
Tracking changes through EARMARK:
a theoretical perspective and an implementation

Silvio Peroni
Department of Computer
Science and Engineering

University of Bologna
Bologna (Italy)

essepuntato@cs.unibo.it

Francesco Poggi
Department of Computer
Science and Engineering

University of Bologna
Bologna (Italy)

fpoggi@cs.unibo.it

Fabio Vitali
Department of Computer
Science and Engineering

University of Bologna
Bologna (Italy)

fabio@cs.unibo.it

ABSTRACT
The Extremely Annotational RDF Markup, a.k.a. EAR-
MARK, is an OWL 2 DL ontology that defines document
meta-markup. It is an ontologically precise definition of
markup that instantiates the structure of a text document
as an independent OWL document outside of the text string
it annotates, and through appropriate OWL and SWRL
characterizations it can define organizations such as trees
or graphs and can be used to generate validity constraints.
In this paper we present an extension of EARMARK that al-
lows us to describe how markup documents evolve in time,
which complies with concepts expressed in the Functional
Requirements for Bibliographic Records (FRBR).

Keywords
EARMARK, FRBR, OWL ontologies, change tracking, over-
lapping markup, provenance data

1. INTRODUCTION
Articles, novels, ancient poems, news, and many other

kinds of documents change in time. Any creative act of such
a text starts from a particular draft made by someone at a
certain time, that is then modified through consecutive revi-
sions, may end up being forked into different variants, is then
possibly submitted for publishing where additional editorial
activities may take place (including typo-fixing, shortening,
restructuring, etc.), creating different strings (and, there-
fore, versions of the same document).

Keeping track of changes introduced in consecutive ver-
sions of the same document is an important task for even
rather different disciplines. In Computer Science, it enables
programmers to show how programming code or computa-
tional models evolve throughout the natural lifecycle of soft-
ware development; in Philology, it provides mechanisms for
scholars to tell the way in which variant copies of a same
book overlap in time and content, and provides tools for hy-
potheses about the reconstruction of the original version of

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0
Unported License (CC BY-SA 3.0). To view a copy of the license, visit
http://creativecommons.org/licenses/by-sa/3.0/.

DChanges 2013, September 10th, 2013, Florence, Italy.
ceur-ws.org Volume 1008, http://ceur-ws.org/Vol-1008/paper6.pdf .

the text. In Scientific Publishing, it may help show the mod-
ifications provided by the authors following the peer-review,
allowing editors to understand the entity and quality of the
modifications and driving the final acceptance or rejection
of the whole work. And the list may go on.

Our specific interest in this topic concerns what changes to
keep track of among those that occur in markup structures
such as XML documents, especially in the correct identifica-
tion and follow-through of those markup elements that are
a) directly affected, b) hierarchically affected, and c) com-
pletely unaffected by edits and document changes. In par-
ticular we are interested in providing a point of view about
the following research questions:

• When a markup element E1 within a document version
V1 changes in some way, e.g. by adding something
to the text it contains, thereby generating document
version V2, are the two instances of E1 in V1 and E2

in V2 to be considered actually the same element?

• In the case the aforementioned instances of E are to
be considered different, is the difference meant to be
propagated also to their ancestor elements?

Intuitively, the concept of identity of elements throughout
versions, whatever definition one may give of it, from com-
plete continuity of the existence in time (“E1 in V1 is E2

in V2”) to the effect of the application of a time-grounded
function of transformation (“ E1 in V1 becomes E2 in V2”),
has enormous importance in the very definition of change
tracking and in the possibility of following through of its
content.

Herein we try to provide our answer to the questions
above from a theoretical perspective, through the applica-
tion of the our understanding of the Functional Require-
ments for Bibliographic Records (FRBR) [13], which is “a
general model, proposed by the International Federation of
Library Associations and Institutions (IFLA) for the de-
scription of documents and their evolution”[12]. After show-
ing how to use FRBR to model document changes as multi-
ple versions of markup hierarchies that overlap on the same
content, we provide an implementation of it using EAR-
MARK [8] [7], a meta-markup language based on Semantic
Web technologies that enables in a very straightforward way
the description of a hierarchy or even multiple hierarchies of
markup elements upon some textual content, without adopt-
ing any particular XML workaround [6] [17] for handling the
overlaps.

The rest of the paper is organised as follows. In Section 2
we show what kinds of markup structures are actually in-
terested in document changes, introducing a simple running
example. In particular, we show how changes can be mod-
elled through FRBR and we discuss about the provenance
data to add to comprehend the edits done version by ver-
sion. In Section 3 we present EARMARK as a model to
keep track of all the changes of a markup document through
using a juxtaposition of following markup hierarchies, each
overlapping upon each other. Finally, after discussing some
related works on this topic in Section 4, in Section 5 we
conclude the paper, sketching out some future works.

2. WHAT IS A CHANGE, REALLY?
In [22], Renear et al. claim they were baffled by a triad

of sentences, each of which individually evident, that once
taken together were thought to be inconsistent: (a) docu-
ments are strings; (b) strings cannot be modified; (c) docu-
ments can be modified.

Amused and frankly worried that this could be a real co-
nundrum for philosophers, we provided in [12] our humble
and hopefully definitive point of view on the subject, spec-
ifying that while in fact strings are immutable objects and
documents are in fact mutable (or, in our nomenclature,
Timed Abstract Objects, a.k.a. TAOs), the improbable sim-
plification were in the identity equation of strings and docu-
ments, whereby for instance Alice’s scribbling “Hello world”
on a piece of paper creates a different document from Bruce’s
writing “Hello world” on a MS Word file on a PC, even if
the string is clearly the same. The document is therefore
something more than the string it is composed of, and this
object could (and in fact does) refer to different strings in
time, i.e. it creates a history of changes that are more or less
pointers to different strings associated to the same document
through a function grounded on time instants.

This idea of continuity of the identity of a document th-
rough different contents in time closely resembled to us the
model that FRBR introduced in 1999 [13]: document is an
overloaded word, and is better substituted by four different
concepts called respectively Work, Expression, Manifesta-
tion and Items each of which provides a specific and un-
ambiguous aspect of the overloaded document concept, and
can replace it to provide a clearer view of the identity, evolu-
tion in time, specification of form (and format) and creation
of copies that routinely baffle whoever insist in using docu-
ments for all situations.

Our idea of the string of characters constituting the con-
tent of a document is therefore associated to the FRBR
concept of Expression – i.e. “the intellectual or artistic re-
alization of a work in the form of alpha-numeric, musical,
or choreographic notation, sound, image, object, movement,
etc., or any combination of such forms” [13] –, which never
changes in time, but is associated to a Work – i.e. “A distinct
intellectual or artistic creation” [13] – through the realiza-
tion function. A Work is therefore associated to a number
of different Expressions, some of which are related to each
other by time functions (e.g., they are subsequent versions
of one another) but also related to each other by other types
of functions (e.g., different variants for different audiences,
or translations in different languages, etc.).

To understand how to use FRBR Expressions and their
subcomponents in a change tracking scenario involving mark-
up elements (where the containment between descendant

components is modelled by means of the FRBR function
has part between Expressions), let us introduce a change
tracking history of a document, created by Alice, which is
revised two times by Bob and Charles, as shown in Fig. 1.
In particular, the original version made by Alice (in blue
rectangles with solid border) was first revised by Bob (in
yellow rectangles with dashed border), by inserting the text
“very” within the emphasis. Then, Bob’s version was again
revised by Charles (in green rectangles with dotted border),
by removing the second paragraph.

Figure 1: Three different versions of the same docu-
ment, where each markup element is actually a par-
ticular FRBR Expression which contains (i.e. has
part according to FRBR) other markup and/or tex-
tual content (i.e. other FRBR Expressions).

Through a specific FRBR function, i.e. revision of, is then
possible to track consecutive revisions of a document (and
of its markup elements) in a straightforward manner, cre-
ating overlapping hierarchies of document structures upon
the same content. In addition to that, an important part of
change tracking operation involves keeping track of prove-
nance information (shown in Fig. 2) – how the document
has been modified, who made the modification and when.

Thus, considering again the two research questions intro-
duced in Section 1, we can claim that, according to FRBR,
(a) the two instances of E1 in V1 and E2 in V2 are two dif-
ferent markup elements (i.e. FRBR Expressions) that are
realisations of the same FRBR Work, and that (b) this dif-
ference is propagated also to Es’ ancestor elements.

We implemented this theoretical representation of change
tracking information by means of EARMARK, as we de-
scribe in the following sections.

3. TRACKING CHANGES IN PRACTICE:
THE EARMARK APPROACH

In this section we introduce how to use EARMARK, i.e.
a meta-markup language we developed as an OWL ontol-

Figure 2: Provenance information added to the root
of each version and to the particular items that have
been inserted and deleted.

ogy to model complex markup hierarchies including graphs,
to model multiple versions of a document within the same
EARMARK document. In particular, after briefly intro-
ducing the language (Section 3.1), we show how to use it
to track changes of markup documents (Section 3.2) and we
discuss some of its advantages and drawbacks (Section 3.3
and Section 3.4).

3.1 The EARMARK ontology
EARMARK (the Extremely Annotational RDF Markup)

[8] [7] is a different approach to meta-markup based on on-
tologies and Semantic Web technologies. The basic idea is to
model EARMARK documents as collections of addressable
text fragments, and to associate such text content with OWL
assertions that describe structural features as well as seman-
tic properties of (parts of) that content. As a result, EAR-
MARK allows one to create not only documents with single
hierarchies (as with XML), but also multiple overlapping hi-
erarchies where the textual content within the markup items
belongs to some hierarchies but not to others. Moreover,
EARMARK makes it possible to add semantic annotations
to the content that may overlap with existing ones.

Our Java-based implementation1 strictly follows what is
defined in the EARMARK ontology [19] that specifies classes
and properties. The core classes of our model describe three
disjoint base concepts: docuverses, ranges and markup items.

The textual content of an EARMARK document is con-
ceptually separated from its annotations, and is referred to
through the earmark:Docuverse class. The individuals of
this class represent the objects of discourse, i.e. all the con-
tainers of text from an EARMARK document. Any indi-
vidual of earmark:Docuverse – commonly called a docuverse
(lowercase to distinguish it from the class) – specifies its
actual content through the property earmark:hasContent.

We define the class earmark:Range for any text lying be-
tween two locations of a docuverse. A range, i.e, an indi-
vidual of earmark:Range, is defined by a starting and an
ending location (any literal) of a specific docuverse through
the functional properties earmark:begins, earmark:ends and

1https://github.com/essepuntato/EarmarkDataStructure.

earmark:refersTo respectively.
The class earmark:MarkupItem is the superclass defining

artefacts to be interpreted as markup (such as elements and
attributes). A markupitem individual is a collection2 (co:Set,
co:Bag and co:List, where the latter is a subclass of the
second one and all of them are subclasses of co:Collection)
of individuals belonging to the classes earmark:MarkupItem
and earmark:Range. Through these collections it is possible:

• to define a markup item as a set of other markup items
and ranges by using the property co:element;

• to define a markup item as a bag of items (defined
by individuals belonging to the class co:Item), each
of them containing a markup item or a range, by us-
ing the properties co:item and co:itemContent respec-
tively;

• to define a markup item as a list of items (defined by
individuals belonging to the class co:ListItem), each of
them containing a markup item or a range, in which
we can also specify a particular order among the items
themselves by using the property co:nextItem.

A markupitem might also have a name, specified in the
functional property earmark:hasGeneralIdentifier3, and a na-
mespace specified using the functional property earmark:has
Namespace.

All the three core classes are specialized in other sub-
classes for giving more specific information about EARM-
ARK instances. First of all, the class earmark:Docuverse is
specialized into either a earmark:StringDocuverse (the con-
tent specified through earmark:hasContent is a string) or
into an earmark:URIDocuverse (the actual content is lo-
cated at the URL specified in earmark:hasContent), that
are disjoint. Specialized subclasses of earmark:Range (ear-
mark:PointerRange and earmark:XPathRange) are defined
to cope with plain-text and XML docuverses with differ-
ent addressing schemes. earmark:MarkupItem is special-
ized in three disjointed sub-classes: earmark:Element, ear-
mark:Attribute and earmark:Comment.

In order to understand how EARMARK is used to de-
scribe markup hierarchies, we show how Alice’s version (the
blue one in Fig. 1) is expressed in EARMARK. In particular,
the following XML-based version of Alice’s version:

<section >
<p>Some interesting content.</p>
<p>It was written by me.</p>

</section >

is rendered in EARMARK as follows (in Turtle [21])4:

@prefix : <http ://www.essepuntato.it /2013/
dchanges/> .

Any EARMARK document is an ontology
<http ://www.essepuntato.it /2013/ dchanges >

2In the following descriptions the prefix co to indicate enti-
ties taken from an imported ontology, the Collections On-
tology [5], used for handling collections. Its latest version is
available at http://purl.org/co.
3General identifier was the SGML term for the local
name of the markup item, e.g., “p” for markup element
“<p>...</p>”.
4The whole EARMARK document (in Turtle format) con-
taining all the four versions described in Section 3.2 is avail-
able online at http://www.essepuntato.it/2013/dchanges.

a owl:Ontology .

Textual content of the document
:content a earmark:StringDocuverse ;

earmark:hasContent
"Some interesting content.
It was written by me."^^ xsd:string .

:r1 a earmark:PointerRange ; # String ’Some ’
earmark:refersTo :content ;
earmark:begins "0"^^ xsd:nonNegativeInteger ;
earmark:ends "5"^^ xsd:nonNegativeInteger .

String ’interesting ’
:r2 a earmark:PointerRange ...

String ’ content.’
:r3 a earmark:PointerRange ...

String ’It was written by me.’
:r4 a earmark:PointerRange ...

Element ’section ’
:section a earmark:Element ;

earmark:hasGeneralIdentifier
"section "^^xsd:string ;

co:firstItem [a co:ListItem ;
co:itemContent :p1 ;

co:nextItem [a co:ListItem ;
co:itemContent :p2]] .

:p1 a earmark:Element ; # First element ’p’
earmark:hasGeneralIdentifier

"p"^^xsd:string ;
co:firstItem [a co:ListItem ;

co:itemContent :r1 ;
co:nextItem [a co:ListItem ;

co:itemContent :em] ;
co:nextItem [a co:ListItem ;

co:itemContent :r3]] .

:em a earmark:Element ... # Element ’em’
:p2 a earmark:Element ... # Second element ’p’

3.2 Modelling changes with EARMARK
EARMARK enables the creation of multiple overlapping

hierarchies upon the same content, which is one of the main
feature of the language and a strict requirement to handle
change tracking information as presented in Section 2.

In order to provide a full model to address what we intro-
duced in Section 2, we developed the EARMARK Changes
Ontology (EChO) [18]. EChO extends the EARMARK on-
tology presented in Section 3.1 and includes the OWL 2 DL
implementation of FRBR [4] and the Provenance Ontology
[16], so as to keep track of all the changes and provenance
data related to different versions of the same document. In
particular, we use:

• the EARMARK items (docuverses, ranges and markup
items) to model the structure of the different docu-
ment versions and to store them all within a single
EARMARK document;

• the object property frbr:revisionOf to indicate that a
markup item is a revision of another;

• the object property prov:wasDerivedFrom to indicate
that a range is actually derived from another one de-
fined in a previous version of the document;

• the object properties prov:wasGeneratedBy (coupled
with instances of the classes echo:VersionCreation and
echo:ItemInsertion) and prov:generatedAtTime to indi-
cate that a particular markup item, a range or a whole
document version has been created at a certain time;

• the object properties prov:wasInvalidatedBy (coupled
with instances of the classes echo:VersionRemoval and
echo:ItemDeletion) and prov:invalidatedAtTime to in-
dicate that a particular markup item, a range or a
whole document version has been deleted at a certain
time;

• the object property prov:wasAssociatedWith to indi-
cate the agent involved in the activity of generation/in-
validation of a certain item.

Any EARMARK item is dereferenceable since it is actu-
ally identified by a particular URL. This enables us to eas-
ily add the aforementioned data to any EARMARK item we
define. For instance, we can say that Alice created her docu-
ment version (implicitly identified by the document element
section) on June 19, 2013 at 13:45 (as shown in Fig. 2) in
the following way:

@prefix prov: <http ://www.w3.org/ns/prov#> .
@prefix echo: <http ://www.essepuntato.it

/2013/07/ echo/> .

:section
Provenance information
prov:wasGeneratedBy :creation -by-alice ;
prov:generatedAtTime

"2013 -06 -19 T13 :45:00Z"^^xsd:dateTime .

Activity of creation of a new version
:creation -by-alice a echo:VersionCreation ;

prov:wasAssociatedWith :alice .

Note that all the activities referenced by the properties
prov:wasGeneratedBy and prov:wasInvalidatedBy can define
the precise time interval when they have been performed –
by using the properties prov:startedAtTime and prov:ended
AtTime.

In the following subsections we show how to use EAR-
MARK to describe all the versions of our exemplar docu-
ment introduced in Fig. 2 by means of two tracking opera-
tions, i.e. insertions and deletions. In addition we also intro-
duce another revision of Alice’s version introduced in Sec-
tion 3.1 that specifies both insertions and deletions within
the same version.

3.2.1 Insertions
Bob’s revision (shown in Fig. 1) of Alice’s version was

made on July 3, 2013, at 04:15. Bob’s edits concern only
the insertion of the string “very ” as first textual node of
the element em. So as to model this version, we extend the
EARMARK document containing Alice’s version so as to
include all the modifications and provenance data related
to Bob’s version. The following excerpt shows the RDF
statements we added to describe that scenario:

New content of the document
:content -by-bob a earmark:StringDocuverse ;

earmark:hasContent "very "^^xsd:string .

New string ’very ’
:r5 a earmark:PointerRange ;

earmark:refersTo :content -by-bob ;
earmark:begins "0"^^ xsd:nonNegativeInteger ;
earmark:ends "5"^^ xsd:nonNegativeInteger ;
provenance information
prov:wasGeneratedBy :insertion -by-bob ;
prov:generatedAtTime

"2013 -07 -03 T04 :15:00Z"^^xsd:dateTime .

:insertion -by-bob a echo:ItemInsertion ;
prov:wasAssociatedWith :bob .

Element ’section ’ by Bob
:section -by-bob a earmark:Element ;

earmark:hasGeneralIdentifier
"section "^^xsd:string ;

co:firstItem [a co:ListItem ;
co:itemContent :p1-by-bob ;

co:nextItem [a co:ListItem ;
co:itemContent :p2]] ;

relation with previous version
frbr:revisionOf :section ;
provenance information
prov:wasGeneratedBy :creation -by-bob ;
prov:generatedAtTime

"2013 -07 -03 T04 :15:00Z"^^xsd:dateTime .

:creation -by-bob a echo:VersionCreation ;
prov:wasAssociatedWith :bob .

First element ’p’ by Bob
:p1-by-bob a earmark:Element ...

Element ’em’ by Bob
:em-by-bob a earmark:Element ...

As shown in the above excerpt, so as to enable the in-
sertion of new content, we created a new docuverse, i.e.
:content-by-bob, containing all the new text added to Al-
ice’s version. In addition, as suggested in Fig. 1, we also
created new instances of the elements section, p and em as
revisions of those defined in Alice’s version. Alice’s second
paragraph, i.e. :p2, is reused as it is (since it did not change
at all in Bob’s version).

3.2.2 Deletions
Charles’ revision (shown in Fig. 1) of Bob’s version was

made on July 5, 2013, at 03:33. Charles’ edits delete the
Bob’s second paragraph of the section. So as to model
this version, we extend the EARMARK document contain-
ing both Alice’s and Bob’s versions so as to include all the
modifications and provenance data of Charles’ version. The
following excerpt shows the RDF statements we added to
describe that scenario:

Element ’section ’ by Charles
:section -by-charles a earmark:Element ...

prov:wasGeneratedBy :creation -by-charles ;
prov:generatedAtTime

"2013 -07 -05 T03 :33:00Z"^^xsd:dateTime .

:creation -by-charles a echo:VersionCreation ;
prov:wasAssociatedWith :charles .

Provenance information for the deletion of
Second element ’p’ of Bob ’s ’section ’
:p2

prov:wasInvalidatedBy :deletion -by-charles ;
prov:invalidatedAtTime

"2013 -07 -05 T03 :33:00Z"^^xsd:dateTime .

:deletion -by-charles a echo:ItemDeletion ;
prov:wasAssociatedWith :charles .

As shown in the above excerpt, we did not need to add a
new docuverse since we just had to delete only Alice’s and
Bob’s second paragraph, i.e. :p2. Thus, we created only
the new instance of the element section as revisions of Bob’s
section, and we added provenance information about the
deletion of the Alice’s and Bob’s second paragraph.

3.2.3 Splitting ranges up
In Section 3.2.1 and Section 3.2.2 we showed how to cre-

ate an EARMARK document that keeps track of consecu-
tive revisions (made by different people) of the same markup
document. We chose to describe versions specifying either
one insertion or one deletion so as to make it easier to un-
derstand how to define change tracking information of such
operations through EARMARK.

In this section we focus on another revision (Daniel’s one)
of the Alice’s version (which actually defines a different branch
of the tracking history of such a document, since it contrasts
with Bob’s revision), where Daniel decided to substitute the
string “me” in the second paragraph with its name (i.e. the
string “Daniel”), as shown in Fig. 3.

Figure 3: Daniel’s revision of Alice’s version, where
the string “me” in the second paragraph was deleted
and substituted with the string “Daniel”.

In EARMARK, this string substitution (i.e. a deletion
plus an insertion) can be described as shown in Fig. 4. Since
the deletion happens in the middle of a range defined in
Alice’s previous version, we need to define four new ranges.
Three of them implicitly represent a split-up of the range :r4
(tracked through the property prov:wasDerivedFrom), and
refer to the strings “It was written by ”, “me” (to delete
in Daniel’s version) and “.” respectively. The other range
refers to the new content, i.e. the string “Daniel”, added in
Daniel’s version. Thus we can add revision information and
provenance data, as shown in Section 3.2.1 and Section 3.2.2,
to these four ranges and to the related new elements p and
section defining Daniel’s revisions of the Alice’s elements.

Note that the prov:wasDerivedFrom statements between
ranges actually describe (at an abstract level) a more com-
plex scenario of overlapping markup between Alice’s second

Figure 4: A graphical representation of the use of
EARMARK to describe Daniel’s revision as intro-
duced in Fig. 3.

paragraph and its Daniel’s revision5. The overlapping items
between items of Alice and Bob’s versions and between Bob
and Charles’ versions, introduced in Section 3.2.1, are ex-
plicit – e.g. :section overlaps with :section-by-bob since both
contain the same second paragraph. Even comparing Alice’s
and Daniel’s versions, some overlaps are still explicit – e.g.
those between the Alice and Daniel’s elements section that
share the same first paragraph. However, according to the
EARMARK representation of Daniel’s version, it seems that
Alice’s second paragraph does not overlap with Daniel’s one,
since they do not have any range in common.

So as to recognise the actual overlap between :r4 and the
three ranges derived from it, we must perform some arith-
metic operations on ranges, as described in [7] and modelled
in a precise way by the EARMARK Overlapping Ontology
[20]. In particular, the application of such an ontology on
our exemplar EARMARK document allows us to infer auto-
matically that each of the split-up ranges is actually overlap-
ping with :r4 and, thus, to infer that Alice and Bob’s second
paragraphs are actually overlapping by range6. Herein, we
use the property prov:wasDerivedFrom so as to simplify the
description of such a complex overlapping scenario.

3.3 Querying the changes history
Important advantages derive from using EARMARK as

a model to describe consecutive versions of the same docu-
ment. In particular, since EARMARK is defined by means
of Semantic Web technologies, we can use already imple-
mented standards such as SPARQL 1.1 [11] to query over
the change tracking history of a certain EARMARK doc-
ument. For instance, the following small SPARQL query
returns a new EARMARK document (as a set of RDF state-

5Two elements overlap when (a) one is neither descendant
nor ancestor of the other and (b) they share an element as
descendant
6An overlapping by range between EARMARK markup
items happens when a markup item A contains a range that
overlaps with another range contained by a markup item B.
We recommend to read [7] for a more detailed discussion
about possible overlapping scenarios in EARMARK docu-
ments.

ments) that contains only Bob’s version, without taking care
of other ones:

CONSTRUCT { ?other ?p ?o . ?version ?pv ?ov .
?docuverse ?pd ?od } WHERE {
{ SELECT DISTINCT

?other ?version ?pv ?ov WHERE {
{ SELECT DISTINCT ?version WHERE {

?version a earmark:Element ;
prov:wasGeneratedBy ?activity .

?activity a echo:VersionCreation ;
prov:wasAssociatedWith :bob } }

?other (^co:itemContent ?/^co:item)+
?version } }

?version ?pv ?ov . ?other ?p ?o .
OPTIONAL { ?other a earmark:PointerRange ;

earmark:refersTo ?docuverse .
?docuverse ?pd ?od } }

Note that other XML-based formats for tracking docu-
ment changes such as [15] and [14] cannot represent explic-
itly multiple document versions as alternative overlapping
hierarchies within the same file since they strictly depend
on the tree-based structure of XML. Thus, in these cases,
we should reconstruct every time Bob’s version when needed
by analysing each overlapping trick that has been used to
embed change tracking information within the XML doc-
ument in consideration [7]. Contrarily, in EARMARK we
have only to identify the document element of Bob’s version
and all the related descendant items, since all the hierar-
chies of the several versions stored are explicitly represented
within the EARMARK document.

In addition, answering to very simple query like“select the
textual content of all paragraphs removed by Charles” ends
up rather entangled if we used directly XPath to query on
documents containing change tracking data defined accord-
ing to [15] and [14], as demonstrated in [7]. On the other
hand, the SPARQL query to retrieve the same information
from an EARMARK document is quite straightforward:

SELECT DISTINCT ?range WHERE {
?p a earmark:Element ;

earmark:hasGeneralIdentifier
"p"^^xsd:string ;

co:item/co:itemContent ?range ;
prov:wasInvalidatedBy ?activity .

?range a earmark:PointerRange .
?activity a echo:ItemDeletion ;

prov:wasAssociatedWith :charles }

3.4 Do bytes matter?
One of the criticisms when proposing a new approach to

solving a well-known problem is that the new solution may
simplify the difficulties of the specific problem, but usually
brings with it disadvantages and hidden costs that compen-
sate the benefits, such as the growth of size of the data
structures, or compatibility and conversion restrictions, etc.

In this section we focus on the problem of data size, which
is one of the main disadvantages of the solutions that are
based on Semantic Web technologies. In [7] we have already
addressed the cost functions of EARMARK vs. XML-based
formats. While XML is a linearisation format immediately
expressible in actual bytes, EARMARK documents are de-
fined as OWL ontologies, which may have several alterna-
tive linearisation formats (including XML itself) with corre-
sponding huge differences in the final byte counts. For these
reasons, in [7] we decided to bypass the test based on byte-
lengths and to focus on comparing XML and EARMARK

in terms of basic constituents of each format, i.e. the num-
ber of nodes of XML documents vs. the number of RDF
statements in EARMARK documents. The results of such
analysis showed that EARMARK and the OpenDocument
format [15] (used by OpenOffice) increase in a very similar
way according to consecutive versions of a document, while
OpenXML [14] (used by Microsoft Word) is much more ver-
bose and grows faster than the other ones.

Herein, we have taken into consideration the same two
documents used for the evaluation in [7] and, as a prelimi-
nary evaluation, we compared the size in bytes of consecutive
versions of such documents according to OpenDocument and
OpenXML formats, and to EARMARK linearised in six dif-
ferent formats: Turtle [21], RDF/XML [2], OWL/XML [26],
N-Triples [27], HDT [10] and Manchester Syntax [28]7.

Fig. 5 shows the results of the comparison on the first
document composed of seven different versions, named after
the “Seven Dwarfs” for recognizability and obtained by ap-
plying very common edits (e.g. the insertion of few words,
the deletion of some sentences, the split of paragraphs, etc.).
Fig. 6 shows the results of a similar comparison on a differ-
ent document and edits. We collected seven versions named
after the weekdays and created by seven different authors
when editing a very simple document.

Figure 5: A graph summarizing the results of the
first experiment. The file sizes are expressed in
bytes.

The overall trend is interesting: comparing the OOXML
and the OpenDocument formats we noted that the former
was always more concise than the latter (label ODT). Focus-
ing on EARMARK we noticed, as expected, a wide variety
of results depending on the size of linearisation used. While
RDF/XML, OWL/XML and N-triples grew very quickly,
Turtle (label TTL) and Manchester Syntax did not devi-
ate much from OpenDocument. The most important point
concerns HDT, which was similar to OOXML and was even
slightly below when the number of changes increased.

4. RELATED WORKS
The meaning expressed by the changes of markup docu-

ments is closely connected to the basic operations used to
describe the changes themselves. Word processors such as
Microsoft Word and Open Office Writer provide users with
powerful tools for tracking changes, allowing each individual
modification by individual authors to be identified, high-
lighted, and acted upon (e.g. by accepting or discarding

7The full details about each version and each format are
available at http://fpoggi.web.cs.unibo.it/DCHANGES.

Figure 6: A graph summarizing the results of the
second experiment. The file sizes are expressed in
bytes.

them). The intuitiveness of the relevant interfaces actually
hides the complexity of the data format and of the algo-
rithms necessary to handle such information.

The standard OpenDocument Format [15] used by Open
Office is an open XML-based format that tracks changes
using three primitive operations: insertion, deletion, and
formatting change. The modified regions of the document
are identified by special empty elements tracking the loca-
tion where changes happened. All the metadata related to
changes are stored in a list, where each item references to
the particular change it concerns through id-idref attributes.

The Office Open XML [14] is the XML-based format used
by Microsoft Office. The basic operations used to track
changes are: insertion, deletion, move and attribute/prop-
erty modification. OOXML fragments change-tracking data
across the elements involved in the modifications. All meta-
data about these editing operations are contained within the
attributes of these elements.

Similarly, in [25] the authors introduces an XML-based
model to associate a document instance with its history
(specifying insertion and deletion operations) inside a stan-
dalone and consistent document, thus gaining strong poten-
tial for current or future interoperability.

The aforementioned operations are not the only possible
strategies users use to edits documents, even if they are im-
plemented in well-known word processors such as Miscrosoft
Word and Open Office Writer. Other, more complex, edit
operations are also possible, as those described in recent
works about diff algorithms. For instance in [3], the authors
describe four edit operations used, which include update and
move in addition to the classic insertion and deletion.

In [23] and [24], the authors presents a standalone version-
ing model for XML documents based on three operations on
nodes and sequences of nodes: addition, delete and update).
Moreover, the model also defines a fingerprinting mecha-
nism to help resolving conflicts during the merging process
and an XML patch format. Its main limitation is that it
is very focused on elements, making the other XML nodes
“second class citizens” – e.g. the additions of attributes are
identified as updates of the containing element.

JNDiff [9] is another diff algorithm that has been devel-
oped taking into account the notion of“naturalness”, i.e. the
capability of an algorithm to identify those changes which
would be understood and identified by a manual approach.
The set of natural operations used by the algorithm are

seven: insertion, deletion, move, downgrade, upgrade, up-
date and refactoring.

5. CONCLUSIONS
In this paper we presented a theoretical approach to track

document changes based on FRBR and provenance data,
and its implementation through EARMARK, a Semantic
Web-aware meta-markup language that enables the defini-
tion of multiple overlapping markup hierarchies representing
different versions of the same document. In particular, we
showed how to describe such a multiple versions document
as an EARMARK document and how to add provenance
data to its markup items and textual content. In addition,
we highlighted the main advantages and drawbacks in terms
of querying and storing such EARMARK documents. In the
future we plan to extend EChO [18] so as to enable the de-
scription of additional change tracking operations such as
those highlighted in Section 4 (e.g. [9]). We also plan to ex-
periment the effective use of translation mechanisms – e.g.
Fretta [1] – to convert EARMARK documents with change
tracking information into XML formats, e.g. [15] and [14].

6. REFERENCES
[1] Barabucci, G., Peroni, S., Poggi, F., Vitali, F. (2012).

Embedding semantic annotations within texts: the
FRETTA approach. In Proceedings of SAC 2012:
658-663. DOI: 10.1145/2245276.2245403

[2] Beckett, D. (2004). RDF/XML Syntax Specification
(Revised). W3C Recommendation 10 Feb 2004.

[3] Chawathe, S. S., Rajaraman, A., Garcia-Molina, H.,
Widom, J. (1996). Change detection in hierarchically
structured information. In ACM SIGMOD Record, 25
(2): 493-504. DOI: 10.1145/235968.233366

[4] Ciccarese, P., Peroni, S. (2011). Essential FRBR in
OWL2 DL. Version 1.0, June 29, 2011.
http://purl.org/spar/frbr

[5] Ciccarese, P., Peroni, S. (2013). The Collections
Ontology: creating and handling collections in OWL 2
DL frameworks. To appear in Semantic Web –
Interoperability, Usability, Applicability.

[6] DeRose, S. (2007). Markup Overlap: A Review and a
Horse. In Proceedings of the Extreme Markup
Conference 2004.

[7] Di Iorio, A., Peroni, S., Vitali, F. (2011). A Semantic
Web Approach To Everyday Overlapping Markup. In
Journal of the American Society for Information
Science and Technology, 62 (9): 1696-1716. DOI:
10.1002/asi.21591

[8] Di Iorio, A., Peroni, S., Vitali, F. (2011). Using
Semantic Web technologies for analysis and validation
of structural markup. In International Journal of Web
Engineering and Technologies, 6 (4): 375-398. DOI:
10.1504/IJWET.2011.043439

[9] Di Iorio, A., Schirinzi, M., Vitali, F., Marchetti, C.
(2009). A natural and multi-layered approach to detect
changes in tree-based textual documents. In
Proceedings of ICEIS 2009: 90-101. DOI:
10.1007/978-3-642-01347-8 8

[10] Fernández, J. D., Mart́ınez-Prieto, M. A., Gutierrez,
C. (2010). Compact Representation of Large RDF Data
Sets for Publishing and Exchange. In Proceedings of

ISWC 2010: 193-208. DOI:
10.1007/978-3-642-17746-0 13

[11] Harris, S., Seaborne, A. (2013). SPARQL 1.1 Query
Language. W3C Recommendation 21 Mar 2013.

[12] Huitfeldt, C., Vitali, F., Peroni, S. (2012). Documents
as timed abstract objects. In Proceedings of Balisage
2012. DOI: 10.4242/BalisageVol8.Huitfeldt01

[13] IFLA Study Group on the FRBR (2009). Functional
Requirements for Bibliographic Records Final Report.
IFLA.

[14] JTC1/SC34 WG 4. (2008). ISO/IEC 29500-1:2008 –
Information technology – Document description and
processing languages – Office Open XML File Formats
– Part 1: Fundamentals and Markup Language
Reference. ISO.

[15] JTC1/SC34 WG 6. (2012). ISO/IEC 26300:2006 –
Information technology – Open Document Format for
Office Applications (OpenDocument) v1.2. ISO.

[16] Lebo, T., Sahoo, S., McGuinness, D. (2013). PROV-O:
The PROV Ontology. W3C Recommendation 30 Apr
2013.

[17] Marinelli, P., Vitali, F., Zacchiroli, S. (2008). Towards
the unification of formats for overlapping markup. In
New Review of Hypermedia and Multimedia, 14 (1):
57-94. DOI:10.1080/13614560802316145

[18] Peroni, S. (2013). EARMARK Changes Ontology.
Version 1.0, July 3, 2013.
http://www.essepuntato.it/2013/07/echo

[19] Peroni, S., Di Iorio, A., Vitali, F. (2011). EARMARK
Ontology. Version 1.8.1, February 24, 2011.
http://www.essepuntato.it/2008/12/earmark

[20] Peroni, S., Di Iorio, A., Vitali, F. (2013). The
EARMARK Overlapping Ontology. Version 1.1, August
2, 2013.
http://www.essepuntato.it/2011/05/overlapping

[21] Prud’hommeaux, E., Carothers, G. (2013). Turtle -
Terse RDF Triple Language. W3C Candidate
Recommendation 19 Feb 2013.

[22] Renear, A. H., Wickett, K. M. (2010). There are No
Documents. In Proceedings of Balisage 2010. DOI:
10.4242/BalisageVol5.Renear01

[23] Ronnau, S., Borghoff, U. M. (2009). Versioning
XML-based office documents. In Multimedia Tools and
Applications, 43 (3): 253-274. DOI:
10.1007/s11042-009-0271-2

[24] Ronnau, S., Philipp, G., Borghoff, U. M. (2009).
Efficient change control of XML documents. In
Proceedings of DocEng 2009: 3-12. DOI:
10.1145/1600193.1600197

[25] Vion-Dury, J. (2010). Stand-alone Encoding of
Document History (or One Step Beyond XML Diff). In
Proceedings of Balisage 2010.
DOI:10.4242/BalisageVol5.Vion-Dury01

[26] Motik, B., Parsia, B., Patel-Schneider, P. F. (2012).
OWL 2 Web Ontology Language XML serialization
(Second Edition). W3C Recommendation 11 Dec 2012.

[27] Beckett, D. (2013). N-Triples: A line-based syntax for
an RDF graph. W3C Working Group Note 9 Apr 2013.

[28] Horridge, M., Patel-Schneider, P. F. (2009). OWL 2
Web Ontology Language: Manchester Syntax. W3C
Working Group Note 11 Dec 2012.

