Pedro Rodriguez-Ayerbe(1)

Abstract

The control design techniques for linear or hybrid systems under constraints lead
often to off-line state-space partitions with non-overlapping convex polyhedral regions.
This corresponds to a piecewise affine (PWA) state feedback control laws associated to
polyhedral partition of the state-space. The aim of this paper is to consider perturba-
tion in the representation of the vertices of the polyhedral regions. The idea behind this
is to perform a quantization operation on the representation of the state-space regions
and the associated PWA control laws in order to reduce the hardware requirements in
terms of processor speed and memory unit. The quantized state-space partitions lose
some of the important properties of the explicit controllers: non-overlapping, convexity
and invariant characterization. How the perturbation affects the polyhedral regions
and invoke overlapping to the modified polyhedral regions is first shown. The major
contribution of this work is to analyze to what extend the non-overlapping and the
invariance characteristics of the PWA controller can be preserved when perturbation
takes place on the vertex representation. We determine two different sets called vertex-
sensitivity and sensitivity margin to characterize admissible perturbation preserving
the non-overlapping and the invariance property of the controller respectively. Finally,
we show how to perturb multiple vertex sequentially and reconfigure the polyhedral
regions to the perturbed vertices.

Key Words: PWA control, Predictive Control, Explicit MPC, Robustness
Margin.

1 Introduction

Explicit PWA control laws can be easily evaluated and implemented on-line for systems with
extremely fast dynamics and as long as the state-space models are of small dimensions.
Recently, such control laws have gained popularity for a wide range of real-time control
applications [1, 2, 3, 4, 5, 6]. However, the adoption of such control laws are pertained to the
numbers of state-space partitions and the piecewise affine control laws associated with those
partitions. In order to exploit the computational advantages of the explicit controller, a
”truncation or quantization operation” must be performed on the representation of the state-
space partitions and on their associated PWA controls. The implications of the quantized
state partitions and the quantized PWA gains and offsets extend to affect control input
accuracy, whose computations are based on point location functions, and the properties of
the PWA controller. The quantized state partitions might also adversely affect the non-
overlapping and non-emptiness characteristics of the PWA controller. In the recent work
[8, 9], a geometrical approach to determine robustness/fragility margins with respect to
the invariance characteristics of the PWA controller has been proposed. However their
approach does not extend to the quantized state-space partitions. In a recent study [10],
the accuracy of the explicit control input for the quantized regions and the quantized PWA
control laws are analyzed in general to prove the scale of quantization required in order to



obtain a certain degree of control accuracy. However, all these references build the control
input analysis on the assumption that the modified state-space regions are non-overlapping
and thus they do not address one of the essential characteristics of the representation of
the state partitions: the well-posedness and completeness of the polyhedral partition of the
feasible domain.

The framework of the present paper is the one of a linear discrete-time system controlled
by piecewise affine explicit control law. In this paper, it will be analyzed how the regions
or polyhedral partitions change in the event of perturbation on the vertex representation
of the partitions occurs

The paper is organized as follows, after introducing some basic notations and definitions,
the background of the system description is presented in section 2. In section 3, the moti-
vation of the work is described with graphical illustrations and the problem formulation is
stated in a mathematical form. In section 4, the main results concerning with the formu-
lation of overlapping in the change of partition is shown and the vertex sensitivity margin
is provided with related theorem, proof and implementation algorithm. In section 5, a
method to update the vertices on the frontier of the feasible set for admissible perturbation
is provided and, in the same section, the conditions to regain the convexity of the feasible
domain is also discussed. Later in section 5, the treatment of an individual inner vertices
of the polyhedral partitions with respect to the non-overlapping and invariant properties is
provided and an examples for multiple treatment of inner vertices are discussed.

Preliminaries and notations

This section addresses some basic notations and definitions. We denote Rn a Euclidean
space and x ∈ Rn a vector with n elements. A matrix A ∈ Rn×m, A = [aij ] is denoted.
The sets R, R+, Z, N and N+ denote set of real numbers, set of non-negative real numbers,
set of integers, set of non-negative integers, set of positive integers, respectively. For a N ∈
N+, IN denotes the set of integers, IN := { i ∈ N+ | i ≤ N }.

A set S ⊂ Rn is a proper C-set if it is convex, closed, compact and contains the origin in
its interior. A polyhedron is the (convex) intersection of a finite number of open or closed
half-spaces. Such a definition is called half-space representation or simply H-representation.
Consider a polyhedron P whose closed half-spaces can be written as a system of linear
inequalities, e.g,

P = {x ∈ Rn|Ax ≤ b}.
A polyhedron can also be defined as a convex hull of finite set of points x1, · · · , xd, e.g,

P = conv{x1, x2, · · · , xd}

and such a representation is called vertex representation or V-representation. A closed and
bounded polyhedron is called a polytope. The set of vertices of a polytope or polyhedron
M ⊂ Rn is denoted V(M). Given two sets P ∈ Rn and Q ∈ Rn,
- the intersection, denoted by P ∩Q, of P and Q is defined as

P ∩Q = {x ∈ Rn|x ∈ P and x ∈ Q}.

– the union, denoted by P ∪Q, of P and Q is defined as

P ∪Q = {x ∈ Rn|x ∈ P or x ∈ Q}.



– the set difference, denoted by P \ Q, of P and Q is defined as

P \ Q = {x ∈ P|x /∈ Q}.

2 System Description

Let us consider a discrete-time linear system given by,

xk+1 = Axk + Buk. (2.1)

here, xk ∈ Rn is the state vector at time k and uk ∈ Rm is the control input vector. The
system states and inputs variables are subject to constraints, with state constraints given
by

X = {x : Hxx ≤ hx, Hx ∈ Rpx×n, hx ∈ Rpx}, (2.2)

and input constraints by,

U = {u : Huu ≤ hu, Hu ∈ Rpu×m, hu ∈ Rpu}. (2.3)

Where the matrices Hx, Hu and the vectors hx, hu are assumed to be constant, and X ⊂
Rn and U ⊂ Rm. The state and input constraints sets X and U are proper C-sets.

Definition 2.1. A closed and bounded set R ⊂ X is called controlled positively invariant
with respect to the system (2.1) if there exists a control law u∗(xk), such that ∀ x(0) ∈ R,
then xk ∈ R, ∀k ∈ Z.

Definition 2.2. Consider a set of sets PN (R). This will define a polyhedral partition of
the C-set R ⊂ Rn, with PN (R) = {R1,R2, · · · ,RN}, N ∈ N+ and Ri ⊂ Rn if

1. Ri are polyhedral and IN is finite.

2. R = ∪i∈IN Ri,

3. int(Ri) 6= ∅,

4. int(Ri) ∩ int(Rj) = ∅, ∀(i, j) ∈ I2N , and i 6= j.

Definition 2.3. Consider for a given x ∈ Rn and the polyhedral partitions R = ∪Ni=1Ri,
the point location function of the polyhedral partition of R is given by,

x→ i(x) with i : R → N≤N . (2.4)

Practically, i(x) indicates (the unique) polyhedral region that contains x within the partition.
Whenever x lies on the frontiers, there might be several polyhedral sets containing the point.
In such cases, without loss of generality i(x) is selected as the minimal index.

The feedback control law takes the form of a mapping upwa: R → Rm

upwa(xk) = Fi(x)xk + gi(x), xk ∈ Ri(x). (2.5)

defined over the polyhedral partition of the set R = ∪i∈INRi. With respect to the PWA
function, the following assumptions hold

Assumption 2.1. 1. R is positively invariant with respect to xk+1 = Axk+Bupwa(xk).



3 Motivation and Problem Formulation

For real-time implementation of the PWA control law, three stages need to be considered:
(A) Off-line: Storage of the polyhedral regions Ri, the PWA control gains Fi and affine
components gi.
(B) On-line: Use of a point location mechanism with respect to the parameter x and the
polyhedral partitions R = ∪Ni=1Ri, This can be assimilated to a function xk → i(xk).
(C) On-line: Evaluation of the PWA control law upwa(xk) = Fi(xk)x+ gi(xk) based on the
current state xk and the result of the previous stage of positioning.
In practice this evaluation procedure can fail due to several reasons.
(i) The precision of Ri representation.
(ii) Due to point location mismatch.
(iii) PWA control accuracy inflicted by the precision of representation of the control gain
Fi and offset gi.

The PWA control accuracy and the fragility issues of the gains and affine terms Fi and
gi have been extensively discussed in [8, 9, 10]. The resulting solution obtained from the
EMPC problem is a set of PWA functions defined over the polyhedral partition PN (R)
and their analysis in the point iii) above can be handled in the respective framework.
However, the issues related with the representation and the closely related point location
problems (items i) and ii) above) remain largely uncovered and will represent the main goal
of the present work. Before entering into the details of the main results, let us motivate
the chosen approach by considering a polyhedral region Ri ⊂ R ∈ Rn, i ∈ IN , and its
half-space representation given by,

Ri = {x | hi,jx ≤ bi,j ,∀i ∈ IN , j = 1, · · · , ri}. (3.1)

Here, ri denotes the number of closed half-spaces of the region Ri. In order to analyze the
sensitivity of the polyhedral partition representation and its implication on the PWA cont-
rol, a perturbation in the representation of the half-space {hi,rb ≤ bi,rb}, for one of the indices rb ∈
Iri of the region Ri will be considered,

ĥi,rb = hi,rb + ∆hi,rb and b̂i,rb = bi,rb + ∆bi,rb (3.2)

which leads to a new polyhedral set:

R̂i = {x | ĥi,rbx ≤ b̂i,rb}. (3.3)

The perturbation of the half-space representation of the region Ri will concomitantly affect
all the neighbor regions Rj sharing the respective frontier. As several neighboring regions
are affected, the analysis of the effects on the partition will encounter structural problems:

1. Invalidation of the polyhedral partitions definition due to the violation of the property:
int(R̂i) ∩ int(R̂j) = ∅, ∀i 6= j.

2. R \
{
∪Ni=1R̂i

}
6= ∅ even if conv(R) = conv(∪i∈IN R̂i) posing an well-possessedness

issue in the characterization of the polyhedral partition and subsequently in the PWA
function evaluation (2.5).



The first type of problem arise from the asymmetric consideration of the perturbation
in between neighboring regions while the second can take place even if the perturbation is
treated similarly among the neighboring regions. Moreover, both phenomena lead to inva-
lidation of the PWA control law defined over the partition R̂ = ∪i∈IN R̂i. Particularly the
second phenomenon leaves the point location function seemingly untraceable and this case
is shown in Figure 1. The drawbacks demonstrated by the perturbation on the half-space

(a) 2-D Polyhedral with four regions R =
∪4

i=1Ri before perturbation of the half-space
representation.

(b) Illustration of regions R̂1, R̂2, R̂3 and
R̂4 after perturbation of h3,1x = b3,1. Such
a reconfiguration produces holes in the fea-
sible domain that will undermine the well-
possessedness characteristics.

Figure 1: 2-D polyhedral representation before and after perturbation on the half-space
representation.

representation are the consequence of the fact that the perturbations are not considered
jointly for all half-spaces. This is due to the fact that the closed half-spaces of the regi-
ons Ri are treated independently at the level of each neighboring region and addressing
perturbation on such representation is missing the interplay between regions in compo-
sing the polyhedral partition. These drawbacks lead us to the duality of the polyhedron
representation where the problem formulation can be reformulated.

Eq (3.1) can be given with equivalent vertex representation in the virute of Motzkin
duality:

Ri = Conv{vi,1, · · · , vi,ri}, ∀i ∈ IN (3.4)

here ri is the number of vertices of Ri. Now, consider a perturbation with respect to the
vertex representation vi,j , j ∈ Iri of the region Ri,

v̂i,j = vi,j + ∆vi,j , i ∈ IN , j ∈ Iri (3.5)

this will lead to a new polyhedral set:

R̂i = Conv{vi,1 + ∆vi,1, · · · , vi,ri + ∆vi,ri}. (3.6)

It becomes obvious that in this case R \
{
∪i∈IN R̂i

}
= ∅ if the vertices on the frontier

of R are not perturbed. The loss of continuity is the price to be paid for the loss of



precision in the partition representation and can be acceptable as long as the control action
is uniquely defined on the interior of the full-dimensional regions within the partition. This
possible overlapping due to changes in the vertices of the polyhedral partition represents
a critical structural change because the unicity of the control law is lost on a compact
full-dimensional region of the state-space. The non-uniqueness of the control action leads
to behaviors which are difficult to characterize in terms of determinedness and lose of
performance and thus should be avoided in the first place. This issue forms the basis for
investigation in the present paper and can be resumed by the need to characterize the
limits of the perturbation which preserve the ”non-overlapping” property of the polyhedral
partition. In order to illustrate the partitions in this framework and present the obvious
advantages of considering perturbation on the vertex representation, a similar partition to
the one presented in Figure 1 is depicted in the Figure 2. This time it is obvious that
using the dual representation of polyhedra and their perturbed version, the completeness

of the partition is not lost. In general terms, the case R \
{
∪Ni=1R̂i 6=

}
∅ is avoided from

the consequences of the perturbations in the polyhedral partition. To resume, starting
from the existence of the system in the form (2.1) stabilized by a PWA control law, the
main objective is to discuss the impact of perturbations on the vertex representation of the
polyhedral region by proposing:

• An analysis of the admissible perturbations with respect to the overlapping characte-
ristics of the PWA controller,

• An analysis of the admissible perturbations with respect to the invariance properties
of the PWA controller.

4 Treatment of a vertex considered independently - Po-
lyhedral overlapping

In the following, a formal definition of the vertex sensitivity is provided focusing on the
non-overlapping property of the polyhedral regions under the assumption that all the other
vertices are fixed and only the vertex under study is subject to perturbations.

Definition 4.1. Consider the set of partitions PN (R) ∈ Rn with each region given by its
vertex representation Ri = Conv{vi,1, · · · , vi,ri}, i ∈ IN . Assume v ∈ Rn be a vertex within
PN (R) and denote Θv as the set of indexes of polyhedral regions having v as a vertex:

Θv = {j ∈ IN | v ∈ V(Rj)} (4.1)

A compact set Ψ ⊂ R ⊂ Rn is describing a vertex sensitivity for the vertex v if v ∈ Ψ and
for all (v + ∆v) ∈ Ψ the collection of sets{

R̂j = Conv{V(Rj) \ {v}, v + ∆v}, ∀j ∈ Θv,

R̂j = Rj ,∀j ∈ IN \Θv (4.2)

represents a polyhedral partition: P̂N (R) = {R̂1, · · · , R̂N}. The sensitivity margin for
the vertex v is defined as the set Ψv containing any valid vertex sensitivity Ψ ⊂ Ψv.



(a) 2-D Polyhedral with four regions R =
∪4

i=1Ri before perturbation of the vertex re-
presentation.

(b) Illustration of regions R̂1, R̂2, R̂3 and
R̂4 = R4 after perturbation preserving the
property, int(R̂i)∩int(R̂j) = ∅, ∀i, j ∈ I4, i 6=
j. Such a reconfiguration of the partition is
admissible from the point of view of point-
location.

(c) Illustration of regions R̂1, R̂2, R̂3 and R̂4 ==
R4 after perturbation with the particular configuration
leading to: int(R̂i) ∩ int(R̂j) 6= ∅, ∀i, j ∈ I4, i 6= j.

Figure 2: 2-D polyhedral representation before and after perturbation of the vertex repre-
sentation

Given this formal definition, we concentrate next on the structural properties of this set
and on its practical construction.

4.1 Characterization of the vertex sensitivity

In the next result, the structure of the sensitivity margin is stated while the proof will be
constructed in such a way that the two scenarios of infeasible perturbations are enumerated



and fully characterized. More than that, the set characterization will be constructive and
allows the statement of a finite algorithmic procedure.

Theorem 4.1. Consider the subset of regions Rj , j ∈ Θv of PN (R) such that v ∈
V(Rj), ∀j ∈ Θv, then the vertex sensitivity margin Ψv is represented by a polyhedral set.

In order to illustrate the result Figure 3a presents a polyhedral partition with four
regions Ri, i = 1, · · · , 4 and the vertex of interest v = [1 − 1]T is denoted by a black dot.
The vertex v belongs to three regions. In Figure 3b, the vertex sensitivity region Ψv is
represented by a blue polytope and the vertex v can be settled to any of the points in the
polytope Ψv in the event of reduced precision in the representation of the polytopic region.

(a) Polyhedral with four regions
R1,R2,R3,R4 and the black dot repre-
sents v.

(b) The vertex of interest v and the vertex sen-
sitivity region Ψv is shown.

Figure 3: Polyhedral partition with four regions, the vertex of interest v and the vertex
sensitivity region Ψv are shown.

Following the structural result in Theorem 4.1, the vertex sensitivity region Ψv is a
polytopic set. For any perturbed vertex v̂ or point outside the red polytope in Figure 3,
the non-overlapping property of the PWA control law is lost. As expected, the new regions
formed with the displaced vertex v̂ guarantees the ”non-overlapping” property of the poly-
hedral partition if v̂ ∈ Ψv. This observation is validated with the help of the Figure 4a and
Figure 4b, where the polyhedral regions are recreated by the displacement of vertex v̂. In
Figure 4a the vertex v = [−1 − 1]T is displaced to vertex v̂ = [−1 0]T ∈ Ψv which alters
all the four regions in with indices in Θv but still preserves the overlapping property i.e.,
int(R̂i) ∩ int(R̂j) = ∅, ∀i, j ∈ I4, i 6= j. Conversely, in Figure 4b, it is clearly visible that
the overlapping of the regions takes place since v̂ = [−1 1]T /∈ Ψv.



(a) After perturbation v̂ ∈ Ψv the regions are
changed and int(R̂i) ∩ int(R̂j) = ∅, ∀i, j ∈
Jv, i 6= j.

(b) After perturbation v̂ /∈ Ψv int(R̂i) ∩
int(R̂j) 6= ∅, ∀i, j ∈ Jv, i 6= j.

Figure 4: The vertex v denoted by a black dot in Fig. 3.4 (a) is perturbed to v̂ changing
the regions R1,R2,R3,R4 to R̂1, R̂2, R̂3, R̂4.

5 Impact of Vertex Perturbation on the invariance cha-
racterization

In this section, we bring into discussion the set invariance characterization in relationship
with the PWA controller. The positive invariance of the closed-loop dynamics will be
considered on top of the non-overlapping property of the PWA control function (Theorem
4.1) which retains a well-possessedness structural property. It is important to mention that
we preserve the assumption that only one vertex is perturbed at the time, all the other
vertices being maintained at the nominal values.

From Theorem 4.1, it is understood that the vertex sensitivity can be analyzed with
respect to the admissible perturbation related to the non-overlapping characteristics for
any single vertex of the polyhedral partition PN (R). In order to incorporate the analysis of
vertex sensitivity with respect to the invariance property of the PWA control law, we will
have to make a difference among the vertices and the impact of their perturbation. The
vertices that represent extreme points of the set R are particularly sensitive to perturbation
taking into account that they characterize the controlled-invariant properties per se. Indeed,
any perturbation to these vertices will change the topology of the boundary of the set R
and potentially invalidate the positive invariance. The second class of vertices are those
that are included in the strict interior of the set R.

5.1 Perturbations of vertices on the frontier of the feasible domain
R

In the following we analyze the perturbation of vertices that represent extreme points of the
set R (placed on the frontier of R) and thus, by their repositioning lead to a reconstruction
of the polyhedral partition PN (R) = {R1, · · · ,RN}.



Consider the set R = ∪Ni=1Ri, with Ri = Conv{vi,1, vi,2, · · · , vi,ri}. Let us define the
set of vertices on the frontier of R as:

V = {v ∈ R : ∃i such that v ∈ V(Ri) and
v /∈ int(R)}. (5.1)

For the sake of notation, the set will be represented as, V = {v1, v2, · · · , vr} with r the
number of vertices, lying on the frontier of the set R.

The analysis of perturbations in the representation of the set R all by assuring the non-
overlapping and invariance characteristics of PN (R) is directly related to the positioning
of the frontier vertices and will be considered for each vertex in V taken independently.
We start by recalling the closed-loop mapping for any point in the set R preserving the
invariance characteristics of the PWA controller:

fpwa(x) = Ax + Bupwa(x) ∈ R. (5.2)

Using (5.2), we can represent the image of the set R by,

Fpwa(R) = {y ∈ Rn|∃x ∈ R such that y = fpwa(x)}. (5.3)

In the work of Scibilia et al [13], it has been shown that any approximation of R denoted
by Rα and which satisfies Rα ⊆ R and Rα ⊇ Fpwa preserves the invariance property
of the closed loop. We aim to exploit the same principle in the framework of the vertex
perturbations of the PWA control functions. We are interested in guaranteeing that the
invariance holds with respect to a set Rα defined in relationship with the existing PWA
controller by perturbation of one of the frontier vertices v ∈ V towards a point v̂ ∈ R thus
leading to a novel (perturbed) set:{ Rαi (v, v̂) = conv{V(Ri) \ v, v̂},∀i ∈ IN ,

Rα(v, v̂) = ∪Ni=1Rαi (v, v̂),
PN (Rα(v, v̂)) = {Rα1 (v, v̂), . . . ,RαN (v, v̂)}.

(5.4)

Theorem 5.1. Let a dynamical system in the form (2.1) and the PWA control law upwa(x)
(2.5) defined over the set R and assuring its positive invariance in closed-loop. Given a set
Rα ⊂ R, the function ûpwa : Rα → U defined as ûpwa(x) = upwa(x), ∀x ∈ Rα ensures the
positive invariance of Rα with respect to xk+1 = Ax + Bûpwa(x) if Rα ⊇ F .

Unfortunately, the Theorem 5.1 is not offering the appropriate guarantees for the positive
invariance of Rα in closed loop with the perturbed PWA control law. The main reason
is that after perturbation of a vertex of the set Rα(v, v̂), the new PWA function is not
guaranteed to preserve the relationship upwa(x) = ûpwa(x), ∀x ∈ Rα as stated in the
Theorem above. The new partition PN (Rα) 6= PN (R) and it differs in the regions affected
by the perturbation of the vertex v as long as Rαi (v, v̂) 6= Ri,∀i ∈ Θv. Explicitly, after
perturbation, we have:

ûpwa(x) = Fix + gi for x ∈ Rαi (v, v̂), (5.5)

and ûpwa(x) 6= upwa(x) when x ∈ Ri but x /∈ Rαi . This observation leads us to the
statement of the main result where the following notation will be used:

F̃(Rα) = {y ∈ R|∃x ∈ Rα such that
y = Ax + Bûpwa(x)}. (5.6)



Theorem 5.2. Let v ∈ V and its perturbation v̂ = (v + ∆v) ∈ Ψv. The positive invariance
properties of the set Rα(v, v̂) with respect to xk+1 = Ax + Bûpwa(xk) is guaranteed if

Rα(v, v̂) ⊇ F and F̃(Rα) ⊂ F .

Example

In the Figure 5 (a), there are 8 inner vertices and we choose to manually displace them for
this analysis and illustrative purpose. In the subplots from Figure 5, the polyhedral regions
R̂i are presented with the vertex sensitivity and invariance-vertex sensitivity sets depicted
in red and green color respectively, for the vertex that has the smallest Chebychev radius.
The symbols dot and × in the subplots are the vertex candidate and the new position where
the candidate will end up after perturbation. The numerical values of the vertices v̄ are
originally double precision representation but in the table we restricted the values till four
decimal places due to space constraint.

Starting from Figure 5a, for the first vertex candidate, we perturb the vertex from
[−1.3314 8.1440]T to the position [−4.0, 1.6]T there by affecting three regions. The next
subplot shows the new polyhedral regions after perturbation. After the 8th iteration, the
subplot 5i represents the final set R̂. From Figure 5, it is obvious from the subplots
that no overlapping took place although a very aggressive perturbation has been tested
for illustration. This validates one part of our work. In order to conclude on the closed
loop behavior, we simulated for the state trajectories for the PWA controller for the outer
vertices as initial states and this is presented in Figure 6. In the second analysis, we
assume that the vertices on the frontier of the set R are fixed. A quantization function
f(v̄j) = v̄j + ∆v̄j , ∀j ∈ Ip with a random variable ‖∆v̄j‖∞ ≤ 0.2 is considered for all the
inner vertices in the set R.

Figure 6: The states trajectories for the polyhedral partition for the vertices that lie on the
boundary of the polytope.

6 Conclusion

In this work the analysis on the perturbation of the vertex representation has been presen-
ted. The vertex sensitivity that characterize for the admissible perturbation for assuring
the non-overlapping properties has been derived. The sensitivity set that preserve the



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: In the subplots, the polyhedral regions R̂i are presented with the vertex sensitivity
and invariant-vertex sensitivity sets depicted in red and green color respectively. The dot
and the × in the subplots are the vertex candidate and their new positions

invariance characteristics in the event of perturbation for the PWA control has been com-
puted. It was shown that a perturbed polyhedral partition can be constructed by treating
sequentially each vertex with a higher priority on those with a small sensitivity margin.
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