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ABSTRACT

Model evolution is widely considered as a subject under re-
search. Despite its role in research, common purpose con-
cepts, approaches, solutions, and methodologies are missing.
Limiting the scope to model libraries makes model evolution
and related quality concerns manageable, as we show below.

In this paper, we put forward our quality staged model
evolution theory for model libraries. It is founded on evo-
lution graphs, which offer a structure for model evolution
in model libraries through evolution steps. These evolution
steps eventually form a sequence, which can be partitioned
into stages by quality gates. Each quality gate is defined by
a lightweight quality model and respective characteristics
fostering reusability.

Categories and Subject Descriptors

D.2.13 [Software Engineering]: Reusable Software—Do-
main engineering, Reusable libraries, Reuse models

Keywords

Model Evolution, Model Quality, Quality Gates, Model Li-
braries

1. INTRODUCTION

Omnipresent computers have lead to increasing complex-
ity of programs and their development. In order to stay on
top of things, numerous approaches were proposed and one
among them is Model-Driven Development (MDD). It en-
ables designing software by means of models, which are the
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results of mapping objects from the real world to a higher
level of abstraction [25].

These models are often formulated in UML for two rea-
sons. First, because “for larger and distributed projects,
UML modeling is believed to contribute to shared under-
standing of the system and more effective communication” [5].
Second, UML models frequently serve as inputs for code gen-
eration, which helps prototyping, speeds up development,
and supports generation of parts of the final system. This
reduces the risks of working at an inappropriate level of ab-
straction or to get lost in details.

Since models are such essential assets in MDD, it is widely
proposed to reuse models. This would decrease develop-
ment time and increase software quality [22, 16]. Conse-
quently, models should be stored in model libraries, which
enable model management and allow for model reuse. A
challenge regarding model libraries is to provide models of
high quality, since model quality is a matter of subjectivity
and hard to measure precisely [24]. Additionally, models in
libraries undergo changes over time. Altogether this puts an
extra burden on maintaining reusable models at high qual-
ity, which we investigate subsequently.

We believe that evolution and quality in model libraries is
insufficiently supported and, to the best of our knowledge,
we could not find an approach enabling guided model evo-
lution. This is surprising, since model quality and evolution
have been a subject under research for a long time already
(sec. 2). Most importantly, model evolution is generally un-
derstood as a goal that is achieved only if the model has
been adapted guaranteeing the system’s integrity (sec. 2).
In contrast, we believe that the understanding of quality
and evolution needs to shift, when considered for model li-
braries (sec. 3). But this requires a more formal approach
that supports evolution for model libraries (sec. 3.4) and
helps to partition model states into stages according to their
reusability (sec. 3.5). In this approach, each stage is sepa-
rated by a gate, which is derived from a quality model and
respective characteristics focusing on reusability (sec. 4).

Allin all, we contribute a stage model enhanced with qual-
ity gates, which are defined by aspects of a quality model.



2. RELATED WORK

Model evolution, as we will present, can be discussed
closely related to model libraries and quality of models. In
the following, we present the current understanding of model
evolution, model repositories, and model quality. However,
we intend to look at model evolution in model libraries and
will point out differences to the current understanding of
model evolution.

Evolution of models is often considered as a goal one is
trying to achieve automatically. A tool providing support for
that is MoDisco [6] (cf. AM3 [1]), which aims at support-
ing evolution of legacy systems by model-driven approaches.
That means, MoDisco is for re-engineering legacy software
by means of models and starting a model driven development
from gleaned models. In addition, issues of co-evolution are
discussed. However, we keep to plain model evolution and
propose that it is aimless and cannot be achieved. Conse-
quently, it has to be guided in the right direction.

Another tool providing support for model evolution and
co-evolution is COPE. It monitors evolution in an operation-
based manner and applies traced changes to other mod-
els [12]. Moreover, these traces can be stored in a library
so they can be forwarded or applied to other models as
well. This is important as co-evolution is the focus of this
project. Our approach differs slightly, since we do not need
to monitor changes in the long run and focus on quality
aspects and stages that depend on the actions performed
on the models. But, some similarities between COPE and
our approach can be found in regard of the stages underly-
ing the approach. In the end, we need more formally defined
stages, while COPE needs more formally defined operations.
These operations are derived from oodb-schema experience
and object-oriented source code experience, i.e., refactoring,
and are overview over high-level operations or others. All
together, operations are seen as structural or non-structural
primitives. For example, specialization, generalization, dele-
gation, or inheritance are such primitive operations. Others
are replacement and merge-split [13].

Since we study evolution in model libraries, we need to
discuss model management. Such systems offer mechanism
to query for models, resolve conflicts, and manage version-
ing. As a consequence, aspects of co-evolution are usually
out of scope. For example, MOOGLE is a model search en-
gine with advanced querying functionality and user-friendly
user interface support [20]. Second, ReMoDD aims at doc-
umentary purpose by offering models to the modeling com-
munity [9]. Third, the “Model Repository” manages models
in a graph structure, holding, e.g., classes as vertices and as-
sociations as edges [28]. Fourth, AMOR is a model library
providing advanced conflict resolution and versioning sup-
port [2]. None of these model libraries take model evolution
into consideration. Consequently, we have implemented our
own model library, which offers model evolution support.

But evolution support, compared to versioning, makes
sense only if a common understanding of model quality is
maintained. In conceptual modeling, quality is seen as a sub-
jective and rather social than a formally definable property
lacking a common understanding and standards [24]. Moody
explains that the main challenge in defining model quality is
the absence of measurable dimensions. Fortunately, model
libraries limit the scope noticeably, so we can present an ap-
proach to measure model quality in model libraries. It is
based on measurable quality dimensions and backed up by

model metrics and reviews.

Supporting quality dimensions, we employ the results by
Lindland et al. [19]. They define syntactic, semantic, and
pragmatic quality as the cornerstones of their quality di-
mensions. Bansiya et al. describe that all of these quality
dimensions can influence each other [3]. We extended Lind-
land’s approach to take into account emotional quality.

Multiple approaches exist to define UML model quality.
The most suitable for us is by Lange et al. [17]. They de-
scribe model quality as a set of dimensions and identified two
primary use cases of models: maintenance and development.
For each of these, model characteristics, which can influence
multiple model purposes, are derived from the proposed set
of dimensions. The characteristics have to be measured to
draw conclusions about the model’s quality. However, Mo-
hagheghi et al. point out that measuring the presented char-
acteristics is challenging [23]. These challenges are reduced
when model evolution is considered for model libraries, since
model quality can be limited to general quality.

3. MODEL EVOLUTION

Evolution has been a subject under research for decades.
In contrast to its roots in biology, evolution theories are
rather new to computer science. While Lehman summarized
observations on software evolution in the eighties [18], it is
questionable if these observations hold true for state-of-the-
art software development. For example, Model Driven De-
velopment (MDD) changed software development in a way
that some assumptions might need to be reconsidered. Con-
sequently, we investigated interdisciplinarily and analyzed
potential influences, bearing in mind that our area is model
evolution in model libraries. We did so, to define this evo-
lution, its characteristics, and the underlying formalism.

3.1 Influences of Model Libraries

Existing research in model evolution assumes that model
evolution happens within software systems and addresses ba-
sically two concerns. On the one hand, collaboration is seen
as one cause initiating model evolution. This is due to dif-
ferent developers and modelers working on the same model
without a shared repository. As a consequence, these mod-
els are less frequently reviewed leading to declining model
quality. On the other hand, integrity is seen to hamper
model evolution, since adapted models need to preserve cer-
tain constraints. One of these constraints might be that
system’s integrity has to be preserved. In conclusion, these
two concerns define model evolution as a goal.

Looking at model evolution in a context of model libraries
and model reuse, the properties of model evolution change.
This is due to models examined by different modelers dis-
regarding any environment and purely focusing on reusabil-
ity. Hence, the models are meant to provide solutions for
problems preserving experience while ignoring any other in-
tegrity. As a result, the models are supposed to not contain
technical details and maintain high quality. (cf. figure 1 left)

3.2 Lehman Laws in Model Evolution

The Lehman laws [18] offer four aspects which can be
adapted to model evolution. First, model evolution is trig-
gered, if a model needs to be changed. This might be due to
changing requirements or bugs. Second, if no attempts are
undertaken to decrease model complexity, it will be less often
reused. The reason for that is mostly because the purpose of



the model is hazed. Third, model evolution is feedback reg-
ulated; hence, evolution happens after the model has been
reviewed and deployed. Last, except for adaptions that are
necessary keep the mapping between a particular range of
the real world and the model itself, the quality of a model
is not influenced by a constant need for adaption. For in-
stance, models that provide a suitable solution might not be
changed but just reused.

As a consequence, models in a model library should fo-
cus on problem solving omitting technical aspects. In this
regard, the size of a model is of vital importance for its
reusability. We basically consider the size of a model as the
number of classes, attributes, and methods. To that end,
large models are harder to reuse than small models. More-
over, models that changed over time require reviews by other
modelers to maintain reusability. Finally, model evolution
does not inherit hidden evolution, i.e., changes in size always
impact the systems visibly [29].

3.3 Model Evolution in Model Libraries

Since we limit model evolution to model libraries, we limit
its start to the moment the model is added to a model li-
brary. Consequently, Lehman’s definition of evolution as “a
progressive and beneficial process of changes in evolving at-
tributes of an entity” [18] needs refinement. This means,
progressive changes need to be considered as add, delete,
rename, and retype operations with the semantics defined
in [12]. This correlates with Keienburg et al., who define
evolution as “proceeding an ordered list of model change
primitives on an existing component model and finally create
a new model version” [15]. Adapting this to model evolution
means that model evolution needs a definition of model ver-
sions, we call model snapshots. Each time a model is changed
in a model library, the model has evolved and has formed a
new snapshot. We define two consecutive model snapshots
of the same model as an evolution step. A sequence of model
snapshots represents model evolution, in our terms.

An example for model evolution is depicted in figure 1.
It shows a class diagram modeling a jukebox. Starting in
snapshot 1 the model is changed by applying rename, re-
type, delete, or add operations. This results in a snapshot
2. Further changes then might lead to several more snap-
shots and eventually the model will be in snapshot n. In this
example, some technical details, as the suffix DAO indicates,
spoiled snapshot 1 and should be removed first.

______________________________________________________

' \| 4 Y
1 1 [ ‘I
i i ! Jukebox i
! JukeboxDAO i i —& av() >——
i - - i . discs credits i
[ discs: MediaSet ! : pay() ]
i credits[]: Credit i i i
t [ elav0 A : i
i | t Medium Credit |
H pay() 1 ! !
! ] ! titles[]: String processPay() ]
i i i | costs[]: Credit convertinput() i
1
I\\ ___________________ ’ll N e e /
Snapshot 1 Snapshot n

Figure 1: Model Evolution Example

It is important to understand that model evolution is not
solely based on adaptations and it is to be distinguished
from maintenance, because maintenance focuses on correct-

ing faults, adapting, improving a model, and preserving in-
tegrity between models and source code [14]. Still, adaption
is one major influence on model evolution, even if model
evolution is understood as undirected, infinite, and unpre-
dictable [4, 7, 21]. Taking a closer look at this kind of evo-
lution, Judson et al. define three types [14]. Adaptive evo-
lution happens due to changes in requirements, and perfec-
tive evolution comprises enhancements in the models design
quality; corrective evolution summarizes error corrections.

These model evolution types characterize the reasons for
evolution rather than describing activities as in maintenance.
It is important to understand that model evolution is not
maintenance, since maintenance changes models and thereby
influences model evolution. In addition, maintenance is not
the only reason for model evolution. A model can evolve
due to structural changes that are forced by, e.g., successive
development and not sustainment.

Another important aspect is that model evolution rarely
happens without conflicts. Mens et al. subdivide these con-
flicts into two types: evolutionary and composition con-
flicts [22]. Evolutionary conflicts are conflicts describing the
change of the model’s behavior. This means, a property that
holds in a model snapshot does not hold for its successor.
Composition conflicts result from co-evolution of referenced
models. In other words, if a model holds references to an-
other model, these references need to be verified.

3.4 Model Evolution Graph

A first step in formalizing model evolution in model li-
braries is through structuring its progress. This can be
achieved by adapting version graphs known from version
control systems to model evolution. Eventually, this suits
as the foundation for tool support and a methodology.

Derived from version control graphs, a model evolution
graph represents a sequence of pairwise connected model
snapshots. Each snapshot is contained in a wertex repre-
senting a model at a certain point in time as defined above.
These vertices are labeled with unique version ids as known
from version control systems. Moreover, each vertex has at
least two adjacent edges, which are labeled with transition
ids. A simple excerpt of a model evolution graph is depicted
in figure 1. It shows that a model starts in a snapshot labeled
with a version id 1 and progresses to snapshot n. Usually,
each transition is labeled as well, e.g., with ;.

Each edge in a model evolution graph represents a se-
quence of primitive operations applied to a model while pro-
gressing to the next snapshot. In more detail, these primitive
operations are defined as Tadd, Tdelete; Trename, and Tretype-
They form a sequence of primitive operations through o;
being a word defined as o; € {Tad(h Tdelete; Trename) Tretype}*v
where ¢ € N.

Now, formally defining the entire model evolution graph,
it comprises a tuple (EGmodet, 8, t), where EGpmoder = (V, E)
is a graph with a vertex set V and an edge set F and s,t are
labeling functions. s : V — S is a function for some domain
S labeling each vertex. Each edge is labeled by the func-
tiont : E — T7 where T' = {TadchTdeleteyTrenameyTretype}*-
Altogether, this enables a definition of model evolution in
model libraries, which we define as a sequence of evolution
steps, which, in turn, are transitions in our model evolution
graph. This means, model evolution in model libraries is a
sequence of model snapshots; i.e., the evolution in figure 1
is the sequence (1,...,n).



3.5 Model Evolution Stages

We conduced a small field study with an exemplary model
evolution, and participants said that model evolution graphs
should contain status information for each snapshot. Con-
sequently, a model evolution graph can be partitioned into
sequences of evolution steps with equal status information.
For example, the excerpt from figure 1 could show how a
model evolves by going through the snapshot 1 with status
“vague” and being in snapshot n with status “decent”.

Rooting qualitative evaluations on “traffic lights” seemed
most reasonable to our participants. As a result, the number
of stages was chosen to be three, as it is intuitively obvious
what a model in “red”; “yellow” or “green” condition means
in terms of reusability. As a nice side effect, the cognitive
load of these three stages is negligible, since the number is
small and the semantics of the colors is obvious. We choose
the names to be vague, decent, and fine.

A vaguely reusable model is indetermined with respect to
it’s reusability and quality. Its label is “red”, i.e., the stage
is vague. This means, the model stays in the library for
further processing and is offered for reuse, but the modeler
needs to be cautious using this model. It might be that this
model holds some specific suffixes (cf. “DAO” in figure 1),
technology dependent elements, adapters for legacy use, or
even errors. Despite all this uncleanliness, it was chosen
to be put in the library for reuse since it is thought to be
reusable in general. Due to these characteristics of “vague”,
every model put in the library starts in this stage.

As the major issues are fixed, the model progresses to be
a decently reusable model. Its label is “yellow” now, i.e.,
the stage is decent. This means, the model does not hold
any specifics or errors and is reusable in general. Still, it
might be, that certain care needs to be taken if a modeler
reuses this model, for example, the purpose does not per-
fectly match the intuition or a design decision is not clever.
Even the layout might not be very appealing or the qualita-
tive statements rely on assessments only but not on actual
experience while reusing this model.

A finely reusable model is considered almost perfectly
reusable and holds a “green” label indicating that the stage is
fine. Now, the purpose is in line with the model and the qual-
ity is most reasonable. Notwithstanding that, models most
likely will not be reusably “out of the box”. This might be
due to a template mechanism that requires a modeler to fill
in the optional parts or due to adaption that is required by
this particular reuse. If any operation other than renaming
or retyping is applied, the model looses it’s fine status.

3.6 Model Evolution Automaton

Taking into account the above mentioned reasoning and
operations, the formal model of the model evolution stages
can be transformed into an automaton as depicted in fig-
ure 2. It shows, how a model is initially put in a vague
stage and that certain operations (7;) can be performed
until an identity operation (idas) moves the model to de-
cent stage and so forth. The considered operations com-
prise adding, deleting, renaming and retyping elements in
the model. Their impact on the model is quite different,
which limits the operations available on a model in fine
stage. This is, because adding or deleting elements in a
model in fine stage could alter the model entirely.

More formally, the automaton (Q, >, Z, 4, qo, F') com-
prises the following elements: @ is the set of vertices and

start

Figure 2: Model Evolution Stages

defined as @ := {VAGUE, DECENT, FINE}. Y is the collec-
tion of input symbols defined as ) := Q X (T'U {idnm})
with T := {Tadd7 Tdelete; Trename Tretype}~ Moreover, qo is the
defined starting state (¢o := VAGUE) and F is the empty set
(F := 0) since evolution is not regarded finite. Finally, ¢ is
the transformation and defined as § := §, U 64 U dy, with

0y := {(VAGUE, ;) — VAGUE | 7; € T'}

U {(VAGUE, idas) — DECENT},
04 := {(DECENT, 7;) + DECENT | 7; € T'}
DECENT, idar) — VAGUE}

FINE, Tk ) = FINE | T € {Trename, Tretype } }

(

(
U {(
U {(DECENT, idy) — FINE}, and

6 ==A{(
U {(FINE, idps) — DECENT}

(

U {(FINE, idar) — VAGUE}

A closer look at the transitions unveils that some non-
determinism is inherent in this automaton. First, transitions
that go from the fine stage to another stage could represent
the same type of operations. Second, the identity operations
are no hindrance between stages. This means, so far it is
always possible to change the stage and this is why user
interaction based on quality assessments will be required
later. But first, an example should provide a better idea
how a model might progress through different stages.

3.7 Model Evolution in Action

The above mentioned automaton is non-deterministic; so,
room is left for reasoning how this could be changed. We use
the example from figure 1 and demonstrate how it might un-
dergo evolution in a model library. This will set the reason-
ing required for transition guards between stages and even-
tually demand a quality model for decision support.

As our jukebox from figure 1 was considered beneficial for
our model library, it was extracted from its environment and
stored for reuse. Since most of the newly arriving models
are expected to be biased in one way or another, the initial
stage of our jukebox model is vague. In our example this
is very reasonable, because the model contains a suffix that
indicates its purpose and spoils the cleanness of this model.
Without going into detail with quality in modeling, we can
say that this model can be improved.

As a modeler improved the model to a certain extent, it
can progress to “decent” stage. In our example, a modeler



needs to remove the suffix DAO to make the model hold one
class with a clean name. This was achieved by a simple
rename operation and now the model is free from technolog-
ical details. At this point, the modeler only needs to add,
e.g., a description and model can progress to “decent” stage.
This means, it is all right but certainly not “fine”. Hence,
the design should be revised, though this model is reusable
in general. As a consequence, it is highly unlikely that it
will be reused as it is. On the contrary, a modeler will most
likely need to apply further add, delete, rename, or retype
operations, if the model is reused. For example, some de-
pendent classes, which obviously belong to this model, will
need to be designed. In our example, a Jukebox is useless
without a definition of a MediaSet.

As soon as the model matured further, it can progress to
“fine” stage. This will have needed that some modelers re-
viewed this model or some of them removing model issues.
Eventually, the gained snapshot might be like snapshot n
from figure 1. Mind that, this happened only with our de-
fault set of operations, which is mentioned above. The point
is, that this model came to a stage that is “fine” for reuse.
From now on, this model is valid in itself and can be reused
by other modelers. Additionally, it might offer template
support, which includes further modeling advise.

Since the quality of models and, likewise, template in-
formation breaks easily, when, e.g., add or delete actions
are applied, only rename and retype actions are allowed in
“fine” staged models. This is due to add and delete oper-
ations altering the model in a way that might totally alter
the purpose and validity of that model. This is why these
actions lower the stage immediately. But it depends on the
reasoning of a modeler to decide on the next stage. Most
likely, the model will only drop to a vague stage if it was split
in two distinct parts, which need to be considered as “new”
in the model library. Otherwise, add and delete operations
will lead to “decent” stage.

From the above, we understand that some of the tran-
sitions need a conscious decision whether the model pro-
gresses to another stage. In order to help modelers to take
these decisions, a quality model would be beneficial. But it
is challenging to find such a model, since there is no precise
definition of reusability for model libraries, nor is there a
common understanding of what a quality model for model
libraries might be. This is why we investigated further and
found that this particular environment focusing on reusabil-
ity limits certain aspects extensively, so that we were able
to propose a reasonable solution.

4. QUALITY MODEL FOR MODELS

Restricting models to evolve in model libraries, where only
general characteristics such as model size, i.e., complexity,
are of relevance, model quality becomes manageable. If a
model conforms to these general quality characteristics, the
model is considered to have a high quality in a model library
and is reusable. In the following, we present our quality
model focusing on model libraries and thereby resolving the
challenge of being hard to define and measure due to its
highly subjective and relative nature [24].

Our quality model is based on the research of Lindland
et al. [19] and Lange et al. [16] and comprising four general
quality dimensions, namely syntactic, semantic, pragmatic,
and emotional quality; each of which can be subdivided as
shown in figure 3.

Meta-Model
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Defect-Freeness § '} ﬁ

Semantic Validity b\

Semantic Quality Completeness [k _ W

Confinement  fe------ ¥
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Understandability } ///

Pragmatic Quality Maintainability o

Purpose -
Extraction /

Emotional
Quality

Figure 3: Model Quality Dimensions

First, focusing on reusability, it is sufficient to restrict syn-
tactic quality to be described by the following three charac-
teristics: Meta-model conformity describes the conformness
of the model to the abstract syntax specifying the model-
ing language, i.e., the model is well-formed. Additionally,
transformability states that a generator, which understands
the model’s syntax, can successfully transform a model into
another representation, e.g., source code. Finally, a model
is defect-free, if it does not contain any syntax errors. More-
over, syntactic quality can be used for error prevention, and
error detection. Error correction is, however, not feasible,
due to uncertain modeler goals.

Second, the extent to which the model describes the as-
pect it should model, i.e., correspondence between a model
and its domain, is addressed by semantic quality. We sub-
divide this dimension into: wvalidity, completeness, and con-
finement. A model is of high validity if, and only if, ev-
ery statement defined by the model is valid in the domain.
Whenever a model includes an invalid statement from the
domain, it must be true that the advantage to simply re-
move this statement is higher than the drawbacks of adapt-
ing the whole model to the invalid statements. Furthermore,
a model is complete if, and only if, there is no statement in
the domain not yet included in the model, such that its ben-
efit is higher than the drawback of adapting the model to
this new statement. Third, if a model includes enough valid
statements about the domain to describe the intention or to
solve a problem in a domain, the model is confine.

Third, pragmatic quality addresses the correspondence
between a modeler’s comprehension and a model. In other
words, the model must be understood by a modeler correctly.
In model libraries, model comprehension can be reduced
to three characteristics: understandability, maintainability,
and purpose extraction. Understandability refers to the de-
gree to which the modeler’s interpretation can be build from
the model. Maintainability addresses the degree to which a



modeler understood the model and is able to adapt it to
environmental changes. Finally, if the modeler’s extracted
purpose of a model corresponds to the purpose originally
defined, the purpose extraction is high.

Last, emotional quality addresses the correspondence be-
tween a user’s interpretation and his emotions. If a model is
appealing to modelers, it is more likely to be reused. Con-
sequently, such models have a high emotional quality. This
model quality dimension is of importance in model libraries,
since reuse depends on individual opinions about models.
This model quality dimension is mentioned for the sake of
completeness (cf. “bthumb up button” in figure 5)

Each model quality dimension and especially the corre-
sponding characteristics have to be measureable in order to
enable qualitative statements about model quality in model
libraries. SDMetrics [26] and Genero et al. [11] provide
metrics to measure defect-freeness, understandability, and
maintainability. Moreover, simplified model reviews can be
used to measure semantic validity, completeness, confine-
ment, and purpose extraction. Finally, meta-model confor-
mity and transformability can be measured with existing val-
idators [27]. Note that appeal is not measured but tracked
with a counter, which counts the number of model reuses.

4.1 Quality Gates

The staged model evolution aims at structuring and guid-
ing model evolution in model libraries. The structuring is
achieved by partitioning model evolution in three stages.
The traversal of models through the stages highly depends
on the modeler and his intention. However, stage traversal
can be guided by introducing quality gates in order to make
qualitative statements about model quality in each stage
and thereby derive its reusability. In the following, we sum-
marize the staged model evolution approach as presented in
section 3.5 and derive quality gates for the stage transition.

Generally, quality gates can be seen as metaphorical gates.
A model can pass a gate, if all requirements of this gate are
fulfilled. Figure 4 illustrates the staged model and the cor-
responding quality gates. The set of requirements for each
gate is derived from the quality model for model libraries.

start

Figure 4: Staged Model and Quality Gates

Each model underlying the staged model evolution starts
in the vague stage and is aiming at reaching the fine stage to
be recommended for reuse in the model library. The main
goal of the vague stage is to remove all obstacles resulting
from the fact that the model has been added to the model li-
brary or has been restructured from a previously fine model.
When all of these activities are finished and the modeler in-
tends to move the model to the decent stage, the model has
to pass the first quality gate QG1. The requirements of this
quality gate are meta-model conformity, transformability,
defect-freeness, semantical validity, and confinement. These
requirements verify that (a) no prefixes and technological

dependencies are included, (b) adapters for legacy are re-
moved, and (c) the model has no errors. A model does not
have to be semantically complete after passing this quality
gate, because completeness is aimed for in decent stage.

When a model enters the decent stage, the staged evolu-
tion can be directed in two directions. First, if the modeler
adapts the model to fit the initial purpose and is satisfied
with the chosen layout and solution, the model can be moved
to the fine stage by passing quality gate QG3. Since the next
level of reusability is “green”, i.e., the model library may
suggest this model to modelers for reuse, this quality gate
requires all quality characteristics to be fulfilled. Emotional
quality, however, is not considered to be a requirement re-
garding the number of “likes”, instead it shows that modelers
agreed on the reuse of the model and its quality. Second, a
model can be moved back to the vague stage due to errors in
the model, restructuring, or even unsuitability of the model
for reuse by passing quality gate QG2, which requires that
at least one of the requirements for QG1 is violated.

After a model has been labeled to be reusable by enter-
ing the fine stage, different influences might lead to the loss
of its status. If the model requires adaption other than re-
naming or retyping, it has to be moved to decent or vague
stage depending on the type of adaption. Restructurings of
the model, which lead to model decomposition or even new
models, require the model to be moved to the vague stage.
This also holds true for bugs in the model, which are hard
to fix or are not going to be fixed in the future. In any
other case of adaption, the model has to be moved to decent
stage. In both cases, the model has to pass either quality
gate QGH or QG4. Both require that at least one of the
requiremnts for QG3 is violated. This non-determinism is
rooted in the adaptions required to be made to the model.
E.g., if a model needs to be completely restructured, it is
moved to vague stage.

5. PROTOTYPE

Based on the staged model evolution, a software prototype
in Eclipse has been implemented and evaluated. The main
focus of the prototype is guidance of the modeler through the
staged model evolution. Hence, a simplified representation
of the staged model (cf. figure 4) was implemented and en-
hanced with some guidance to make the quality model work.
For example, model metrics and model reviews are included
to provide measures regarding the quality model introduced
above. In addition, wizards check and display the status of
each quality gate, whenever the modeler intends to change
the current stage. An overview of the main elements of the
prototype is illustrated in figure 5.

The simplified representation of the stages (top of the fig-
ure) contains a representation for each stage colored with
respect to its reusability status, i.e., vague is red, decent is
yellow, and fine is green. The current stage and the transi-
tions a modeler can choose to reach another stage are high-
lighted. This color encoding helps displaying the limited
actions a modeler can perform in each stage (cf. figure 2)
and thereby increases guidance.

In addition to the three stages of the staged model evo-
lution, it is always possible that a model can become dep-
recated. Then, the model is kept in its current stage and
marked as deprected. The basket symbol in figure 5 allows
the modeler to always mark the current model as depre-
cated. Please note that once a model becomes deprecated,
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Figure 5: Staged Model Evolution Prototype

its stage cannot be changed anymore.

Besides the stage representation, the prototype contains
a list of model metric values and model review reports to
display information about the model quality. We separated
model metrics in two categories: model defects and model
smells. The first type of metrics indicates violations of met-
rics that are known to be errors, e.g., a new class is intro-
duced without a class name. In contrast, model smells are
defined based on Fowler’s definition of smells [8]. But with
respect to the modeling domain, a smell refers to an improve-
ment of the model, e.g., reducing the amount of classes to
make the model more understandable. Moreover, we simpli-
fied model reviews to be easy to create and to correspond
to the model quality characteristics. At this point, we ne-
glect presenting the mapping of a model review to a model
quality characteristic, but point out the main idea of the
simplifed model reviews. A simpified model review for each
model quality characteristic is created by limiting the view
of the review to the necessary elements required to verify
the model characteristic.

The use of model metrics requires modelers to either man-
ually apply them or an approach to automatically apply
model metrics and inform the modeler about the results.
A major drawback of a manual approach is that metrics
will be forgotten over time and thus will not be applied.
Consequently, we followed the approach of proactive qual-
ity guidance. This approach automatically calculates model
metrics whenever a model has been changed and immedi-
ately displays metric violations, i.e., the modeler receives
live feedback during modeling.

Another benefit of this approach is a set of clear instruc-
tions as the result of applying the metrics. These instruc-
tions inform the modeler about steps that need to be done to
resolve the corresponding model metric violation. In combi-
nation with model reviews, which are required to be fulfilled
in order to move to another stage, this proactive quality
guidance approach provides non-obtrusive feedback to raise
model quality awareness and helps guiding modelers through
the staged model evolution.

6. CONCLUSION AND OUTLOOK

Despite a long history in model evolution research, there is
no holistic approach available supporting evolution in model
libraries. This is surprising, since models change in libraries
as well. Moreover, it is surprising because these circum-
stances ease a few obstacles. Evolution, in general, is con-
sidered as aimless, but model libraries would loose their ben-
efits quickly evolving unguided. Hence, evolution needs to
be guided in model libraries, which offers a clear direction of
evolution and provides opportunities to formalize and struc-
ture evolution in model libraries as we did above.

For structuring this evolution, we defined an evolution
graph and partitioned it based on model stages. These
stages serve as indicators for model reusability. We defined
these stages to be vague, decent, and fine and attribute them
with the colors red, yellow, and green respectively. This in-
tuitive stage model allows to define gates that need to be
fulfilled before passing to the next better stage.

In order to define quality gates to separate model stages,
we introduced a quality model, which defines simple means
of quality assurance. This is possible, because model li-
braries limit possible quality attributes and, hence, keep the
scope of metrics small. All in all, we defined syntactic, se-
mantic, and pragmatic quality and added emotional quality,
which proved reasonable in our experiments.

All together, we provided a foundation for quality staged
model evolution in model libraries, which we implemented in
tool support providing guidance for this holistic approach.

Besides evaluation of this approach, a novel and altered
kind of co-evolution is subject to current and future work.
Consider a model library that is more a knowledge base.
It would certainly hold information how single models are
related to each other. For example, relationships could be
established between such models on different levels.

We created such a model library [10] and enhanced it with
evolution support as presented here. The drawback of this
approach is that it only takes into account a single model
disregarding any crossing relationships. But how do these
relationships “co-evolve” as models evolve? Moreover, we
analyze what happens if a model needs to split. This might
happen, most likely, in fine stage and this is why the symbol
in our tool, which stands for this stage, is shaped slightly
different. As the modeler hovers over this symbol, a splitting
arrow appears allowing to split this model in several parts.
But the semantics and the consequences of what that would
or could mean are still under research.
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