
Concurrency Effects Over Variable-size Identifiers in
Distributed Collaborative Editing

Brice Nédelec, Pascal Molli, Achour Mostefaoui, Emmanuel Desmontils
LINA, 2 rue de la Houssinière

BP92208, 44322 Nantes Cedex 03
first.last@univ-nantes.fr

ABSTRACT
Distributed collaborative editors such as Google Docs or

Etherpad allow to distribute the work across time, space
and organizations. In this paper, we focus on distributed
collaborative editors based on the Conflict-free Replicated
Data Type approach (CRDT). CRDTs encompass a set of
well-known data types such as sets, graphs, sequences, etc.
CRDTs for sequences model a document as a set of ele-
ments (character, line, paragraph, etc.) with unique iden-
tifiers, providing two commutative update operations: in-
sert and delete. The identifiers of elements can be either of
fixed-size or variable-size. Recently, a strategy for assigning
variable-size identifiers called LSEQ has been proposed for
CRDTs for sequences. LSEQ lowers the space complexity
of variable-size identifiers CRDTs from linear to sub-linear.
While experiments show that it works locally, it fails to pro-
vide this bound with multiple users and latency. In this
paper, we propose h-LSEQ, an improvement of LSEQ that
preserves its space complexity among multiple collaborators,
regardless of the latency. Ultimately, this improvement al-
lows to safely build distributed collaborative editors based
on CRDTs. We validate our approach with simulations in-
volving latency and multiple users.

Categories and Subject Descriptors
I.7.1 [Document and Text Processing]: Document

and Text Editing—Document management ; C.2.4 [Computer-
Communication Networks]: Distributed Systems—Dis-
tributed applications; D.2.8 [Software Engineering]: Met-
rics—Complexity measures

Keywords
Distributed Documents; Document Authoring Tools and

Systems; Distributed Collaborative Editing; Real-time Edit-
ing; Conflict-free Replicated Data Types

This work is licensed under the Creative Commons Attribution-
ShareAlike 3.0 Unported License (CC BY-SA 3.0). To view a copy
of the license, visit http://creativecommons.org/licenses/by-sa/3.0/.

DChanges 2013, September 10th, 2013, Florence, Italy.
ceur-ws.org Volume 1008, http://ceur-ws.org/Vol-1008/paper5.pdf.

1. INTRODUCTION
Distributed collaborative editors allow to distribute the

work across space, time and organizations. Some trending
editors such as Google Docs [5] use the Operational Trans-
form (OT) approach [14, 15]. However, an alternative based
on Conflict-free Replicated Data Types (CRDTs) [12, 13]
exists. Compared to OT, CRDTs are more decentralized
and scale better.

The CRDTs belong to the optimistic replication [10, 11]
approach. Therefore, replicas involved in the collaboration
are guaranteed eventual convergence to an identical state.
To provide convergence in a replicated sequence, CRDTs use
unique identifiers to link elements. When the sequence is a
document, the elements can be characters, lines, paragraphs,
etc.

We distinguish two types of sequence CRDTs: (i) The
tombstone CRDTs [1, 3, 7, 8, 9, 16, 18, 19] use fixed-size
identifiers. However, the delete operations only mark and
hide elements to the users. Consequently, these deleted el-
ements permanently affect performances. (ii) The variable-
size identifiers CRDTs [8, 17] directly encode the order re-
lation in the identifiers. However, their identifiers can grow
linearly depending on the editing behaviour. Consequently,
they remain unsafe in the distributed collaborative editing
context.

To overcome their respective limitations, these approaches
need an additional protocol [4, 9] related to garbage col-
lection mechanisms. Nevertheless, these protocols require
global knowledge over participants. In the general case, such
knowledge remains prohibitively expensive in the context of
distributed networks subject to churn.

Recently, LSEQ [6] allowed variable-size identifiers CRDTs
to get rid of this costly additional protocol by lowering their
upper bound on space complexity from linear to sub-linear.
Yet, LSEQ does not guarantee a safe allocation. Indeed, it
uses multiple antagonist strategies which, without any coor-
dination between collaborators, leads to an quadratic growth
of identifiers.

The contributions of this paper are: (i) experiments that
highlight the negative effect of multiple users edition on the
size of LSEQ identifiers (ii) experiments that highlight that
an increasing latency does not have a negative impact on
the size of LSEQ identifiers. (iii) an improvement of LSEQ
called h-LSEQ that extends the single user sub-linear upper
bound on space complexity to any number of users, regard-
less of the latency, and without any additional cost.

Ultimately, h-LSEQ allows distributed collaborative edi-
tors to safely use variable-size identifiers CRDTs.

The rest of the paper is organized as follow: Section 2 de-
tails variable-size identifiers CRDTs for sequences, the allo-
cation strategy LSEQ, and highlights the motivation of this
paper. Section 3 presents h-LSEQ a combination of LSEQ
and a hash-based choice strategy to overcome the LSEQ
limitations. Section 4 shows the results of experiments over
LSEQ and h-LSEQ considering latency and multiple users.
Finally, Section 5 reviews the related works.

2. BACKGROUND
Conflict-free Replicated Data Types belong to the opti-

mistic replication approach [10, 11]. In the context of dis-
tributed collaborative editing, the replicated data is a doc-
ument, where: (1) each insert/delete operation is prepared
locally and broadcast, (2) each remote replica receives and
integrates the changes, (3) all involved replicas eventually
converge to an identical state.

To provide the convergence property, CRDTs for sequences
model a document as a set of couples 〈elt, id〉 where id ∈
(I, <id), <id being a strict and dense total order over I,
and elt any element, e.g., a character, a line. Two commu-
tative operations allow to update the document:

– insert(p ∈ I, elt, q ∈ I) that generates an identifier idelt
with p < idelt < q and adds 〈elt, idelt〉 to the document.

– delete(idelt) that removes 〈elt, idelt〉 from the document.
The variable-size identifiers CRDTs [8, 17] define identi-

fiers as a series of numbers that can designate paths in a
tree. An allocation strategy is in charge of choosing these
sequences of numbers. It aims to keep these identifiers as
small as possible for the sake of performance.

0 99
20 21 50

(1)Begin End

10 11

(2)

Figure 1: Underlying 100-ary tree model of variable-size
identifiers CRDTs. It contains 5 identifiers. 3 identifiers at
depth-1: [20], [21], [50] and 2 identifiers at depth-2: [20.10],
[20.11]. For the sake of simplicity the elements linked to
identifiers are not displayed.

Figure 1 illustrates the underlying model of variable-size
CRDTs. If an insertion operation is performed at (1), the
allocation strategy chooses an identifier [X] with 50 < X <
99. When the insert operation is performed at (2), there is
no room for another identifier, therefore, the new identifier
will be a sequence of three numbers: [20.10.X], where 0 <
X < 100.

These identifiers can grow linearly depending on the po-
sition of insert operations.

Recently, LSEQ [6] lowered the space complexity of these
CRDTs from linear to sub-linear without favouring any edit-
ing behaviour. This improvement aims to get rid of the

previously mandatory garbage collecting protocol. Three
aspects define LSEQ:

– base doubling: regarding the underlying tree model,
each node can have twice more children than its par-
ent. It follows the properties of exponential trees [2].

– two antagonist allocation strategies: boundary+ and
boundary– that are designed for end-edition and front-
edition respectively.

– random strategy choice: it randomly assigns an allo-
cation strategy to each depth of the tree. It follows
the intuition: since we have no prior knowledge of the
editing behaviour, the strategy choice should not favor
any editing behaviour. Consequently, the frequencies of
appearance of each allocation strategy have to be equal.

Despite the fact that numerous experiments have been
performed using LSEQ including real documents extracted
from Wikipedia, they did not include any concurrency. Al-
though, Wikipedia’s revisions already present a serialization
of the document without explicit concurrency, experiments
with this type of documents are of great importance [1].

#insert operations
10 100 200 500 1000

1 user (bit/id) 6.5 26.8 32.7 56.0 64.2
10 users (bit/id) 9.5 125.8 377.0 1962.1 5468.0

Table 1: Average bit-length of LSEQ identifiers for single
and multiple user(s) and the generation of documents of 10,
100, 200, 500, and 1000 lines.

Table 1 shows the average bit-length of the identifiers as-
signed by LSEQ on different size synthetic documents cre-
ated either by a single user or by a group of 10 collaborators.
Both documents were edited at the end. We observe that
while the identifiers resulting from a single author are sub-
linearly upper-bounded, the bit-length of identifiers gener-
ated by 10 users are quadratically increasing.

Definition 1 (Problem statement). Let D be a doc-
ument on which n insert operations have been performed. Let
I(D) = {id|(, id) ∈ D}. The function alloc(idp,idq) should
provide identifiers such as:∑

id∈I

log2(id)
n

< O(n)

Definition 1 from [6] states the alloc function property: a
sub-linear upper-bound on the average bit-length of identi-
fiers. By excluding any reference to the two phases of opti-
mistic replication operations, it encompasses both the local
generation of identifiers and the integration of remote oper-
ations. According to Table 1, LSEQ only partially answers
the problem statement.

The identified problem concerns the preservation of the
space complexity of LSEQ from single user to multiple users
edition. Using multiple antagonist strategies without any co-
ordination between collaborators leads to a quadratic growth
of identifiers. Consequently, providing a mechanism of agree-
ment in the choice of strategies would greatly improve LSEQ
as well as any composition of allocation strategies. Further-
more, such improvement would make variable-size identifiers
CRDTs actually usable in the distributed collaborative edit-
ing context.

3. H-LSEQ
The h-LSEQ allocation strategy is mainly based on LSEQ,

they differ in the strategy choice component. Using LSEQ,
each replica involved in the collaboration makes independent
random choices. However, Section 2 showed that such strat-
egy fails to provide sub-linearly upper-bounded identifiers in
collaboration involving multiple users.

The solution is to reach a global agreement over replicas
on which is the allocation strategy used at each depth of the
underlying tree model. Since LSEQ aims to get rid of proto-
cols related to garbage collecting mechanisms, any solution
that requires additional communication is inconceivable.

We propose to use a hash strategy choice component which
have the same local behaviour than the original random
strategy choice, but it also provides the required implicit
global agreement. Indeed, instead of synchronizing the set
of users, we provide an a priori agreement by the mean of
a hash function. This agreement avoids the possibility of
antagonist choices which would have led to a bad global al-
location of identifiers. Furthermore, it does not introduce
any additional cost to LSEQ.

Algorithm 1 details the h-LSEQ allocation strategy. The
changes over LSEQ are simply highlighted. This section ex-
plains this algorithm. Extracted from [6], the prefix function
return a copy of the identifier id, i.e., a series of numbers
truncated at depth or increased until depth. The function
carefully encodes each number of this copy in a base depend-
ing on its depth in order to directly apply the arithmetic
operations of line 26 and line 31. For instance, assuming
that the departure base is 25, a call to prefix([13.42.37], 2)
encodes [13.42] using 5 + 6 bits.

The functions boundary+ and boundary− are two allo-
cation strategies, note that they do not strictly respect the
alloc function signature in order to factorize the computa-
tion of depth and step.

3.1 Locally
The strategy choice function is surjective and its signature

is: h(depth ∈ N∗) : N. The returned value corresponds to an
allocation strategy unique identifier. The algorithm of the
allocation strategy h-LSEQ follows 3 steps:

1. lines 8-11: computes the depth of the future identifiers
to allocate

2. line 13: calls the strategy choice function h using the
depth

3. line 15: calls the allocation strategy using the identifier
returned by h

The strategy choice function returns strategy identifiers
following a uniform law. Thus, frequencies of appearance
of each strategy are equal and does not favor any editing
behaviour. Furthermore, the unpredictability due to ran-
domness preserves the model from intentional and malicious
attacks.

The hash function fulfills the requirement of the strategy
choice function h. However, contrarily to the random strat-
egy choice component, it requires an initialization. Indeed,
the creator of the document must share a hidden seed (cf.
line 2) within the document that each collaborator will use
to generate the hash function specific to this document. In
Algorithm 1 at line 21, we simply use the common random
function initialized with the seed and the depth.

Algorithm 1 h-LSEQ allocation function

1: let boundary := 10 � Any constant

2: let seed := 123456789 � Init with document

3: let S := {〈0, boundary+〉, 〈1, boundary−〉};

4: � map<id, allocation strategy>

5:
6: function alloc(p, q ∈ I)
7: let depth := 0; interval := 0;
8: while (interval < 1) do � Not enough for 1 insert
9: depth++;

10: interval := prefix(q, depth)− prefix(p, depth)− 1;
11: end while
12: let step := min(boundary, interval); � Process the

maximum step to stay between p and q

13: let idStrat := h(depth);

14: � Call the hash function

15: let id := S.get(idStrat).invoke(p, q, depth, step);
16: � Call the allocation strategy according to hash
17: return id;
18: end function
19:
20: function h (depth ∈ N∗)

21: return Random(seed ∗ depth).nextInt(0, 1);
22: end function
23:
24: function boundary+(p, q ∈ I, depth, step ∈ N∗)
25: let addV al := RandInt(0, step) + 1;
26: return prefix(p, depth) + addV al;
27: end function
28:
29: function boundary–(p, q ∈ I, depth, step ∈ N∗)
30: let subV al := RandInt(0, step) + 1;
31: return prefix(q, depth)− subV al;
32: end function
33:
34: function prefix(id ∈ I, depth ∈ N∗)
35: let idCopy := [];
36: for (cpt := 1 to depth) do
37: if (cpt < id.size) then � Copy the value
38: idCopy := idCopy.append(id.at(cpt));
39: else � Add 0 encoded in the right base
40: idCopy := idCopy.append(0base(cpt));

41: end if
42: end for
43: return idCopy;
44: end function

3.2 Remotely
Each collaborator generates the same hash function thanks

to the shared seed. Also, all collaborators use the same map-
ping id→ allocation strategy (cf. line 3). Consequently, all
hash functions map the same depth to the same allocation
strategies. The idea is to reach a consensus on which strate-
gies to employ in order to avoid the waste of identifiers’ space
due to the choice of antagonist strategies.

Figure 2 highlights the differences between the original
random strategy choice and our hash strategy choice. Both
cases present two collaborators inserting 2 elements one af-
ter the other. The expected result is the sequence “abcd”.
Hence, Collaborator 1 generates the “a” and “c” and Collab-
orator 2 generates the “b” and “d”. In both cases they draw
the same numbers. However, in the case of random strategy
choice, one collaborator randomly chooses boundary+ twice
while the other randomly chooses boundary– twice. When
the editing behaviour is monotonic, the size of identifiers

LSEQ h-LSEQ

9 30

7 63

Begin

0

End

31

a
b

c d

20 ids

55 ids

9 10 17 18

Begin

0

End

31

a b c d

Collaborator 1
Collaborator 2

Figure 2: Representation of the underlying exponential tree
model of LSEQ and h-LSEQ. Two collaborators insert two
elements at the end of the document in order to get the
sequence “abcd”. On the random side, the collaborators em-
ploy antagonist strategies. On the hash side, the collabora-
tors use the same allocation strategy. Both sides draw the
same random numbers.

quickly grows. On the opposite, the collaborators using h-
LSEQ implicitly agree on using boundary+ at depth-1, con-
sequently the allocation follows the properties of the one
user edition presented in [6].

The next section aims to corroborate our assumptions by
performing experiments on different setups with varying the
number of collaborators and the latency of the network.

4. EXPERIMENTS
This section is composed of two parts. First, the experi-

mentation focuses on the influence of the number of collab-
orators on the size of LSEQ and h-LSEQ identifiers. A set
of synthetic collaborators generates a document by succes-
sively performing insert operations at the end. This experi-
ment aims to show the behaviour of the two strategy choices,
and compare the results with the expected sub-linear space
complexity.

The second part of experiments consists in highlighting
the effect of latency on a document edited by multiple users.
Once again, it aims to compare LSEQ and h-LSEQ and
to show the impact of concurrency on the average size of
identifiers in the document.

The experiments focus on the digit bit-length of generated
identifiers. Indeed, all variable-size CRDTs rely on source
and clock to guarantee the unicity of identifiers, neverthe-
less, the space complexity mainly depends on the digit choice
made by the allocation strategy.

To perform these experiments, we implemented a simu-
lation framework called HumbleSimulator. The sources are
available on the Github platform under the terms of the
GPL licence 1.

4.1 Multiple users experiment
Objective: show that the random strategy choice with-

out taking into account the strategies employed by other
collaborators leads to a quick growth in the size of identi-
fiers. On the opposite, when all collaborators uses a common
allocation strategy at a given depth, the space complexity
remains sub-linearly upper-bounded.

Description: we evaluate LSEQ and h-LSEQ strategies
on a group of 10 collaborators. Thus, the setups are (i) a ran-
dom strategy choice (rand) and (ii) a hash strategy choice

1. https://github.com/Chat-Wane/HumbleSimulator

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

n
°

re
v

revision

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

id
 b

it
-l
e

n
g
th

n° line

LSEQ+rand
LSEQ+hash

Figure 3: Experiments on a synthetic document of 100 lines
edited at the end by 10 collaborators with 10 operations
per user. The top figure shows the revision number of the
operation. The bottom figure shows the bit-length of each
identifier allocated to each line. On average, the bit-length
of LSEQ and h-LSEQ identifiers are 94.7 and 39.1 bit/id
respectively.

(hash). Both of these setups use boundary+ and boundary–
and have the same variable values boundary = 10 and base =
24+depth. A set of 10 collaborators produces a document of
100 lines by performing 10 insert operations each.

Results: Figure 3 shows on the top part the spectrum of
the synthetic document, i.e., the revision date of each line.
Since the bars are getting taller when they are closer of the
end of the document, it indicates that the users edited at
the end monotonically. On the second part of the Figure 3,
it shows the identifier bit-length associated to each line. We
observe that the identifiers of rand setup quickly increase
while the hash identifiers remain similar to the ones in the
experiment made for one user in [6]. Consequently, the hash
setup is the most suitable setup in the context of distributed
collaborative editing.

Reasons: both setups use boundary+ and boundary– al-
location strategies. However, each collaborator in the rand
setup makes independent choices of allocation strategies when
required. Thus, if a collaborator chooses a particular strat-
egy, and another user chooses the antagonist strategy, then
a large number of identifiers is wasted when their operations
are delivered to each other. On the other hand, when the
same hash function spread over all collaborators generates
the same strategy choices, it keeps the random behaviour lo-
cally and also makes an implicit agreement on which strategy
to employ at any given depth.

4.2 Latency experiment
Objective: show that increasing the latency, i.e., the

time between the generation and the delivery of an oper-
ation, does not imply a growth in the size of identifiers. On
the contrary, when the latency increases, the average size of
allocated identifiers decreases. This behaviour is expected
for LSEQ and h-LSEQ strategies.

Description: we simulate the production of a 100 lines
document by a set of 10 collaborators. Each one of these col-
laborators performs 10 insert operations at the end of the

https://github.com/Chat-Wane/HumbleSimulator

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700

id
 b

it
-l
e

n
g

th

latency

LSEQ+rand
LSEQ+hash

Figure 4: Experiments of latency effects over the average
bit-length of identifiers. The x-axis shows the latency varia-
tion in number of rounds, i.e., the average time between the
send and the receive of an operation. The y-axis shows the
average bit-length of identifiers. A group of 10 collaborators
generates a synthetic document of 100 lines by performing
10 operations each. Two configurations of LSEQ: the orig-
inal random strategy choice and the hash strategy choice
(h-LSEQ).

document. The users generate operations following the Pois-
son distribution of parameter λ = 100, i.e., users more likely
generate an operation after 100 rounds (arbitrary unit) from
their previous operation. Measurements are done at a la-
tency of 5, 10, 20, 40, 80, 160, 320, 640 rounds. They concern
the average bit-length of identifiers in the document. We
evaluate two setups: the random strategy choice (rand) and
the hash strategy choice (hash). Both setups use the alloca-
tion strategies boundary+ and boundary− with boundary =
10 and departure base = 24+depth.

Results: Figure 4 shows the results of the latency ex-
periments. As expected, the two setups allocate identifiers
with an average bit-length that quickly decreases when the
latency increases. Therefore, the latency does not badly
affect LSEQ and h-LSEQ allocation strategies. Also, it con-
firms observations made in the previous experiment: hash
performs better than rand, especially under low latency.

Reasons: increasing the latency delays the arrival of op-
erations to the remote collaborators. Thus, each collabora-
tor works locally until operations generated by other users
are delivered. Considering the extreme case with the maxi-
mum latency, each collaborator generates his 10 insertions,
and then merges the others’ 90 operations. Consequently,
the 100 operations share the same space, i.e., the digit part
of identifiers can be the same for multiple elements, and the
total order is maintained by the source and clock.

4.3 Synthesis
The experiments evaluated the effect of concurrency on

the average bit-length of identifiers by varying the number
of collaborators and the latency. They showed that an im-
plicit and a priori agreement on allocation strategy choice
is required to maintain the sub-linear upper-bound on space
complexity. Employing the same hash function to choose the

allocation strategy permits to reach this agreement. Conse-
quently, the improvement of LSEQ called h-LSEQ can be
safely used in distributed collaborative editing. The latency
experiment shows that increasing the latency parameter only
results in sharing the identifier space, and consequently low-
ers the size of identifiers. As a corollary, considering an im-
mediate delivery of operations constitutes an upper-bound
on the behaviour of the overall system for any latency.

5. RELATED WORK
Current distributed collaborative editors use optimistic

replication [10, 11] to provide availability of data at a con-
sistency cost. Optimistic replication designs operations in
two phases. First a replica prepares the result of an opera-
tion and then broadcasts it to other collaborators. Second,
remote replicas integrate the newly received data.

Operational Transform approach (OT) and Conflict-free
Replicated Data Type approach (CRDT) belong to the op-
timistic class of replication. While CRDTs share the com-
putational cost of operations between the local and remote
parts of the replication protocol, the OT approaches prefer
to offer free local generation and pay an additional cost on
the integration of remote operations. Since the number of
remote operations quadratically grows when the number of
collaborators increases, the CRDTs scale better than OT
approaches.

We distinguish two classes of CRDTs for sequences. The
tombstone based CRDT approaches use death certificate on
removed elements. Henceforth, these elements are hidden
to the users, but still remain in the underlying model and
undermine the performance. For instance, the number of
tombstones in popular or controversial pages in Wikipedia
pages would be very high due to vandalism and recoveries.
The representatives of this class of CRDTs are WOOT [7],
WOOTO [16], WOOTH [1], CT [3], Treedoc [8], PPS [18],
RGA [9] and [19].

To get rid of these marked elements, the tombstone based
CRDTs require additional protocols related to garbage col-
lecting mechanisms. In [4, 9] they propose approaches to
safely purge the tombstones. However, it requires a global
knowledge over collaborators. In [9], they describe an ap-
proach that obtains the global knowledge by maintaining a
vector clock with one entry per participant although it is
too costly in large distributed network where collaborators
can enter and leave the system. In [4], they describe the
core nebula approach that permits to reach the consensus
over participants. However, this approach constrains the
network topology to make the consensus reachable and uses
a costly catch up protocol.

The alternative to tombstones is the variable-size identi-
fiers CRDT approach. These CRDTs directly encode the
total order of elements into their unique identifiers. Thus,
they do not require tombstones. However, the identifiers
can grow. In Logoot [17] and Treedoc [8], identifiers have
a linear space complexity compared to the number of in-
sert operations. Furthermore, their size heavily depends on
the position of insertions. For example, performing inser-
tions repetitively at the beginning of a document leads to
identifiers with a size equals to the number of insert opera-
tions. Consequently, such approaches require an additional
re-balance protocol, like tombstone CRDTs. However, their
underlying allocation strategies can be replaced by LSEQ [6]
that provides a sub-linear upper-bound on the space com-

plexity regardless of the editing behaviour.
The LSEQ approach uses two antagonist allocation strate-

gies. Although paper [1] argues about the importance of con-
currency in CRDTs experiments, the original paper of LSEQ
does not consider this aspect. In this paper, we showed
on synthetic documents that its original configuration does
not scale in the number of users. The added value of syn-
thetic documents over real collaborative documents is the
total flexibility on their parameters, especially on the edit-
ing behaviour. Indeed, the number of available real collab-
orative documents (including concurrency) is very limited.
Moreover, such experiments are costly to set up, and often
biased by the nature of the task to perform.

In this paper, we propose to replace the random strategy
choice component of LSEQ by a hash-based choice strategy
to reach an implicit consensus on which strategy to employ.
This configuration called h-LSEQ, does not require addi-
tional computation and extends the sub-linear complexity
bound of LSEQ from a single user to multiple collaborators
regardless of the latency. Thus, h-LSEQ constitutes a safe
allocation strategy for sequences CRDTs, even in concurrent
cases.

6. CONCLUSION
In this paper, we presented an improvement of the alloca-

tion strategy LSEQ called h-LSEQ. Contrarily to the origi-
nal approach, our configuration supports multiple users re-
gardless of the latency. Indeed, replacing the random strat-
egy choice by the hash-based choice strategy allows to reach
a global sub-linear upper-bound on space complexity. As a
consequence, distributed collaborative editors can safely use
h-LSEQ and show better scalability than current trending
editors such as Google Docs, Etherpad, etc.

The hash-based choice strategy is a common function over
participants that maps a depth in the underlying tree to an
allocation strategy identifier. This surjective function ini-
tialized with a shared seed allows to reach an agreement
on strategies with no additional synchronization cost. Con-
sequently, there is no loss in the identifiers’ space due to
antagonist allocation strategies.

This paper highlights the importance of multiple users
analysis in CRDTs for sequences, particularly in the case of
multiple underlying allocation strategies. We also showed
that latency does not badly affect the size of identifiers in
variable-size identifiers CRDTs. However, we performed ex-
periments with synthetic documents in order to show the
general behaviour of the allocation without considering se-
mantically consistent documents.

Future works include the formal proof of the sub-linear
upper-bound on space complexity of h-LSEQ. A probability
analysis of the worst-case scenario is mandatory to show that
it seldom happens. We plan to experiment h-LSEQ on a cor-
pus of real documents including multiple collaborators and
concurrency. Finally, we aim to build a real distributed col-
laborative editor based on a variable-size identifiers CRDT
using h-LSEQ as allocation strategy.

References
[1] M. Ahmed-Nacer, C.-L. Ignat, G. Oster, H.-G. Roh,

and P. Urso. Evaluating CRDTs for Real-time
Document Editing. In ACM, editor, 11th ACM

Symposium on Document Engineering, pages 103–112,
Mountain View, California, États-Unis, Sept. 2011.

[2] A. Andersson and M. Thorup. Dynamic ordered sets
with exponential search trees. J. ACM, 54(3), June
2007.

[3] V. Grishchenko. Deep hypertext with embedded
revision control implemented in regular expressions. In
Proceedings of the 6th International Symposium on
Wikis and Open Collaboration, WikiSym ’10, pages
3:1–3:10, New York, NY, USA, 2010. ACM.

[4] M. Letia, N. Preguiça, and M. Shapiro. Crdts:
Consistency without concurrency control. Arxiv
preprint arXiv:0907.0929, 2009.

[5] D. A. Nichols, P. Curtis, M. Dixon, and J. Lamping.
High-latency, low-bandwidth windowing in the jupiter
collaboration system. In Proceedings of the 8th annual
ACM symposium on User interface and software
technology, pages 111–120. ACM, 1995.

[6] B. Nédelec, P. Molli, A. Mostefaoui, and
E. Desmontils. LSEQ: an Adaptive Structure for
Sequences in Distributed Collaborative Editing. In
ACM, editor, 13th ACM Symposium on Document
Engineering, Sept. 2013.

[7] G. Oster, P. Urso, P. Molli, and A. Imine. Data
consistency for p2p collaborative editing. In
Proceedings of the 2006 20th anniversary conference
on Computer supported cooperative work, pages
259–268. ACM, 2006.

[8] N. Preguiça, J. M. Marquès, M. Shapiro, and
M. Letia. A commutative replicated data type for
cooperative editing. In Distributed Computing
Systems, 2009. ICDCS’09. 29th IEEE International
Conference on, pages 395–403. Ieee, 2009.

[9] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee. Replicated
abstract data types: Building blocks for collaborative
applications. Journal of Parallel and Distributed
Computing, 71(3):354–368, 2011.

[10] Y. Saito and M. Shapiro. Replication: Optimistic
Approaches. technical report, 2002.

[11] Y. Saito and M. Shapiro. Optimistic replication. ACM
Comput. Surv., 37(1):42–81, Mar. 2005.

[12] M. Shapiro, N. Preguiça, C. Baquero, and
M. Zawirski. A comprehensive study of Convergent
and Commutative Replicated Data Types. Rapport de
recherche RR-7506, INRIA, Jan. 2011.

[13] M. Shapiro, N. Preguiça, C. Baquero, and
M. Zawirski. Conflict-free replicated data types.
Stabilization, Safety, and Security of Distributed
Systems, pages 386–400, 2011.

[14] C. Sun and C. Ellis. Operational transformation in
real-time group editors: issues, algorithms, and
achievements. In Proceedings of the 1998 ACM
conference on Computer supported cooperative work,
CSCW ’98, pages 59–68, New York, NY, USA, 1998.
ACM.

[15] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen.
Achieving convergence, causality preservation, and
intention preservation in real-time cooperative editing
systems. ACM Transactions on Computer-Human
Interaction (TOCHI), 5(1):63–108, 1998.

[16] S. Weiss, P. Urso, and P. Molli. Wooki: A p2p
wiki-based collaborative writing tool. In
B. Benatallah, F. Casati, D. Georgakopoulos,
C. Bartolini, W. Sadiq, and C. Godart, editors, Web
Information Systems Engineering – WISE 2007,
volume 4831 of Lecture Notes in Computer Science,
pages 503–512. Springer Berlin Heidelberg, 2007.

[17] S. Weiss, P. Urso, and P. Molli. Logoot: a scalable
optimistic replication algorithm for collaborative
editing on p2p networks. In Distributed Computing
Systems, 2009. ICDCS’09. 29th IEEE International
Conference on, pages 404–412. IEEE, 2009.

[18] Q. Wu, C. Pu, and J. Ferreira. A partial persistent
data structure to support consistency in real-time
collaborative editing. In Data Engineering (ICDE),
2010 IEEE 26th International Conference on, pages
776–779, 2010.

[19] W. Yu. A string-wise crdt for group editing. In
Proceedings of the 17th ACM international conference
on Supporting group work, GROUP ’12, pages
141–144, New York, NY, USA, 2012. ACM.

	Introduction
	background
	h-LSEQ
	Locally
	Remotely

	Experiments
	Multiple users experiment
	Latency experiment
	Synthesis

	Related Work
	Conclusion

