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Abstract
This paper studies a novel audio segmentation-by-classification
approach based on Factor Analysis (FA) with a channel com-
pensation matrix for each class and scoring the fixed-length seg-
ments as the log-likelihood ratio between class/no-class. The
system described here is designed to segment and classify the
audio files coming from broadcast programs into five different
classes: speech (SP), speech with noise (SN), speech with mu-
sic (SM), music (MU) or others (OT). This task was proposed
in the Albayzin 2010 evaluation campaign. The article presents
a final system with no special features and no hierarchical struc-
ture. Finally, the system is compared with the winning system
of the evaluation (the system use specific features with hierar-
chical structure) achieving a significant error reduction in SP
and SN. These classes represent 3/4 of the total amount of the
data. Therefore, the FA segmentation system gets a reduction
in the average segmentation error rate that is able to be used in
a generic task.1

Index Terms: Audio Segmentation, Factor Analysis, Broadcast
News (BN), Albayzin-2010 Evaluation

1. Introduction
Due to the increase in audio or audiovisual content, it becomes
necessary to use automatic tools for different tasks such as anal-
ysis, indexation, search and retrieval. Given an audio document,
the first step is audio segmentation producing a delineation of
a continuous audio stream into acoustically homogeneous re-
gions. When the audio segmentation is followed by a classifica-
tion system the result is a system that is able to divide an audio
file into different predefined classes chosen for a specific task.

Broadcast news (BN) domain is one of the most popular
multimedia repositories because it has rich audio types and sev-
eral approaches have been proposed in this scenario. For ex-
ample, in the task of automatic transcriptions of BN [1] the
data contain clean speech, telephone speech, music segments
and speech overlapped with music and noise so the segmenta-
tion generates a boundary for every speaker change and envi-
ronment/channel condition change with no explicit cues. In [2]
segmentation is based on five different classes: silence, music,
background sound, pure speech, and non-pure speech. The so-
lution is based on SVM combination. In [3] the audio stream
from BN domain is segmented into 5 different types including
speech, commercials, environmental sound, physical violence
and silence. [4] presents a review of different solutions and
the acoustic features used in each one of them and also a new
algorithm for computing various time-domain and frequency-
domain features, for speech and music signals separately, and
estimating the optimal speech/music thresholds.

1This work has been funded by the Spanish Government and the
European Union (FEDER) under the project TIN2011-28169-C05-02

The different segmentation approaches in BN differ in ei-
ther the feature extraction methods or the classifier. The fea-
tures can be distinguished in frame-based and segment-based
features. The frame-based features usually describe the sig-
nal within a short time period (10-30 ms), where the process
is considered stationary. MFCCs or PLPs are commonly used
as frame-based features like in [5] where these features are
classified with an autoassociative neural network. In [6] the
authors propose two pitch-density-based features and relative
tonal power density to classify on BN. For segment-based fea-
ture extraction, a longer segment is taken into consideration.
The length of the segment may be fixed (usually between 0.5
and 5 seconds) or variable. In [7] a content based speech dis-
crimination algorithm is designed to exploit long-term informa-
tion inherent in modulation spectrum.

Audio segmentation systems perform the segmentation in
two different ways. The first one is based on detecting the
boundaries and then classifying each delimited segment. We re-
fer to them as segmentation-and-classification approaches. For
example, in [8], an approach using a temporally weighted fuzzy
C-means algorithm has been proposed. The second segmen-
tation way is known as segmentation-by-classification and it
consists of classifying consecutive fixed-length audio segments.
The segmentation is produced directly by the classifier as a se-
quence of labels. This sequence is usually smoothed to improve
the segmentation. An example of this procedure can be seen in
[9] where the author combines different features with a GMM
and a maximum entropy classifiers. The final sequence-level
were smoothed with a HMM.

The different strategies outlined in the preceding para-
graphs have their advantages and disadvantages described by
Huang and Hansen in [10]. The most common solution to avoid
the shortcomings and enjoy the benefits of each strategy is to
create hierarchical systems with multiple steps where each level
is designed with specific features and segmentation systems for
each class. As a result, the system becomes very specific for a
database and may produce segmentation errors in different do-
mains. Recently, an audio segmentation task in BN domain was
proposed in [11] in the context of the Albayzin-2010 evaluation
campaign. Almost all the participants of the evaluation used hi-
erarchical systems, including the winning system [12] based on
a hierarchical architecture that used different sets of features for
every level.

In this paper, we proposes a whole FA segmentation system
with no-hierarchical structure where the within-class variability
is compensated with a different channel matrix for each class.
The remainder of the paper is organized as follows: database
and metric of Albayzin 2010 evaluation is presented in Sec-
tion 2. Section 3 shows the factor analysis theoretical approach
based on FA. Segmentation results are presented in Section 4.
Finally, the conclusions are presented in Section 5.
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2. Albayzin 2010 audio segmentation
evaluation

The Albayzin evaluation campaign is an internationally open
set of evaluations organized by the Spanish Network of Speech
Technologies (RTTH) every 2 years. A completed description
of the Albayzin 2010 evaluation can be found in [13] which de-
scribes the participant’s approaches and the results of the sys-
tems . We summarize the database description and the metric of
the evaluation in the next subsections.

2.1. Database

The database consists of a Catalan BN database from the pub-
lic TV news channel that was recorded by the TALP Research
Center from the UPC. It includes approximately 87 hours of an-
notated audio divided in 24 files of 4 hours long. A set of five
different audio classes were defined for the evaluation with the
following distribution: Clean speech: 37%; Music: 5%; Speech
over music: 15%; Speech over noise: 40%; Others: 3%. The
class “Others” is not evaluated in the final test. The database for
the evaluation was split into 2 parts: for training/development
(2/3 of the total amount of data), and testing (the remaining 1/3).

2.2. Metric

The metric is defined as a relative error averaged over all acous-
tic classes (ACs):

Error = averagei
dur(missi) + dur(fai)

dur(refi)
,

where dur(missi) is the total duration of all deletion errors
(misses) for the ith AC, dur(fai) is the total duration of all inser-
tion errors (false alarms) for the ith AC, and dur(refi) is the to-
tal duration of all the ith AC instances according to the reference
file. The incorrectly classified audio segment (a substitution) is
computed both as a deletion error for one AC and an insertion
error for another. A forgiveness collar of 1 sec (both + and -)
is not scored around each reference boundary. This accounts
for both the inconsistent human annotation and the uncertainty
about when an AC begins/ends.

3. FA-Based audio segmentation
This study proposes a framework for automatic audio
segmentation-by-classification system. The system deals with
the problem of assigning a class label to each fixed-length clips
using Factor Analysis (FA) models. The FA approach has
been successfully used in speaker recognition [14] [15] [16],
speaker verification [17], speaker segmentation [18] and lan-
guage recognition [19]. The variability of the same class seg-
ments is known as within-class variability. The goal of these
systems is the compensation of the within-class variability to
reduce the mismatch between training and test. Fig. 1 illus-
trates the proposed framework where each block is described
in the next subsections. We will discuss the feature extraction,
the statistic extraction and the within-class variability compen-
sation using FA.

3.1. Acoustic Feature Extraction and Statistics

Mel-frequency cepstral coefficients (MFCCs) [20] are used in
most speech recognition tasks because the mel-scale filter bank
is an approximation to human auditory system response. There-
fore they work well in audio segmention task too. Typically,

Generic Audio Signal
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Zero and First-order

Statistics

Music (MU)

Speech&Music (SM)
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Audio Segments with Labels
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Figure 1: Block Diagram of Factor Analysis Segmentation-by-
Classification System for Broadcast News Classes

MFCC features are computed at each short speech segment
(e.g., 10 ms) together with their derivatives to capture the
short-term speech dynamics. On this framework we extract 16
MFCCs (including C0) computed in 25 ms frame size with a 10
ms frame step, their first and second order derivatives.

The audio features are packed in clips of different lengths
with 0.1 and 0.5 second clip-steps. The fixed-length clips
are mapped to sufficient statistics by using a Universal Back-
ground Model (UBM) which is a class-independent GMM with
C Gaussians trained with the EM-algorithm [21] on the audio
feature vectors of the training data.

3.2. Theoretical Background

Data from a particular class are modeled by a GMM defined
by means m1, m2, ..., mC , weights w1, w2, ..., wC and covari-
ances Σ1, Σ2, ..., ΣC where C is the number of Gaussians. We
can concatenate all GMM means to one mean supervector m of
CF × 1 dimensions where F is the feature vector size:

m = [mT
1 , mT

2 , ..., mT
C ]T . (1)

The Factor Analysis model is the adaptation of the UBM
model where the supervector of means is not fixed and it can
vary from segment to segment to account for differences in
the channel. These GMMs have segment and class depen-
dent component means but fixed component weights and covari-
ances chosen to be equal to the UBM weights and covariances.
Specifically, we use a Factor Analysis model for the mean of
kth component of the GMM for segment s:

ms
k = t

c(s)
k + Ukxs (2)

where c(s) denotes the class of segment s and t
c(s)
k is the

channel-independent-class-location vector obtained by using a
single iteration of relevance-MAP adaptation from the UBM
[22]. Uk is the factor loading matrix and xs is a vector of L
segment-dependent channel factors generated by a normal dis-
tribution (N(0, I)). We stack component-dependent vectors
into supervectors ms and tc(s) and we stack the component-
dependent Uk matrices into a single tall matrix U , so that equa-
tion can be expressed more compactly as:

ms = tc(s) + Uxs (3)

where U is known as the channel matrix and it represents the
within-class variability. Note that, following the terminology
in the literature, we use the terms channel matrix and channel
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factors to describe the elements related with the within-class
variability even if that variability is not produced by different
channels (also can be produced by different speakers or differ-
ent content). The columns of the U matrix are the basis span-
ning the subspace of the channel and the channel factors are the
coordinates defining the position of the channel-dependent su-
pervector in the subspace. The channel factors dimension (L)
is smaller than CF so U matrix has low rank (CF × L dimen-
sions). Depending on the application, the value of L is between
50 and 200 and CF can be 98304 if we have 2048 Gaussians
and 48-dim feature vector (with the MFCC-UBM). The estima-
tion of these parametres can be understood following [16].

3.3. Class/No-Class U Channel Matrices System

Most of the approaches based on FA for language recognition
are implemented with a single U channel matrix because the
nature of the within-class variability is the same for all the lan-
guages as it can be seen in [23] [24] [25] [16]. Therefore, in
[26] a segmentation system was proposed with five channel-
independent-class-location vectors (one vector per class) and
a single compensation channel matrix U for all the classes.
The paper compares the FA system with the winnner of the
Albayzin-2010 evaluation and the conclusion was that the com-
pensation matrix had a bad behavior for the Music class due
to the different nature of the rest of the classes. However, the
paper [27] shows a clear advantage when the classes are homo-
geneous (like SN and SP). In this scenario the channel matrix
models the compensation between different speakers and differ-
ent words leaving the background sound as useful information
for the classification improving the segmentation.

A number of studies have focused on features to describe
the distribution of sounds to be able to distinguish between
speech, music or noise. Most of these approaches use a hier-
archical structure where each level is specialized on the detec-
tion of an specific class with specific features for that class. The
main goal of this work is the compensation of all the classes
with no-specific features for each class even if the nature of the
classes is not the same. We propose a ten channel-independent-
class-location vectors (a class and no-class vectors for each
class) and five channel matrix representing the within-class vari-
ability of each class/no-class with no hierarchical structure. Let

T =[tmu, tnomu, tot, tnoot,

tsm, tnosm, tsn, tnosn, tsp, tnosp] (4)

Ξ = [Umu−nomu, Uot−noot,

Usm−nosm, Usn−nosn, Usp−nosp] (5)

where T represents the locations of classes and no-classes
in the GMM space and Ξ the channel matrices. Our metamodel
for class-segment-dependent GMM is parametrized by (T, Ξ)
which describe the prior distributions of the parameters m.

This approach will be compared with the classic formula-
tion with a single U channel matrix on Section 4 for the clas-
sification over the oracle segments and the final segmentation
system.

3.4. Scoring

There are different scoring methods used in the state-of-the-art
of speaker and language recognition. In the proposed experi-

ments in Section 4 we use the integration trough the channel
factors distributions. This score is a marginalization using a
point estimation of the class ms, and integrate only over the
channel factors, when the statistics are centered around the point
estimation ms. The log-likelihood is defined by the equation
(19) in [16] and can be understood following the Section V in
the same article.

In [28], [16] and [29] the score employed to detect the
speaker is the log-likelihood ratio(LLR). For a test clip χ and
class c, the LLR compares the hypothesis that the clip χ belongs
to the class c against the hypothesis that the clip χ does not be-
long to the class c. This score is shown in Formula 6 where
the numerator is the likelihood of the test clip calculated with
the class model and the denominator is the likelihood of the test
clip calculated with UBM model. Note that the UBM model
is employed as a general model to describe the not belonging
hypothesis. That makes sense for speaker identification task
where the hypothesized speaker represents a very small amount
into the UBM. However, our problem has only four classes and,
therefore, the class is highly represented by the UBM and may
corrupt the LLR score.

LLRclass = log
P (χ/class)

P (χ/UBM)
(6)

We propose a LLR scoring where the denominator is the
likelihood of the test clip calculated with the no-class model.
The compensated log-likelihood ratio (CLLR) is computed for
each class/no-class as:

CLLRclass = log
P (χ/class)

P (χ/noclass)
(7)

CLLR is more discriminative than LLR for a segmentation task
because the hypothesized class is not presented in the denomi-
nator and, also, because the no-class model is channel compen-
sated as the class model.

4. Experimental results
In a segmentation-by-classification system, the errors can be
produced in two ways: first, a classification error due to a bad
labeled frame, and a segmentation error due to a temporal mis-
match between the oracle boundaries and the hypothesis bound-
aries. This Section shows the experiments for the evaluation
data described in Section 2.1 divided into two sets. In the first
set, the segments are given by the ground truth and the systems
decide the class of each segment with no segmentation error to
evaluate the classification accuracy of the systems. The second
set of experiments shows the segmentation and the classification
error and it proposes a final segmentation-by-classification sys-
tem based on FA that improve the result of the winning system
in the Albayzin evaluation.

4.1. Classification Experiments with Oracle Segmentation

The classification is done over the segments extracted with the
ground truth to evaluate the classification accuracy over the
whole segment. Most of the segments are between 5 and 20
seconds long.

We propose two sets of systems based on GMM and HMM-
GMM as a baseline. Table 1 shows the results for these sys-
tems. In the first part of the table, we have tried with different
number of Gaussians. The classification is based on the high-
est accumulated likelihood over the whole segment. Increasing
the number of Gaussians improves the final result. The highest
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Table 1: Classification Baseline Experiments: error per class
and total error for GMM-HMM systems over the test files with
perfect segmentation in %

GMM MU SP SM SN TOTAL
32G 9.66 49.36 37.59 48.11 36.18
64G 10.68 45.74 36.68 45.44 34.63
128G 9.81 41.79 32.02 40.75 31.09
256G 10.43 37.61 31.85 37.67 29.39
512G 9.51 35.95 29.38 35.99 27.71
1024G 9.39 34.91 27.03 34.35 26.42
2048G 9.61 33.39 38.01 34.01 26.25

HMM-LeftToRight MU SP SM SN TOTAL
1 ST - 2048G 9.61 33.39 28.01 34.01 26.25
2 ST - 1024G 9.48 42.75 27.45 41.26 30.24
4 ST - 512G 10.11 27.91 27.17 29.87 23.77
8 ST - 256G 8.37 31.64 26.42 32.1 24.63
16 ST - 128G 8.84 26.92 32.28 32.12 25.04
32 ST - 64G 11.33 29.81 26.64 32.48 25.07

number of Gaussians is 2048 because, although the final results
is the best one, the MU and SM classes begin to get worse re-
sults. The next experiment of the baseline system uses 2048
Gaussians distributed in different nodes in a HMM. The second
part of the Table 1 shows the results for left-to-right topologies
of HMMs. These topologies increase the activity duration of
each model [30], avoiding wrong transitions inside the segment
and improving the results. The best baseline system (23.77% of
total error) is performed using five left-to-right HMMs with four
emitting states and 512 Gaussians per state where each HMM
corresponds to one acoustic class.

To evaluate the strengths and weaknesses of a FA system,
we assess different configurations described in Section 3. The
UBM employed to compute the statistics has a fixed amount
of 2048 Gaussians to be able to compare the results of the FA
systems with the GMM/HMM baseline. We compute the result
over the test set using the integration trough the channel factors
distributions scoring. The experiments are calculated with a
single channel matrix to compensate all the classes and different
channel matrices for each class/no-class using different number
of channel factors (50, 100, 150, 200 and 250).

Table 2: FA systems with a single U for all the classes and
U matrix for every class/no-class over the test set with perfect
segmentation in %

Single U MU SP SM SN TOTAL
50 chnf 10.20 15.98 24.21 21.41 17.95

100 chnf 9.16 16.06 20.28 20.06 16.39
150 chnf 9.42 15.52 18.04 18.90 15.47
200 chnf 9.08 15.72 17.38 19.17 15.34
250 chnf 8.52 16.70 16.06 19.42 15.17

U per class MU SP SM SN TOTAL
50 chnf 9.65 19.13 24.10 23.31 19.05

100 chnf 8.54 16.22 22.12 20.18 16.77
150 chnf 9.65 16.63 18.31 19.49 16.02
200 chnf 9.20 17.22 17.73 19.60 15.94
250 chnf 9.69 17.46 17.12 19.82 16.02

Comparing the Table 1 and the Table 2, it can be seen
a significant improvement using FA as a classification system
against GMM/HMMs. Using the best HMM configuration (left-
to-right HMM with four states and 256 Gaussians in each state)
as a reference, the worst FA system improves the total result in
4.72% (with a U matrix per class and 50 channel factors) and in

8.6% comparing with the best FA configuration (with a single
U matrix and 250 channel factors).

4.2. Segmentation-by-Classification Experiments

In the last subsection, each segment was labeled with the best
decision coming from the accumulated log likelihood or ac-
cumulated log likelihood ratio of the models. In this subsec-
tion, the segments are delimited with the transitions between
the scores and the errors might be due to a temporal mismatch
or a bad label assignment.

Table 3: Segmentation Baseline Experiments: error per class
and total error for HMM systems over the test files in %

HMM-LeftToRight MU SP SM SN TOTAL
1 ST - 2048G 35.53 59.22 65.07 58.60 54.6

2 ST -1024 29.96 59.26 54.79 56.82 50.21
4 ST - 512 26.04 49.8 45.98 50.27 43.02

8 ST - 256G 24.35 49.3 41.66 50.19 41.37
16 ST -128G 17.82 40.24 36.02 43.06 34.28
32 ST - 64G 17.39 39.53 33.95 41.56 33.31

As we did in the last subsection, GMM/HMM systems are
used as the baseline. Because the segments are delimited by
the scoring transitions, the scores need to be smooth using low
pass filters or HMM. Table 3 shows different HMM topolo-
gies and configurations. Again, the left-to-right topology im-
proves the result because these systems smooth the transitions
between classes. The best baseline system for segmentation-
by-classification (33.31% of total error) has 32 states with 64
Gaussians each state and has a left-to-right topology.

Table 4: FA segmentation-by-classification systems with a sin-
gle U for all the classes and U matrix for every class/no-class in
%

Win-3.0 step-0.5 100chnf
MU SP SM SN TOTAL

Single U 40.38 76.91 60.52 64.31 60.53
U per class 33.35 45.62 36.2 47.44 40.65

As a preliminary experiment, the first FA segmentation-by-
classification system computes the statistics over a 3 second
windows with 0.5 second window-steps and 100 channel fac-
tors. An increment of the channel factors or a reduction of the
window-step increase the memory and the time to train the mod-
els exponentially. Experiments with a single channel matrix for
all the classes and a channel matrix for each class are presented
in Table 4. There is a significant improvement in the majority
classes using a channel matrix for each class because the CLLR
removes the information of the target class in the denominator
as we pointed in Section 3.4. The bigger is the class in the data,
more significant is the reduction of the error comparing with a
single channel matrix for all the classes. Accordingly, the total
error is reduced about 20%.

Once determined that the best configuration is the FA sys-
tem with a channel matrix for each class, the window-step can
be modified to get more resolution (0.1 second window-step)
and the CLLR can be smoothed to avoid an over segmentation.
In the experiments, a zero-phase average filter is computed to
smooth the CLLR of each class and avoid a sudden change in
the segment labels. Figure 2 shows the filtered-ratio scores for
each class over a chunk of a test file. The ground truth is plotted
in the same figure and it is represented with a square wave of
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Figure 2: Scores and the ground truth of each class over a chunk of a test file

amplitude 2. The color of each score class and the correspond-
ing ground truth is the same. The figure clearly shows that the
ratio of the winning class is bigger than zero and corresponds
with the ground truth class.

Due to the metric, the smallest classes have to be detected
with the same accuracy as the largest classes as can be seen
in section 2.2. To increase the detection of the smallest class
(MU) we optimize the prior probabilities in a Viterbi algorithm
checking the total result over the train files. Table 5 shows the
total error over the train files. The first row shows the total
error when all the classes have the same priority and it can be
seen that the smallest error is obtained when MU and SN/SP
have 28% and 16% of priority respectively decreasing the false
alarms of the SN/SP over MU class. These priors are employed
in the Viterbi over the test files and the results are shown in
Table 6.

We compare the error of the system proposed in this work
with the winning system of the Albayzin-2010 evaluation [12]
where 15 MFCCs, the frame energy, and the derivatives are
extracted. In addition, the spectral entropy and the Chroma
coefficients are calculated. The mean and variance of these
features are computed over 1 second interval creating a 122
dimension feature vectors. The segmentation approach cho-
sen is HMM-based. The acoustic modeling is performed us-
ing five HMMs with three emitting states and 256 Gaussians
per state. Each HMM corresponds to one acoustic class. A
hierarchical organization of binary HMM detectors is used.
First, audio is segmented into Music/non-Music portions. Sec-
ond, the non-Music portions are further segmented into Speech-
over-music/non-Speech-over-music portions. Finally, the non-
Speech-over-music portions are segmented into Speech/Speech
over noise.

Table 6 is divided in two parts: the first part shows the
error for each class and the average error for the winning
herarchical-HMM system of the evaluation (HMM-Winn). The

Table 5: Results over the train files to select the priors for each
class in %

Prior of each class AVG Error
MU OT SM SN SP over the train files
0.20 0.20 0.20 0.20 0.20 15.95%
0.22 0.20 0.20 0.19 0.19 14.52%
0.24 0.20 0.20 0.18 0.18 13.75%
0.26 0.20 0.20 0.17 0.17 13.39%
0.28 0.20 0.20 0.16 0.16 13.23%
0.30 0.20 0.20 0.15 0.15 13.25%

last column shows the NIST metric used in the NIST RT Di-
arization evaluations [31] to compare the systems with a well-
known metric. To be able to compute the NIST error with the
herarchical-HMM system, we replicate the winning system ac-
cording to [12] (HMM-Rep). The second part of the table shows
FA segmentation-by-classification system (FA-Segm) after the
Viterbi smoothing with the priors of the Table 5. The last row
of the table shows the same FA system with a slight modifi-
cation introducing OT segments between SN and SP to model
the silence of the anchor before the coverage to avoid the false
alarms. The hierarchical-HMM systems detects better the MU
and SM segments than the FA systems due to the Chroma coef-
ficients in the features. However, SN and SP classes are much
better detected with the FA system decreasing the error of the
classes in 2% and 9% respectively. These classes represent
more that 3/4 of the total amount of the data, therefore the clas-
sification of the total time is also increased substantially. The
FA systems reduces the average error in a 2% with the Albayzin
metric and almost 3% with the NIST metric.

Table 6: Error per class and total error for Albayzin evaluation
winning system and Factor Analysis Segmentation system over
the test files in %

Error for each class
MU SM SN SP TOTAL NIST

HMM-Winn 19.2 25.0 37.2 39.5 30.2 -
HMM-Rep 16.3 24.0 38.8 40.8 30.0 19.3
FA-Segm 21.7 27.6 35.4 30.5 28.8 16.9

FA-Segm OT 21.7 27.6 34.0 29.5 28.2 17.5

5. Conclusion
This paper describes a new segmentation-by-classification sys-
tem based on Factor Analysis approach. The system has been
applied for the segmentation of BN. The task consists of the
segmentation of audio files and further classification into 5 dif-
ferent classes as proposed in the Albayzin 2010 evaluation. The
solution we propose here compensates the within-class variabil-
ity creating a channel matrix for each class and scoring the seg-
ments as the ratio between class/no-class. This approach has
been compared with HMM-GMM baseline systems and with
the winning system of the evaluation showing a significant im-
provement in both cases even if the best results in the evaluation
were obtained by an HMM/GMM based hierarchical system
that made use of MFCC along with Chroma features. Exper-
imental results show that the FA approach allows a significant
reduction in the classification of SP and SN and thus a reduction
in the average segmentation error rate.
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