
Reading an Algebra Textbook

Clemens Ballarin

Stephanienstr. 61
76133 Karlsruhe, Germany

http://www21.in.tum.de/~ballarin/

Abstract. We report on a formalisation experiment where excerpts
from an algebra textbook are compared to their translation into for-
mal texts of the Isabelle/Isar prover, and where an attempt is made in
the formal text to stick as closely as possible with the structure of the
informal counterpart. The purpose of the exercise is to gain understand-
ing on how adequately a modern algebra text can be represented using
the module facilities of Isabelle. Our initial results are promising.

1 Introduction

We study an informal mathematical text by translating it to a formal document
in the Isabelle/Isar language [17]. Our motivation for this exercise is twofold:

– Can the reuse of concepts present in the informal text be expressed with
Isabelle’s facilities for modular reasoning in an adequate fashion?

– Are there linguistic features in the informal text that identify that modular
reasoning takes place?

This study is currently in a preliminary state, and in this work we focus on the
first item. In fact, the work is very preliminary: no proofs have been carried out
yet in the formal system.1

By Isabelle’s facilities for modular reasoning we mainly mean local theory
specifications locales [4] and [10]. The informal mathematical text is taken from
Nathan Jacobson’s textbook on basic algebra [11]. The choice of a modern expo-
sition on algebra is intentional, because we are interested in modularity and how
it is reflected in the proof text. In this study, we are less interested in aspects
related to the underlying logic of the prover, such as how well partiality can be
dealt with.

This note is organised as follows: Section 2 is a brief exposition of locales.
For more information, the tutorial [3] and an exposition of their semantics [4]
are available. For the complete syntax, see the Isabelle reference manual [18].
The detailed study of the algebra text follows in Section 3. The methodology is
simple: quotations from the informal text and their translation to Isabelle are
set side-by-side and are commented. Observations made in the experiment are
discussed in Section 4.

1 This means that some definitions likely require some revisions for proofs to go
through, but we do not expect significant changes.

http://www21.in.tum.de/~ballarin/

2 Locales

Locales are an extension of Isabelle’s Isar proof language [17] by means for ma-
nipulating “knowledge containers” or modules, which were designed for dealing
with algebraic structures. The central concept is the locale, a theory functor that
maps parameters and a specification to derived operations (that is, operations
whose definitions involve the parameters) and theorems.

A locale declaration is of the form

locale n = fixes y + assumes a1 : A1 . . . aj : Aj

where y are the parameters and A1 ∧ . . . ∧ Aj is the specification. The Ai are
versions of the user input where free variables except parameters are universally
closed. For example, a locale for groups may be declared like this:

locale group =
fixes G and composition (infixl "·" 70) and unit ("1")
assumes assoc: "[[a ∈ G; b ∈ G; c ∈ G]] =⇒ (a · b) · c = a · (b · c)"
and . . .

Note that types, in particular types of the parameters, may be left implicit.
They are inferred automatically.2 Operations and theorems may be added to n
in context blocks:

context n begin . . . end

These commands are available in context blocks:

definition c where c ≡ t
theorem b : B

abbreviation c where c ≡ t

The first two are straightforward: definition declares a new operation symbol
with defining equation c ≡ t and theorem introduces a theorem B named b;
abbreviation also adds a new operation symbol, but in contrast to definitions,
the equation is unfolded while parsing and folded while printing terms. This
is useful for providing concrete syntax for existing concepts. Declarations in a
context block are persistent — that is, they are present when the context is
visited again.

Locales are hierarchic and a graph of interdependent locales is maintained
by the system. Dependencies may be given when declaring a locale by inserting
a locale expression before the fixes and assumes clauses,

locale n = expr + . . . ,

or between existing locales through

sublocale n ⊆ expr rewrites 〈proof〉.
2 While inferred types may involve type classes, locales do not rely on them.

An expression is a sequence of locale instances followed by an optional for clause:

I1 + . . .+ Ik for x

Locale instances Ii are qualified and are either positional or by name. The posi-
tional instance qi : ni ti denotes locale ni with parameters, in the order of declara-
tion, instantiated by the terms ti. Likewise the named instance ni wherexi = ti
denotes ni with parameters occurring in xi instantiated by the ti. In a locale dec-
laration the terms ti are over the x from the for clause, which are (together with
the y from the fixes clause) parameters of the declared locale n. In a sublocale
declaration the ti are over the parameters from the target locale n. The quali-
fier qi of an instance Ii is optional and, if present, qualifies symbols of derived
operations and theorem names of the instance.

The expression in a locale declaration denotes locale instances that are im-
ported to the declared locale. That is, the specifications of the imported instances
contribute to the specifications of the declared locale, and their definitions and
theorems are available in its body. Here is a locale declaration involving an ex-
pression:

locale abelian_group =
group G composition unit
for G and composition (infixl "·" 70) and unit ("1") +
assumes comm: "[[a ∈ G; b ∈ G]] =⇒ a · b ∈ G"

As a notational convenience parameters from instantiated locales may be implic-
itly added to the for clause by omitting their instantiation. This is convenient
when constructing linear locale hierarchies. For example the above declaration
may be abbreviated to

locale abelian_group = group +
assumes comm: "[[a ∈ G; b ∈ G]] =⇒ a · b ∈ G"

The sublocale command enables changing the locale hierarchy. It is imple-
mented via theory interpretation. Changes are only possible if they are implied
by the specification of the involved locales and must be supported by proofs. The
optional rewrites clause is of the form where eq1 . . . eqm and lets one change de-
rived operations of the instantiated locales through rewrite rules eq i. In combina-
tion with instantiation they provide signature morphisms [8] on the instantiated
locales.

It is important to note that locales are extra-logical. That is, the functors they
represent are not encoded in Isabelle’s logic. However, each locale is accompanied
by a locale predicate n which reflects the specification of n in the logic.

3 Detailed Account

We study Jacobson’s presentation of monoids, groups and rings and the congru-
ence relations defined over these structures. For groups and rings congruences can
be characterised by working modulo suitable substructures: normal subgroups in

the case of groups, and ideals for rings. In the sequel, excerpts from Jacobson’s
text [11] and their formal analogs are interleaved. In the latter, no proofs were
actually carried out, and 〈proof 〉 merely indicates the places where Isabelle re-
quests proofs. With exception of a few details such as hiding unwanted concrete
syntax of Isabelle’s standard library, the entire formal text is reproduced.

3.1 Preliminaries

Fundamental to congruences are equivalence relations over sets and the induced
partitions of the sets into equivalence classes:

A relation E on a set S is called an equivalence relation if the following
conditions hold for any a, b, c, in S:
1. aEa (reflexive property).
2. aEb⇒ bEa (symmetry).
3. aEb and bEc⇒ aEc (transitivity).
If a ∈ S we let āE (or simply ā) = {b ∈ S|bEa}. We call āE the equivalence
class (relative to E or E-equivalence class) determined by a.

If E is an equivalence relation, the associated partition π = {ā|a ∈ S}
is called the quotient set of S relative to the relation E. We shall usually
denote π as S/E. [11, p 11f]

The translation to a locale is straightforward. Set and equivalence relation are
parameters of the equivalence locale, class and quotient set derived operations.

locale equivalence =
fixes S and E
assumes carrier: "E ⊆ S × S"
and refl: "a ∈ S =⇒ (a, a) ∈ E"
and sym: "(a, b) ∈ E =⇒ (b, a) ∈ E"
and trans: "[[(a, b) ∈ E; (b, c) ∈ E]] =⇒ (a, c) ∈ E"

begin
definition "class" where "class = (λa ∈ S. {b ∈ S. (b, a) ∈ E})"
definition "Quot" where "Quot = {class a | a. a ∈ S}"
end

3.2 Groups

Jacobson’s base for the hierarchy of group structures are monoids:

Definition 1.1 A monoid is a triple (M,p, 1) in which M is a non-
vacuous set, p is an associative binary composition (or product) in M ,
and 1 is an element of M such that p(1, a) = a = p(a, 1) for all a ∈M .

[11, p 28]

It is convenient to split the closedness properties (of p being a composition inM
and 1 ∈ M) and the algebraic laws into two locales because closure is also part
of the definition of submonoid.

locale monoid_closed =
fixes M and composition (infixl "·" 70) and unit ("1")
assumes composition_closed: "[[a ∈ M; b ∈ M]] =⇒ a · b ∈ M"
and unit_closed: "1 ∈ M"

locale monoid = monoid_closed +
assumes assoc: "[[a ∈ M; b ∈ M; c ∈ M]] =⇒ (a · b) · c = a · (b · c)"
and left_unit: "a ∈ M =⇒ 1 · a = a"
and right_unit: "a ∈ M =⇒ a · 1 = a"

begin

The locales have individual parameters for set and operations while according
to Jacobson a monoid is a triple. While it is possible to use a single locale
parameter for the entire algebraic structure (preferably using records [13]) we
prefer individual parameters, since this will simplify the definition of ring.

In the context of monoids the notions of submonoid, invertible element and
inverse are defined:

If M is a monoid, a subset N of M is called a submonoid of M if N
contains 1 and N is closed under the product in M , that is, n1n2 ∈ N for
every ni ∈ N . [11, p 29]

An element of a monoid M is said to be invertible (or a unit) if there
exists a v in M such that

uv = 1 = vu. (3)

If v′ also satisfies uv′ = 1 = v′u then v′ = (vu)v′ = v(uv′) = v. Hence v
satisfying (3) is unique. We call this the inverse of u and write v = u−1.

[11, p 31]

The translation of these concepts is straightforward, but note the use of the
locale predicate monoid_closed in the definition of submonoid:

definition submonoid where "submonoid N K ←→
N ⊆ K ∧ monoid_closed N composition unit"

definition inverses
where "[[u ∈ M; v ∈ M]] =⇒ inverses u v ←→ u · v = 1 ∧ v · u = 1"

definition invertible
where "u ∈ M =⇒ invertible u ←→ (∃ v ∈ M. inverses u v)"

definition inverse
where "u ∈ M =⇒ inverse u = (THE v. v ∈ M ∧ inverses u v)"

end

In the group definition found in many textbooks, the inverse is a parameter. For
Jacobson the inverse is a derived operation.

Definition 1.2 A group G (or (G, p, 1)) is a monoid all of whose elements
are invertible.

[11, p 31]

Based on the previously defined predicate invertible the locale for groups is
declared thus:

locale group = monoid G composition unit
for G and composition (infixl "·" 70) and unit ("1") +
assumes "a ∈ G =⇒ invertible a"

Jacobson defines subgroups in the context of monoids, not just for groups.

We shall call a submonoid of a monoid M (in particular, of a group) a
subgroup if, regarded as a monoid, it is a group. [11, p 31]

The translation again involves a locale predicate, namely group.

context monoid begin
definition subgroup where "subgroup H K ←→

submonoid H K ∧ group H composition unit"
end

Commutative structures are required later for rings and are introduced now.

If ab = ba in M then a and b are said to commute and if this happens for
all a and b in M then M is called a commutative monoid. Commutative
groups are generally called abelian groups after Niels Abel, [11, p 40]

The corresponding locales are declared using short notation omitting the for
clause.

locale commutative_monoid = monoid +
assumes comm: "[[a ∈ M; b ∈ M]] =⇒ a · b ∈ M"

locale abelian_group =
group + commutative_monoid G composition unit

Next Jacobson introduces cosets. These will later be identified as the elements
of the factor group, which is a group obtained through a particular equivalence
relation.

Now let G be any group and let H be a subgroup of G. If x ∈ G then
it is clear that its HL(G)-orbit is

Hx = {hx|h ∈ H}. (23)

. . . . Accordingly, we shall . . . call Hx the right coset of x relative to H.

. . . . The orbit of x in this case is xH = {xh|h ∈ H} and this is called the
left coset of x relative to H. [11, p 52f]

Jacobson constructs right cosets as orbits of the transformation group HL(G) of
left translations x → hx in G for h ∈ H. Since the properties of cosets derived
from this construction are not relevant in the subsequent discussion, we use his
equation 23 as definition. Likewise for left cosets.

context group begin
definition Right_Coset (infixl "|·" 70)

where "H |· x = {h · x | h. h ∈ H}"
definition Left_Coset (infixl "·|" 70)
where "x ·| H = {x · h | h. h ∈ H}"

end

Jacobson now introduces congruences in monoids. Composition and unit are
lifted to congruence classes, obtaining the quotient monoid.

Definition 1.4 Let (M, ·, 1) be a monoid. A congruence (or congruence
relation) ≡ in M is an equivalence relation in M such that for any a,
a′, b, b′ such that a ≡ a′ and b ≡ b′ one has ab ≡ a′b′. (In other words,
congruences are equivalence relations which can be multiplied.)

Let ≡ be a congruence in the monoid M and consider the quotient set
M̄ = M/ ≡ of M relative to ≡. Since congruences can be multiplied
it is clear in the general case that, if ā = ā′ and b̄ = b̄′, then ab = a′b′.
Hence

(ā, b̄)→ ab

is a well-defined map of M̄×M̄ into M̄ ; that is, this is a binary composition
on M̄ . We denote this again as ·, and we shall now show that (M̄, ·, 1̄) is
a monoid. The monoid (M̄, ·, 1̄) is called the quotient monoid of M
relative to the congruence ≡. [11, p 54f]

In the translation to Isabelle we call the conguence relation E. The quotient set
is Quot, lifted composition is class_composition and for matters of symmetry
lifted unit class_unit.

locale monoid_congruence = monoid + equivalence where S = M +
assumes cong:

"[[(a, a’) ∈ E; (b, b’) ∈ E]] =⇒ (a · b, a’ · b’) ∈ E"
begin
definition "class_composition = (λX ∈ Quot. λY ∈ Quot.

THE Z. ∃ x ∈ X. ∃ y ∈ Y. Z = class (x · y))"
definition "class_unit = class 1"
end

That the quotient set is again a monoid is expressed concisely with a sublocale
declaration. We declare a new locale equivalent to monoid_congruence so that the
current state of the latter remains available.

locale quotient_monoid = monoid_congruence
sublocale quotient_monoid ⊆

quotient!: monoid Quot class_composition class_unit 〈proof 〉

Next Jacobson considers congruences on groups.

We can say a good deal more if M = G is a group and ≡ is a congruence
on G. In the first place, in this case the quotient monoid (Ḡ, ·, 1̄) is a group
since āa−1 = 1̄ = a−1ā. Hence every ā is invertible and its inverse is a−1.

[11, p 55]

The corresponding constructions in Isabelle are analogous to those for monoids.
Notably the sublocale declaration now involves a rewrite clause for mapping the
inverse operation of the quotient group to class_inverse.

locale group_congruence = group + monoid_congruence where M = G
begin
definition "class_inverse =

(λX ∈ Quot. THE Y. ∃ x ∈ X. Y = class (inverse x))"
end
locale quotient_group = group_congruence
sublocale quotient_group ⊆

quotient!: group Quot class_composition class_unit
where "quotient.inverse = class_inverse" 〈proof 〉

Now follows the main result for congruences on groups: the factor group induced
by a normal subgroup. First comes the definition of normal, then the main
theorem.

Definition 1.5 A subgroup K of a group G is said to be normal . . . if

g−1kg ∈ K

for every g ∈ G and k ∈ K.
[11, p 55]

context group begin
definition normal where "normal H K ←→

subgroup H K ∧ (∀ k ∈ K. ∀ h ∈ H. inverse k · h · k ∈ H)"
end

Theorem 1.6 Let G be a group and ≡ a congruence on G. Then the
congruence class K = 1̄ of the unit is a normal subgroup of G and for any
g ∈ G, ḡ = Kg = gK, the right or left coset of g relative to K. Conversely
let K be any normal subgroup of G, then ≡ defined by:

a ≡ b (mod K) if a−1b ∈ K

is a congruence relation in G whose associated congruence classes are the
left (or right) cosets gK.

[11, p 55f]

This theorem consists of two parts. The first is about arbitrary group congru-
ences.

context group_congruence begin
theorem "normal class_unit G" 〈proof 〉
theorem "g ∈ G =⇒ class g = class_unit |· g" 〈proof 〉
theorem "g ∈ G =⇒ class g = g ·| class_unit" 〈proof 〉
end

In the second part, a congruence relation is constructed from a normal subgroup
K, and the classes are identified as cosets. We call the corresponding locale
factor_group since the factor group will be defined in this context as well.

locale factor_group = group +
fixes K assumes normal: "normal K G"

begin
definition "Cong = {(x, y). inverse x · y ∈ K}"
theorem "monoid_congruence G op · 1 Cong" 〈proof 〉
theorem "g ∈ G =⇒ equivalence.class G Cong g = K |· x" 〈proof 〉
theorem "g ∈ G =⇒ equivalence.class G Cong g = x ·| K" 〈proof 〉
end

Finally Jacobson identifies the factor group.

We shall now write G/K for Ḡ = G/K (mod K) and call this the factor
group (or quotient group) of G relative to the normal subgroup K. By
definition, the product in G/K is

(gK)(hK) = ghK, (26)

K = 1K is the unit, and the inverse of gK is g−1K. [11, p 56]

This is again expressed with a sublocale declaration.

sublocale factor_group ⊆ quotient_group G composition unit Cong
where "class_composition = (λX ∈ Quot. λY ∈ Quot.

THE Z. ∃ g ∈ X. ∃ h ∈ Y. Z = g · h ·| K)"
and "class_unit = K"
and "class_inverse = (λX ∈ Quot.

THE Y. ∃ g ∈ X. Z = inverse g ·| K)"
〈proof 〉

The last result on groups presented here will be needed when studying ideals,
which give rise to congruences on rings, such as normal subgroups do for groups:

It is clear from the definition that any subgroup of an abelian group is
normal. [11, p 57]

context abelian_group begin
lemma "subgroup H K =⇒ normal H K" 〈proof 〉
end

We are now ready to turn to rings.

3.3 Rings

These are built upon groups, and for congruences on rings much of the construc-
tions for groups is reused.

Definition 2.1 A ring is a structure consisting of a non-vacuous set R
together with two binary compositions +, · in R and two distinguished
elements 0, 1 ∈ R such that
1. (R,+, 0) is an abelian group.
2. (R, ·, 1) is a monoid.
3. The distributive laws D a(b+ c) = ab+ ac (b+ c)a = ba+ ca
hold for all a, b, c ∈ R.

[11, p 86]

This definition translates directly to locales. Since the additive inverse of a will
be donoted by −a and a+ (−b) by a− b this syntax is introduced here as well.

locale ring =
additive: abelian_group R addition zero +
multiplicative: monoid R multiplication one
for R and addition (infixl "+" 65) and zero ("0")
and multiplication (infixl "·" 70) and one ("1") +

assumes D:
"[[a ∈ R; b ∈ R; c ∈ R]] =⇒ a · (b + c) = a · b + a · c"
"[[a ∈ R; b ∈ R; c ∈ R]] =⇒ (b + c) · a = b · a + c · a"

begin
abbreviation unary_minus ("- _" [81] 80)
where "unary_minus ≡ additive.inverse"

abbreviation minus (infixl "-" 65) where "a - b ≡ a + (-b)"
abbreviation inverse where "inverse ≡ multiplicative.inverse"

The translation of the notions of subring and congruence into locales is equally
simple.

A subset S of a ring R is a subring if S is a subgroup of the additive group
and also a submonoid of the multiplicative monoid of R. [11, p 87]

definition subring where "subring S T ←→
additive.subgroup S T ∧ multiplicative.submonoid S T"

end

We define a congruence ≡ in a ring to be a relation in R which is a
congruence for the additive group (R,+, 0) and the multiplicative monoid
(R, ·, 1). [11, p 101]

locale ring_congruence = ring +
additive: group_congruence R addition zero E +
multiplicative: monoid_congruence R multiplication one E for E

Next Jacobson gives notions for the quotient set and its operations.

Hence ≡ is an equivalence relation such that a ≡ a′ and b ≡ b′ imply
a+ b ≡ a′ + b′ and ab ≡ a′b′. Let ā denote the congruence class of a ∈ R
and let R̄ be the quotient set. As we have seen in section 1.5, we have
binary compositions + and · in R̄ defined by ā + b̄ = a+ b, ā · b̄ = ab.

[11, p 101]

In the translation the quotient set remains Quot. Notation for the operations is
as follows:

context ring_congruence begin
abbreviation "class_addition ≡ additive.class_composition"
abbreviation "class_zero ≡ additive.class_unit"
abbreviation

"class_multiplication ≡ multiplicative.class_composition"
abbreviation "class_one ≡ multiplicative.class_unit"
end

As with monoids and groups the quotient set and operations give rise to a ring.

These define the group (R̄,+, 0) and the monoid (R̄, ·, 1). We also have

ā(b̄+ c̄) = ā(b+ c) = a(b+ c) = ab+ ac = ab+ ac = āb̄+ āc̄.

Similarly, (b̄+ c̄)ā = b̄ā+ c̄ā. Hence (R̄,+, ·, 0̄, 1̄) is a ring which we shall
call a quotient (or difference) ring of R. [11, p 101]

locale quotient_ring = ring_congruence
sublocale quotient_ring ⊆

quotient!: ring Quot class_addition class_zero
class_multiplication class_one 〈proof 〉

Coset and ideal are the analog for left coset and normal subgroup.

We recall that the congruences in (R,+, 0) are obtained from the sub-
groups I (necessarily normal since (R,+) is commutative) by defining
a ≡ b if a− b ∈ I. Then the congruence class ā is the coset a+ I. We
now give the following

Definition 2.2 If R is a ring, an ideal I of R is a subgroup of the additive
group such that for any a ∈ R and b ∈ I, ab and ba ∈ I.

[11, p 101]

context ring begin
abbreviation Coset (infixl "+|" 65) where "Coset ≡ additive.Left_Coset"
definition ideal where "ideal I R’ ←→

additive.subgroup I R’ ∧ (∀ a ∈ R’. ∀ b ∈ I. a · b ∈ I ∧ b · a ∈ I)"
end

Finally we arrive at the quotient ring with respect to an ideal, which is the ring
analog to factor group.

Our results show that congruences in a ring R are obtained from ideals
I of R by defining a ≡ a′ if a − a′ ∈ I. The corresponding quotient ring
will be denoted as R/I and will be called quotient ring of R with respect

to the ideal I. The elements of R/I are the cosets a+ I and the addition
and multiplication in R/I are defined by

(a+ I) + (b+ I) = (a+ b) + I

(a+ I)(b+ I) = ab+ I
(17)

Also I is the 0 and 1 + I the unit of R/I. [11, p 101]

locale quotient_ring_wrt_ideal = ring +
fixes I assumes ideal: "ideal I R"

begin
definition "Cong = {(a, b). a - b ∈ I}"
end
sublocale quotient_ring_wrt_ideal ⊆

quotient_ring R addition zero multiplication one Cong
where "class_addition = (λX ∈ Quot. λY ∈ Quot.

THE Z. ∃ a ∈ X. ∃ b ∈ Y. Z = a + b +| I)"
and "class_zero = I"
and "class_multiplication = (λX ∈ Quot. λY ∈ Quot.

THE Z. ∃ a ∈ X. ∃ b ∈ b. Z = a · b +| I)"
and "class_one = 1 +| I"

〈proof 〉

This completes the translation.

4 Discussion

Jacobson’s exposition of basic algebra is highly polished. Identifying the sections
that lead to factor group and quotient monoid with respect to an ideal respec-
tively required scanning a fairly large body of mathematical text that stretches
over about 100 pages, and in which the foundations for much more group and
ring theory are layed out than what is considered here.

4.1 Reuse in the Original Text

As an experienced author Jacobson takes care to introduce notions in a manner
that facilitates reuse and avoids repetition. Monoid and group are the founda-
tions for many concepts, and group is defined as an extension of monoid. Likewise
congruence on a monoid is based on equivalence and is extended to congruence
on a group. The quotient monoid induced by a congruence is identified and sim-
ilarly the quotient group. The factor group is obtained from the quotient group
of the congruence implied by a normal subgroup.

The concepts around rings are derived from the related concepts for the
additive group and multiplicative monoid. This concerns the definition of ring
itself and the congruence on a ring. As for groups the quotient ring induced by
a congruence is identified. The definition of the congruence relation {(a, b)|a −

b ∈ I} from the ideal I is seemingly a duplication of the related definition
{(a, b)|a−1b ∈ K} for groups, but in fact the underlying concepts of normal
subgroup and ideal differ.

4.2 Adequacy of the Translation

The main motivation for translating this corpus of mathematics to a formal proof
document in Isabelle is to understand whether the reuses employed by Jacobson
could be reflected with locales in an adequate fashion. Of course, we are not the
first to formalise these particular pieces of group and ring theory. Incidentally,
already Kammüller [12] used them as examples in his initial investigations of
locales.3 In principle, adequacy concerns definitions, theorem statements and
proofs. In the current work, though, only definitions and theorem statements
are considered.

Definitions of algebraic structures (with associated derived operations and
theorems) are translated to locale declarations. Inheritance is achieved through
imported locale expressions. Other definitions such as those of subgroups, normal
subgrups or ideals simply become definitions in appropriate contexts. Theorems
that relate algebraic structures to each other are expressed with sublocale decla-
rations. The quotient structures are notable examples. The morphisms available
with locales are sufficiently expressive for declaring dependencies to the con-
tained structures in quotient_monoid, quotient_group and quotient_ring. Like-
wise for the locales factor_group and quotient_ring_wrt_ideal. All in all the
formal text contains no repetitions that would not also be present in the infor-
mal text.4

4.3 Further Observations

Occasionally, the choice in the informal text as to how a certain concept be
introduced is surprising. As one example, subgroups are considered substructures
of monoids not groups [11, p 31]. Clearly, utility of a definition is given priority
over uniformity. Another example, which is not part of the study in Section 3,
concerns homomorphisms on monoids. Jacobson gives this definition:

Definition 1.6 If M and M ′ are monoids, then a map η of M into M ′
is called a homomorphism if

η(ab) = η(a)η(b), η(1) = 1′, a, b ∈M.

If M ′ is a group the second condition is superfluous. For, if the first holds,
we have η(1) = η(12) = η(1)2 and multiplying by η(1)−1 we obtain 1′ =
η(1). [11, p 58f]

3 But he did not have an analog to the sublocale command available.
4 The formal text is almost as succinct as the informal text, but while we assume that
repetitions will be also avoided for proofs, we do not expect the succinctness to carry
over.

The second part is easily overlooked, as, so it seems, by authors involved in the
MathScheme project, who in the context of a vector space homomorphism h
conjecture that h(0) = 0′ and similar properties are “obvious” axioms frequently
omitted by textbooks [5, Section 4.4], while in fact it is implied by the target
structure being an additive group. With locales the definition can be translated
thus:

locale monoid_map = map η M M’ +
source: monoid M composition unit +
target: monoid M’ composition’ unit’
for η and M and composition (infix "·" 70) and unit ("1")
and M’ and composition’ (infix "·’’" 70) and unit’ ("1’’")

locale monoid_homomorphism = monoid_map +
assumes "[[a ∈ M; b ∈ M]] =⇒ η a ·’ η b = η (a · b)"
and "η 1 = 1’"

locale monoid_homomorphism’ = monoid_map +
target: group M’ composition’ unit’ +
assumes "[[a ∈ M; b ∈ M]] =⇒ η a ·’ η b = η (a · b)"

The sublocale command then enables relating these locales to each other:

sublocale monoid_homomorphism’ ⊆ monoid_homomorphism 〈proof 〉

That it, it is shown that the left hand side implies the right.

5 Conclusion

Translating informal mathematics from a textbook to a formal document pro-
cessable by a mechanical reasoning system turned out to be an insightful exer-
cise. Even without producing proofs it required studying the text with scrutiny,
forcing attention to both detail and high-level connections.

We found that we could express the relations between algebraic structures
in Jacobson’s text well, both in definitions and theorems. This is the case even
where constructions are not uniform — for example, subgroups being defined
for monoids. Linguistic features that identify modularity do not stand out in
the text, except that algebraic structures are denoted by tuples. The amount of
mathematics that was formalised here is very small, but sizable formalisations
have been based on locales, for example a proof of the Basic Perturbation Lemma
in homological algebra [1].

Of course, proof assistants other than Isabelle provide means for modular
reasoning as well and have been used for formalising abstract algebra. The most
remarkable is perhaps the Mizar system and its library, abstracts of which have
been published since 1990 in Formalized Mathematics, an online journal which
to date has published twenty volumes of mechanically checked mathematics of
various areas [7]. The system’s means of abstraction have never been related to
mainstream techniques such as functors but some literature is available [14,15].

For Coq there are two efforts towards modular reasoning: its module system,
which is modelled around ML functors [16], and work of a group around Gonthier,
who recently have completed a mechanical proof of Feit and Thompson’s theorem
on the solvability of groups of odd order [6] based Gonthier’s contributed library
Ssreflect [9]. The publication of this work appears to be imminent.

In spirit our exercise follows Avigad’s reflections on understanding proofs [2],
in particular Section 12.7, which is focussed on algebraic reasoning. While Avigad
suggests that proof languages of mechanical systems can help better understand
the notion of proof in mathematics, we use the informal text as a benchmark
for a (declarative) scripting language that enables a prover to produce formal
derivations

References

1. J. Aransay, C. Ballarin, and J. Rubio. A mechanized proof of the basic perturbation
lemma. Journal of Automated Reasoning, 40(4):271–292, 2008.

2. J. Avigad. Understanding proofs. In P. Mancosu, editor, The philosophy of math-
ematical practice, chapter 12, pages 302–316. Oxford University Press, 2008.

3. C. Ballarin. Tutorial to locales and locale interpretation. In L. Lambán, A. Romero,
and J. Rubio, editors, Contribuciones Científicas en honor de Mirian Andrés
Gómez. Servicio de Publicaciones de la Universidad de La Rioja, Logroño, Spain,
2010. Also part of the Isabelle user documentation.

4. C. Ballarin. Locales: A module system for mathematical theories. Journal of
Automated Reasoning, 2013. Online version; to appear in print.

5. J. Carette, W. M. Farmer, F. Jeremic, V. Maccio, R. O’Connor, and Q. M.
Tran. The MathScheme library: Some preliminary experiments. Manuscript
arXiv:1106.1862v1, 2011.

6. W. Feit and J. G. Thompson. Solvability of groups of odd order. Pacific Journal
of Mathematics, 13(3):775–1029, 1963.

7. Formalized mathematics. Internet journal, http://fm.mizar.org/, 1990.
8. J. A. Goguen and R. M. Burstall. Institutions: abstract model theory for specifi-

cation and programming. J. ACM, 39(1):95–146, 1992.
9. G. Gonthier and S. Le Roux. An Ssreflect tutorial. Technical Report RT-0367,

INRIA, 2009.
10. F. Haftmann and M. Wenzel. Local theory specifications in Isabelle/Isar. In

S. Berardi, F. Damiani, and U. de’Liguoro, editors, Types for Proofs and Programs,
TYPES 2008, Torino, Italy, LNCS 5497, pages 153–168. Springer, 2009.

11. N. Jacobson. Basic Algebra, volume I. Freeman, 2nd edition, 1985.
12. F. Kammüller. Modular Reasoning in Isabelle. PhD thesis, University of Cam-

bridge, Computer Laboratory, 1999. Also Technical Report No. 470.
13. W. Naraschewski and M. Wenzel. Object-oriented verification based on record

subtyping in higher-order logic. In Theorem Proving in Higher Order Logics, LNCS
1479, pages 349–366. Springer, 1998.

14. P. Rudnicki and A. Trybulec. Mathematical knowledge management in MIZAR.
In B. Buchberger and O. Caprotti, editors, Mathematical Knowledge Management,
2001.

http://arxiv.org/abs/1106.1862v1
http://fm.mizar.org/

15. C. Schwarzweller. Mizar attributes: A technique to encode mathematical knowledge
into type systems. Studies in Logic, Grammar and Rhetoric, 10(23):387–400, 2007.

16. E. Soubiran. Modular development of theories and name-space management for
the Coq proof assistant. PhD thesis, École Polytechnique, 2012.

17. M. Wenzel. Isabelle/Isar—a generic framework for human-readable proof docu-
ments. Studies in Logic, Grammar and Rhetoric, 10(23):277–298, 2007. Festschrift
in Honour of Andrzej Trybulec.

18. M. Wenzel. The Isabelle/Isar Reference Manual, 2013. Revision for Isabelle 2013.

	Reading an Algebra Textbook

