
 116

Recommendations For The Generalized Intelligent

Framework for Tutoring Based On The Development Of

The DeepTutor Tutoring Service

VASILE RUS, NOBAL NIRAULA, MIHAI LINTEAN, RAJENDRA BANJADE, DAN

STEFANESCU, WILLIAM BAGGETT

The University of Memphis

Department of Computer Science/Institute for Intelligent Systems

Memphis, TN 38138

vrus@memphis.edu

Abstract. We present in this paper the design of DeepTutor, the first dialogue-

based intelligent tutoring system based on Learning Progressions, and its

implications for developing the Generalized Framework for Intelligent

Tutoring. We also present the design of SEMILAR, a semantic similarity

toolkit, that helps researchers investigate and author semantic similarity models

for evaluating natural language student inputs in conversatioanl ITSs.

DeepTutor has been developed as a web service while SEMILAR is a Java

library. Based on our experience with developing DeepTutor and SEMILAR,

we contrast three different models for developing a standardized architecture

for intelligent tutoring systems: (1) a single-entry web service coupled with

XML protocols for queries and data, (2) a bundle of web services, and (3)

library-API. Based on the analysis of the three models, recommendations are

provided.

Keywords: intelligent tutoring systems, computer based tutors, dialogue

systems

1 Introduction

The General Framework for Intelligent Tutoring (GIFT; Sottilare et al, 2012) aims at

creating a modular ITS/CBTS (intelligent tutoring systems/computer-based tutoring

systems) framework and standards to foster “reuse, support authoring and optimiza-

tion of CBTS strategies for learning, and lower the cost and skillset needed for users

to adopt CBTS solutions for military training and education.” GIFT has three primary

functions: (1) to help with developing components for CBTS and whole tutoring sys-

tems; (2) to provide an instructional manager that integrates effective and exploratory

tutoring principles and strategies for use in CBTS; and (3) to provide an experimental

test bed to analyze the effectiveness and impact of CBTS components, tools, and

methods. That is, GIFT is both a software environment and standardization effort. The

availability of a GIFT software package suggests that for now the software environ-

 117

ment has been given priority to standardization efforts. This paper intends to help

make progress towards a GIFT standardization.

To that end, we present the design of DeepTutor (www.deeptutor.org; Rus et al.,

to appear), the first CBTS based on the emerging framework of Learning Progressions

proposed by the science education research community (LPs; Corcoran, Mosher, &

Rogat, 2009). LPs can be viewed as incrementally more sophisticated ways to think

about an idea that emerge naturally while students move toward expert-level under-

standing of the idea (Duschl et al., 2007). That is, LPs capture the natural sequence of

mental models and mental model shifts students go through while mastering a topic. It

is this learner-centric view that differentiates LPs from previous attempts to reform

science education. The LPs framework provides a promising way to organize and

align content, instruction, and assessment strategies in order to give students the op-

portunity to develop deep and integrated understanding of science ideas.

DeepTutor is developed as a web service and a first prototype is fully accessible

through a browser from any Internet-connected device, including regular desktop

computers and mobile devices such as tablets. As of this writing, DeepTutor is de-

signed as a bundle of two web services: (1) the tutoring service itself accessed by

learners, and (2) the support service which includes everything else: authoring and

content management, experiment management, user management, and instruction

management. The latter service is viewed as a single service because there is a single-

entry point to access all these functions. The tutoring service exports its functionality

through an XML-based protocol. Third party developers can use their own develop-

ment environments to design custom DeepTutor clients and integrate them with the

DeepTutor tutoring service; all they need is to understand and generate an XML-like

protocol, which is a query-language for accessing DeepTutor functionality.

We contrast the DeepTutor design with the design of another software environ-

ment, SEMILAR (www.semanticsimilarity.org; Rus et al., 2013). SEMILAR can be

used to author semantic similarity methods for semantic processing tasks such as the

task of assessing students’ natural language inputs in dialogue-based CBTSs.

SEMILAR, a SEMantic simILARity toolkit, has been designed as a Java library. Ac-

cess to SEMILAR functionality is already available through a Java API (Application

Programming Interface). Users can use the semantic similarity methods in SEMILAR

as long as they link the SEMILAR library to their own Java programs. If a developer

were to use SEMILAR from non-Java applications, a solution would be for the

SEMILAR library to export its functionality through an XML-like protocol which is

easily readable from any programming language. This latter integration solution is

basically the export of functionality approach available in the DeepTutor tutoring

service. SEMILAR has not been developed as a web service because it was initially

developed for our own internal use. We have plans to make it available as a web ser-

vice in the future. A GUI-based Java application has been developed and is currently

tested to offer non-programmers easy access to the SEMILAR functionality.

The two designs, DeepTutor and SEMILAR, will help us discuss concretely three

models for standardizing and implementing CBTS functionality to meet GIFT’s

goals: (1) a single-entry web service, e.g. the two DeepTutor services can be collated

into one service (a one-stop-shop model); (2) a bundle of web services – the current

DeepTutor design in which different functionality is accessed through different ser-

vice points, and (3) a library of components accessed through an API. The three mod-

 118

els share the common requirement of standardizing the communication between a

client/user and provider of tutoring components/functions. While all three models

have advantages and disadvantages, we favor the web services models for a General-

ized Framework for Intelligent Tutoring as these models better suit the emerging

world of mobile computing in which users access services in the cloud over the net-

work as opposed to downloading full applications on their local, energy-sensitive

mobile devices. Furthermore, the combination of a tutoring service and XML-based

protocols for data and commands/queries fits very well with recent standards for rep-

resenting knowledge proposed by the Semantic Web community, standards for au-

thoring behavior of dialogue systems (see the FLORENCE dialogue manager frame-

work; Fabbrizio & Lewis, 2004), or previous work in the intelligent tutoring commu-

nity (see CircSim’s mark-up language; Freedman et al., 1998).

The rest of the paper is organized as in the followings. The next section provides

an overview of the DeepTutor web service. Then, we describe the design of the

SEMILAR library. We conclude the paper with Discussion and Conclusions in which

we make recommendations for GIFT based on the three models we discussed.

2 The Intelligent Tutoring Web Service DeepTutor

DeepTutor is a conversational ITS that is intended to increase the effectiveness of

conversational ITSs beyond the interactivity plateau (VanLehn, 2011) by promoting

deep learning of complex science topics through a combination of advanced domain

modeling methods (based on LPs), deep language and discourse processing algo-

rithms, and advanced tutorial strategies. DeepTutor currently targets the domain of

conceptual Newtonian Physics but it is designed with scalability in mind (cross-topic,

cross-domain).

DeepTutor is a problem solving coaching tutor. DeepTutor challenges students to

solve problems, called tasks, and scaffolds their deep understanding of complex scien-

tific topics through constructivist dialogue and other elements, e.g. multimedia items.

DeepTutor uses the framework of Learning Progressions (LPs) to drive its scaffolding

at macro- and micro-level (Rus et al, to appear). There is an interesting interplay

among assessment, LPs, instructional tasks, and advanced tutoring strategies that is

finely orchestrated by DeepTutor. The LPs are aligned with an initial, pre-tutoring

assessment instrument (i.e., pretest) which students must complete before interacting

with the system. Based on this first summative assessment, an initial map of students’

knowledge level with respect to a topic LP is generated. The LPs encode both

knowledge about the domain and knowledge about students’ thinking in the form of
models that students use to reason about the domain. The student models vary from

naïve to weak to strong/mastery models. For each level of understanding in the LP a

set of instructional tasks are triggered that are deemed to best help students make

progress towards mastery, which coincides with the highest level of understanding

modeled by the LP.

The task representation is completely separated from the executable code and

therefore DeepTutor is compliant with the principles adopted by GIFT from Patil and

Abraham (2010). Also, in accordance with GIFT principles (Sottilare et al., 2012),

DeepTutor’s pedagogical module interacts with the learner module (the Student) and

 119

adapts the scaffolding tasks and dialogue according to the learner’s level of

knowledge.

DeepTutor is an ongoing project. As of this writing, different modules are at dif-

ferent stages of maturity. For instance, our LP has been empirically validated based

on data collected from 444 high-school student responses. Other components, e.g. the

general knowledge module that can handle tasks related to general knowledge such as

answering definitional questions (“What does articulate mean?”), is still in the works.

The system as a whole will be fully validated in the next 6-12 months.

As already mentioned, DeepTutor has been designed as a web service accessible

via HTML5-compatible clients, typically web browsers. The familiarity of users with

web browsers and eliminating the need to install software packages (except the web

browser) on each user’s own computer environment makes it extremely convenient

for users to access DeepTutor from any Internet-connected device and at the same

time opens up unprecedented economies of scale for tutoring research. For instance,

during Spring 2013 DeepTutor has been successfully used by more than 300 high-

school students
7
 from their Internet-device of choice (outside of traditional classroom

instruction or experimental lab): home computer, tablet, mobile phones, or library

computer.

All communication between the client and the DeepTutor server is handled

through an XML-like protocol. The protocol specifies both commands and data that

both client and server can interpret. The client communicates user actions and data to

the server and the server replies with appropriate responses. Currently, the responses

are in the form of display commands and values for various tutoring elements that are

visible to the user on screen. That is, the client simply uses the information to update

the corresponding interface elements, e.g. the client needs to update the dialogue his-

tory box with the most recent DeepTutor feedback response. The protocol contains

sufficient information for learner software clients to display the elements of the stand-

ard DeepTutor interface. At the same time, the client uses the XML protocol to send

the DeepTutor server important information about the user, e.g. user actions such as

turning the talking head off, typed responses, time stamps, etc.

There are two major phases for learner clients to connect to the full DeepTutor

system: the user authentication and initialization phase and the tutoring phase. In the

authentication and initialization phase the user authenticates herself. A set of initiali-

zation parameters are sent to the DeepTutor system as well. Currently, the initializa-

tion parameters are set from the instructor view of the system, e.g. the research-

er/experimenter or instructor/teacher can set a particular instructional strategy to be

used by the system for a particular user or groups of learners. We can imagine in the

future that these parameters are set dynamically based on the student model retrieved

from a persistent database of learner information.

7
 This group of students is different from the 444 student group used for validat-

ing the LP.

 120

Figure 10. Three DeepTutor clients showing three different renderings of the learner-view of the DeepTutor

Service: the currently official learner view in DeepTutor (top), an under-development Android app (bottom
left) and a client developed for a Masters project (bottom right).

Client applications that access the full DeepTutor tutoring system (not individual

components) can be designed quite easily. The main reason is the relatively simple

but efficient current interface that allows the learner to focus on the interactive tutorial

dialogue. Figure 1 bottom shows on the left-hand side an Android-based app client for

DeepTutor designed by a small team of 5 Computer Science undergraduate students

as a semester-long class project. The app has an interface design for a vertical versus

horizontal positioning of the mobile device. The right-hand side of Figure 1 includes

another DeepTutor client designed by a Masters student in Computer Science as his

Masters project on Human-Computer Interaction.

It should be noted that more complex learner views are in the plans for

DeepTutor. For instance, we plan to add several supplemental instructional aids and

monitoring and informing elements such as how many tasks are left to cover in the

current session or game-like features such as showing what percentage of a learner’s

 121

peers successfully finished the current task. The current interface of DeepTutor is as

simple as it can be and it was intentionally kept this way. The goal was to reduce the

number of on-screen distractors in order for the learner to focus on the tutorial dia-

logue. Adding more elements would make the interface richer which could distract

the learners from the main tutorial interaction. It would be an interesting topic to in-

vestigate though.

We imagine that other users, e.g. developer of tutoring systems, may need to ac-

cess specific functionality/components of DeepTutor according to the GIFT goals. As

an example, we can imagine someone willing to access the output of the assessment

module. As of this writing, the client-server protocol does not allow export of specific

functionality. To allow export of functionality at a finer-grain level the current

DeepTutor XML protocol must be extended such that the server provides develop-

ers/researcher clients output from specific modules, e.g. the assessment module. The

exact format of the query and response must be clearly defined.

We believe that efforts to standardize access to GIFT-defined CBTS modules us-

ing XML protocols are best. The specification of these protocols needs to be done at

different levels of abstractness such that the protocol is general enough to be applica-

ble to all types of tutoring systems (at higher, more general levels of specification)

and detailed enough for specific types of tutoring systems to be readily implementable

by various groups. For instance, a general specification for querying the assessment

module would include a general query element that indicates that an user input is

needed together with a context variable which may contain other useful information

for best assessing the student input (the context variable could be as simple as an user

identifier and a session identifier or much more complex including a comprehensive

list of factors that might impact assessment) and the format of the response from the

assessment component of the tutoring service. This general specification can be fur-

ther specified for benchmark-based tutoring systems (AutoTutor – Graesser et al.,

2005, Guru – Olney et al. 2012; DeepTutor – Rus et al., to appear) as well as for rea-

soning-based tutoring systems (Why-Atlas; VanLehn et al., 2007). We use this broad

categorization of tutoring systems to help us illustrate the need for further specifying

general query formats. A benchmark-tutoring system is one that requires an expert-

generated or benchmark response against which the student response is assessed

(DeepTutor is such a system; Rus et al., to appear). For benchmark-tutoring systems

the assessment query will need to pass (a pointer to) the benchmark response as one

of the input parameters. Reasoning-based systems are able to infer the correct re-

sponse automatically (Why-Atlas; VanLehn et al., 2007). For reasoning-based sys-

tems the benchmark response may not be needed but instead (a pointer to) a

knowledge base.

In summary, a web service together with XML-based protocols may offer the

best option for moving forward in GIFT. The advantage of using a web service solu-

tion with an XML-based protocol has the advantage of being easily extendable (new

functionality can be added by simple adding new tags in the XML protocol). Another

advantage is the decoupling the logical view from the actual implementation. The

decoupling of functionality from actual implementation can be very useful. For ex-

ample, the XML protocol can offer a GIFT-like view of the system with components

so defined to meet GIFT standards while the actual, back-end implementation can be

so designed to best fit particular types of ITSs. Sometimes refactoring and exporting

 122

functionality is conceptually challenging as for some tutoring systems there is a tight

connection between components that GIFT suggest be separate. For instance, in LP-

based ITSs such as DeepTutor, there is a tight relationship between learner models

and the domain model because the domain is organized from a learner perspective

(Rus et al., in press). Separating the learner model from the domain model is concep-

tually challenging and probably not recommended. The decoupling of functionality

allows keeping the best implementation while offering differing views recommended

by standards.

The combination of web service/XML protocol is also more advantageous when

it comes to updates and extensions. There is no need to download and recompile a

client application with the latest version of a component or the whole tutoring system.

We conclude this section by noting that the service model can further be refined

into two types of service-based models: single service versus bundle of services. The

current DeepTutor system is a bundle of services. In this model, the functionality of

the various modules would be available as separate web services, e.g. the assessment

module could be a separate web service. There are some interesting aspects of the

bundle of services model. For instance, in DeepTutor some functionality is offered

through a combination of the two DeepTutor services: debugging capabilities are

offered through a combination of the tutoring and support services. That is, a devel-

oper polishing various components has to use both services.

All services can eventually be bundled together in a single, deep service (contain-

ing many subservices) in which case we have a single-entry service model. This

model implements the concept of a one-stop-shop meaning users will use on access

point for the components or the whole tutoring system.

3 The SEMILAR Library For Assessing Natural Language

Student Inputs

Our SEMILAR (SEMantic similarity) toolkit, includes implementations and exten-

sions of a number of algorithms proposed over the last decade to address the general

problem of semantic similarity. SEMILAR includes algorithms based on Latent Se-

mantic Analysis (LSA; Landauer et al., 2007), Latent Dirichlet Allocation (Blei, Ng,

& Jordan, 2003), and lexico-syntactic optimization methods with negation handling

(Rus & Lintean, 2012a; Rus et al., 2012b); Rus et al, in press). Due to space reasons,

we do not present the set of methods available but rather discuss the design of

SEMILAR as a Java library and its implications for using an akin design for GIFT.

The Java library design for SEMILAR has the advantage of being easily integrat-

ed as compiled code into Java applications which, at least in theory, should be plat-

form independent. However, users have to download the whole package, install it, and

then compile it with their tutoring systems. If these systems or components are written

in a programming language different from Java, extra effort will be needed for inte-

gration. We call this the library-API model for a GIFT framework. Indeed, a GIFT

framework based on the library-API model will require downloading and installing

large software packages on various platforms by users of various technical back-

grounds which may make the whole effort more challenging. For instance, the

SEMILAR library and application is 300MB large (it includes large models for syn-

 123

tactic parsing among other things). SEMILAR can be regarded as a tutoring compo-

nent for assessing students’ natural language inputs. If ITS developers were to use

SEMILAR as a library they have to download it and integrate it in their products.

They have to install and update the API when updates become available. In fact, this

is how SEMILAR is currently integrated in DeepTutor. Changes in implementation,

e.g. bug fixes, would require a new download and reintegration of the systems that

rely on the library. When SEMILAR will be available as a web service, all is needed

is understanding the API, in the form of an XML-based communication protocol, and

connect to the tutoring service. The need for a network connection are a potential risk

for the service model in the form of network congestion which may make the service

inaccessible or slow at times.

4 Discussion and Conclusions

We presented three models based on our experience with implementing a set of

coherent functionalities related to intelligent tutoring systems and semantic processing.

Each of the models has its own advantages and disadvantages. Ideally, all three mod-

els should be adopted by GIFT. However, if it were to choose we believe that the

service-based models are the best solution for an emerging world of mobile devices in

which accessing software services in the cloud is becoming the norm. The library-API

and web service solutions are functionally equivalent with the former presenting more

technical challenges for users with diverse backgrounds and computing environments

and also being less suitable for a mobile computing world.

One apparent downside of the web service model is that potential developers

cannot alter the code themselves in order to conduct research. This is just an apparent

downside as a quick fix would be for each component to offer enough parameters, in

the form of a switchboard, to allow potential users to alter behavior without the need

to change the code. In fact, this solution should be preferred as users would not need

to spend time to understand and alter the code, a tedious and error-prone activity.

Standardization efforts for XML-based protocols may start with previous efforts

where available. For instance, the dialogue processing community has made attempts

to standardize dialogue acts/speech acts, a major component in dialogue-based ITSs,

for more than a decade. The resulting Dialogue Act Mark-Up in Several Layers

(DAMSL) XML schema can be used as a start to standardize speech acts in dialogue

ITSs.

In summary, we favor a one-stop-shop service model with switchboard-like fa-

cilities for implementing GIFT. Table 1 below illustrates the pros and cons of the

three models discussed in this paper.

 124

Table 6. Comparison of the three proposed model: single-entry service, bundle of services, and library.

 One-Stop-

Shop/Single-Entry

Service

Bundle of Ser-

vices

Library

Programming

Language Inde-

pendent

YES YES NO

Install and update

on local machine/

environment

NO NO YES

Fit for emerging

mobile and cloud-

computing fitness

EXCELLENT EXCELLENT POOR

Customization VERY GOOD VERY GOOD EXCELLENT

Cost of Customi-

zation

LOW MEDIUM HIGH (error prone

and time to work

with someone else’

code)

Extendible EXCELLENT EXCELLENT GOOD

5 Acknowledgements

The authors would like to thank members of DeepTutor project

(www.deeptutor.org). This research was supported by the Institute for Education Sci-

ences (IES) under award R305A100875 by a grant from the Army Research Lab

(ARL). Any opinions, findings and conclusions, or recommendations expressed in

this paper are those of the authors and do not necessarily reflect the views of the IES

or ARL.

6 References

1. Blei, D.M., Ng, A.Y., & Jordan, M.I. 2003. Latent dirichlet allocation, The Journal of Ma-

chine Learning Research 3, 993-1022.

2. Corcoran, T., Mosher, F.A., & Rogat, A. (2009). Learning progressions in science: An

evidencebased approach to reform. Consortium for Policy Research in Education Report

#RR-63. Philadelphia, PA: Consortium for Policy Research in Education.

3. Duschl, R.A., Schweingruber, H.A., & Shouse, A. (Eds.). (2007). Taking science to school:

Learning and teaching science in grades K-8. Washington, DC: National Academy Press.

4. Graesser, A. C.; Olney, A.; Haynes, B. C.; and Chipman, P. 2005. Autotutor: A cognitive

system that simulates a tutor that facilitates learning through mixed-initiative dialogue. In

Cognitive Systems: Human Cognitive Models in Systems Design. Mahwah: Erlbaum.

5. Landauer, T.; McNamara, D. S.; Dennis, S.; and Kintsch, W. (2007). Handbook of Latent

Semantic Analysis. Mahwah, NJ: Erlbaum.

6. Freedman, Reva, Yujian Zhou, Jung Hee Kim, Michael Glass, and Martha W. Evens.

 125

7. SGML-Based Markup as a Step toward Improving Knowledge Acquisition for Text Genera-

tion AAAI 1998 Spring Symposium: Applying Machine Learning to Discourse Processing

8. VanLehn, K. (2011). The Relative Effectiveness of Human Tutoring, Intelligent Tutoring

Systems, and Other Tutoring Systems, Educational Psychologist, 46:4, 197-221.

9. Olney, A., D'Mello, A., Person, N., Cade, W., Hays, P., Williams, C., Lehman, B., &

Graesser, A. (2012). Guru: A computer tutor that models expert human tutors. In S. Cerri,

W. Clancey, G. Papadourakis & K. Panourgia (Eds.), Proceedings of the 11th International

Conference on Intelligent Tutoring Systems (pp. 256-261). Springer-Verlag.

10. Patil, A. S., & Abraham, A. (2010). Intelligent and Interactive Web-Based Tutoring System

in Engineering Education: Reviews, Perspectives and Development. In F. Xhafa, S. Caballe,

A. Abraham, T. Daradoumis, & A. Juan Perez (Eds.), Computational Intelligence for Tech-

nology Enhanced Learning. Studies in Computational Intelligence (Vol 273, pp. 79-97).

Berlin: Springer-Verlag.

11. Rus, V. & Lintean, M. (2012a). A Comparison of Greedy and Optimal Assessment of Natu-

ral Language Student Input Using Word-to-Word Similarity Metrics, Proceedings of the

Seventh Workshop on Innovative Use of Natural Language Processing for Building Educa-

tional Applications, NAACL-HLT 2012, Montreal, Canada, June 7-8, 2012.

12. Rus, V., Lintean, M., Moldovan, C., Baggett, W., Niraula, N., Morgan, B. (2012b). The

SIMILAR Corpus: A Resource to Foster the Qualitative Understanding of Semantic Similar-

ity of Texts, In Semantic Relations II: Enhancing Resources and Applications, The 8th Lan-

guage Resources and Evaluation Conference (LREC 2012), May 23-25, Instanbul, Turkey.

13. Rus, V.; Lintean, M.; Banjade, R.; Niraula, N.; Stefanescu, D. (2013). SEMILAR: The Se-

mantic Similarity Toolkit, The 51st Annual Meeting of the Association for Computational

Linguistics, System Demo Paper, August 4-9, 2013, Sofia, Bulgaria.

14. Rus, V., D’Mello, S., Hu, X., and Graesser, A.C. (to appear) .Recent Advances In Conversa-

tional Intelligent Tutoring Systems, AI Magazine.

15. VanLehn, K., Graesser, A. C., Jackson, G. T., Jordan, P., Olney, A., & Rose, C. P. (2007).

When are tutorial dialogues more effective than reading? Cognitive Science, 31, 3-62.

16. VanLehn, K. (2011). The Relative Effectiveness of Human Tutoring, Intelligent Tutoring

Systems, and Other Tutoring Systems, Educational Psychologist, 46:4, 197-221.

Authors

Vasile Rus: Dr. Vasile Rus is an Associate Professor of Computer Science with a

joint appointment in the Institute for Intelligent Systems (IIS). Dr. Rus’ areas of ex-

pertise are computational linguistics, artificial intelligence, software engineering, and

computer science in general. His research areas of interest include question answering

and asking, dialogue-based intelligent tutoring systems (ITSs), knowledge representa-

tion and reasoning, information retrieval, and machine learning. For the past 10 years,

Dr. Rus has been heavily involved in various dialogue-based ITS projects including

systems that tutor students on science topics (DeepTutor), reading strategies

(iSTART), writing strategies (W-Pal), and metacognitive skills (MetaTutor). Current-

ly, Dr. Rus leads the development of the first intelligent tutoring system based on

learning progressions, DeepTutor (www.deeptutor.org). He has coedited three books,

received several Best Paper Awards, and authored more than 90 publications in top,

peer-reviewed international conferences and journals. He is currently Associate Editor

of the International Journal on Artificial Intelligence Tools.

 126

Nobal Niraula: Nobal B. Niraula received the B.E. in computer engineering from

Pulchowk Campus, Tribhuvan University, Nepal, the M.E. in information and com-

munication technology and the M.Sc. in communication networks and services from

Asian Institute of Technology, Thailand and Telecom SudParis, France respectively.

He was a research engineer at INRIA, Saclay, France where he worked in semantic

web, database systems and P2P networks. Currently, he has been doing his PhD at

The University of Memphis, USA. His research interests are primarily in Intelligent

Tutoring Systems, Dialogue Systems, Information Extraction, Machine Learning,

Data Mining, Semantic Web, P2P and Ad hoc networks. He has received the best

paper and the best presentation awards. He also has intern experiences in leading

research labs such as AT&T Labs Research.Mihai Lintean: Dr. Mihai Lintean is cur-

rently a research scientist at Carney Labs LLC and previous to that he was a Postdoc-

toral Research Fellow in the Computer Science Department at the University of

Memphis, where he worked with Dr. Vasile Rus ondialogue based tutoring systems

for teaching conceptual physics to high school students. Mihai's primary research

interests are in Natural Language Processing (NLP), with focused applicability on

educational technologies such as intelligent tutoring systems. Particularly he is inter-

ested in measuring semantic similarity between texts, representing knowledge through

relational diagrams of concepts, automatic generation of questions, and using various

machine learning techniques to solve other complex NLP problems. Mihai has pub-

lished numerous papers and articles in reputable, peer-reviewed conferences and jour-

nals. He currently serves as co-chair of the Applied Natural Language Processing

Special Track at the 25th International Conference of the Florida Artificial Intelli-

gence Research Society (FLAIRS 2012).

Rajendra Banjade: Rajendra Banjade is a PhD student in Computer Science at The

University of Memphis. He is a research assistant in the DeepTutor project

(www.deeptutor.org) - a dialogue based tutoring system. Rajendra's research interests

are in the area of Natural Language Processing, Information Retrieval, and Data Min-

ing. Currently, he is focusing on measuring semantic similarity of short texts (word

and sentence level) using knowledge based and corpus based methods and heading

towards more human like inferencing techniques. His current research focus is on

robust methods to evaluate student answers in conversational intelligent tutoring sys-

tems. He is keenly dedicated to enhancing the SEMILAR toolkit

(www.semanticsimilarity.org) which is an off-the-shelf semantic similarity toolkit.

Before joining The University of Memphis, he worked for five years as a Software

Engineer (R&D) at Verisk Information Technologies CMMI III, Kathmandu (a sub-

sidiary of Verisk Analytics inc.) where he got opportunities working on various

healthcare data mining projects including DxCG Risk Solutions engine. He received

an outstanding employee award at Verisk. Rajendra is a certified Scrum Master and

Software Developer, and Certified HIPAA professional. He holds bachelor's degree in

Computer Engineering.

William B. Baggett: William B. Baggett earned a PhD in Cognitive Psychology from

The University of Memphis in 1998. He also holds an MS in Computer Science and

an MBA in Management Information Systems. William is currently a Project Coordi-

 127

nator in the Computer Science Department at The University of Memphis, where he

works on DeepTutor. DeepTutor is an intelligent tutoring system, implemented as a

web application, which uses natural language dialogue to teach conceptual physics to

high school and college students. Previously, William was a Professor and part-time

Department Chair of Computer Information Systems at Strayer University and an

adjunct Professor of Computer Science at The University of Memphis. In both posi-

tions, William taught graduate and undergraduate Computer Science courses, men-

tored, tutored, and advised students, and developed new curricula. He was also a

Business Analyst at FedEx Express where he wrote software specifications for

PowerPad, a mission-critical handheld computer carried by FedEx Express couriers.

PowerPad software is designed to promote optimal courier behavior including the

efficient pickup and delivery of FedEx shipments, package tracking, and conformance

to policies and procedures for a wide variety of domestic and international services.

Dan Ștefănescu: Dr. Dan Ștefănescu is a Postdoctoral Research Fellow in the De-

partment of Computer Science of the University of Memphis and the Institute for

Intelligent Systems (IIS). As a member of DeepTutor team, his main research activity

is dialogue-based Intelligent Tutoring Systems. Previously, Dr. Ștefănescu was a Sen-

ior Researcher at the Research Institute for Artificial Intelligence (RACAI) in Bucha-

rest, Romania. He graduated from the Computer Science Faculty of ”A.I. Cuza” Uni-

versity of Iași in 2002 and obtained his MSc in Computational Linguistics from the

same university in 2004. In 2010 he was awarded the PhD title (Magna Cum Laude)

at the Romanian Academy for a thesis on Knowledge Extraction from Multilingual

Corpora. He authored more than 50 papers in peer reviewed journals and conference

proceedings and successfully participated in various software competitions like the

Question-Answering competitions organized by Conference and Labs of the Evalua-

tion Forum (CLEF), Microsoft Imagine Cup and Microsoft Speller Challenge. His

research work covers various Natural Language Processing topics like: Question An-

swering, Information Extraction, Word Sense Disambiguation, Connota-

tion/Sentiment Analysis, Collocations/Terminology Identification, Machine Transla-

tion, or Query Alteration for Search Engines.

