
The Role of Invariants in the Co-evolution of
Business and Technical Service Specification of

an Enterprise

Biljana Bajić-Bizumić1, Irina Rychkova2, and Alain Wegmann1

1 LAMS, École Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

biljana.bajic@epfl.ch,alain.wegmann@epfl.ch,
2 Centre de Recherche en Informatique, Université Paris 1 Panthéon - Sorbonne,

90, rue Tolbiac, 75013 Paris, France
irina.rychkova@univ-paris1.fr

Abstract. We explore invariants as a linking mechanism between the
business and technical service perspectives: From the business perspec-
tive, invariants can be used to model (business) requirements of an en-
terprise; from the technical perspective, invariants express the properties
that must hold during the execution of a service.
We propose an approach to enterprise service design that can be de-
scribed as an iterative introduction and a modification of invariants in
response to the evolution of business and/or technical service specifica-
tions. We formalize the service specifications in Alloy and demonstrate
how each design iteration can be simulated, visualized and validated with
the Alloy analyzer tool. We illustrate our findings with the example of
Order Creation service.

Keywords. Enterprise Modeling, Service Design, Service Simulation,

Alloy, Declarative Specification, Model Checking, Business Rules

1 Introduction

A considerable gap between business and technical worlds (often referred to
as the business/IT alignment problem [1]) represents a serious issue for imple-
menting the “co-evolution” of business and technical specification of a service in
service design and development. Therefore, we explore the invariants as a linking
mechanism between business and technical service perspectives.

We propose a method for agile service specification that extends Systemic
Enterprise Architecture Method (SEAM) [2]. SEAM models can be used by
business and technical specialists to visually describe an enterprise system, its
structure and services it provides. We propose a method that allows us to sim-
ulate and validate visual service specifications defined in SEAM. It defines five
design activities (design, simulation and simulation-based testing, analysis and
anomaly resolution, validation, refinement) that can be performed sequentially



or iteratively, forming a design spiral, similarly to [4]. Within this spiral, an ini-
tial service model evolves in response to the changing business requirements and
also makes these requirements evolve by revealing flaws and inconsistencies in
them. This way, the partial specification is validated, verified and improved.

We illustrate our method with the example of an “Order Creation” service,
specified for Générale Ressorts SA - the Swiss manufacturer of watch springs.
This example is based on the consulting project we conducted with this company.
The SEAM model for ”Order Creation” and the transformation of this model to
Alloy remains beyond the scope of this article.

This paper (a) explores the power of Alloy beyond the technical domain (b)
investigates how invariants can be used as a linking mechanism between business
and technical service perspectives for improved business/IT alignment.

The remainder of this paper is organized as follows: In Section 2 we explain
our motivation and discuss the related works. In Section 3, we present the Alloy
language and discusses the role of invariants in service design. In Section 4, we
introduce our method for service design. In Section 5, we illustrate this method
on the case study. In Section 6, we present our conclusions.

2 Motivation and Related Work

Since the first methods dealing with enterprise modeling (EM) that emerged
in 1970s, a multitude of enterprise modeling approaches have been developed.
e3Value [5] provides an ontology to conceptualize and visualize eBusiness idea
and to be able to do an analysis and profitability assessment of the eBusiness
model for all parties involved. The i* framework [6] focuses on modeling prop-
erties such as goals, beliefs, abilities, commitments; and on modeling strategic
relationships. Enterprise Knowledge Development (EKD) [7] is a multi-model,
participatory EM approach that involves a model for conceptual structures, and
interlinked sub-models for goals, actors, business rules, business processes and
requirements to be stated. Business Motivation Model (BMM) [8] models several
concepts from goals, down to processes and technologies. The methodology that
focuses more on business processes is Dynamic Essential Modeling of Organiza-
tions (DEMO) [9], which models, (re)designs and (re)engineers organizations.

SEAM [2] integrates the main principles of the well known EM methods by
proposing three different types of models: SAR (business value between different
stakeholders-similar to e3Value), goal-belief (goals and beliefs of the stakeholders
and their relation-similar to i*), and behavior model (services and processes that
implement them-similar to DEMO). In this work, we extend SEAM with the
spiral design process that allows simulation and validation of SEAM models in
the early stage of the design. This way, the examples of the partial specification
could help the designer to realize what constraints are missing in the model. i*
uses the similar approach the Formal Tropos [10] to do the model-checking of
the models defined in i*. However, it focuses on the agent properties such as
goals, beliefs and abilities.



Invariants have been used both in the business and technical world: to repre-
sent and check constraints [11], to model business rules [12], process invariants
related to beliefs [13] etc. In requirements engineering, KAOS methodology uses
invariants for object specification, domain properties specification, and indirectly
for goal specification [14]. In this work, we use invariants as a a pivotal concept in
improving business/IT alignment and in supporting the co-evolution of technical
and business specifications.

Our method is based on Alloy, a lightweight formal specification language.
The area of Alloy application is very large1. To the best of our knowledge, all cur-
rent Alloy applications in the domain of EM target technical specialists. In this
paper, we present an agile EM method where Alloy diagrams serve as a means
for communicating and evaluating both business and technical design decisions.
Within our approach, the role of Alloy diagrams is two-fold: They provide an
instant visual feedback to a designer that suggest new constraints to be added;
They represent design artifacts for validation and can drive improvements of
both technical and business specifications (like UML, BPMN).

3 Foundations

3.1 Alloy

Alloy [3] is a declarative specification language for expressing complex structural
constraints and behavior based on first-order logic.

The Alloy Analyzer [15] is a tool for the automated analysis of models writ-
ten in the Alloy language. Given a logical formula and a data structure that
defines the value domain for this formula, the Alloy Analyzer decides whether
this formula is satisfiable. Mechanically, the Alloy Analyzer tries to find a model
instance - a binding of the variables to values making the formula true [16].

Alloy reusable expressions (i.e., functions) and constraints (i.e., facts, predi-
cates and assertions) [17] can be used to reason about data structures. Fact is a
model invariant: a constraint that holds permanently. Predicate is a constraint
that holds in a specific context or for a specific part of the model only. It can
be seen as a contextual invariant. Assertion is a property that the designer
believes should be implied from the model; he can check if it can be deduced
from the other (permanent or contextual) constraints.

In our design process we use signatures, facts and predicates, first for partial
and then for refined service specification; we use assertions in order to validate
desired properties of our model.

3.2 The Role of Invariants

In computer science, an invariant is a condition that must hold during the execu-
tion of a program. Along these lines, in our design process, an invariant defines a

1 http://alloy.mit.edu/alloy/applications.html



condition that must hold for all model instances that result from simulation. We
define the role of invariants in our design process as follows: First, they imple-
ment the constraints required by business specification. For example, “The order
can be placed for the existing parts only”; Second, they enable the designer to
efficiently manage the model complexity by assuming that some of its proper-
ties always hold during an execution. For example, “To simplify the model, let’s
consider that the part’s id provided by a customer is always correct ” (i.e., exists
in the database).

These roles correspond to the business and technical perspective. Therefore,
in this approach we use them as a linking mechanism between these two worlds to
restrict a model prohibiting some (invalid) instances identified during simulation
(not necessarily covered by the explicit business specification).

4 Service Design Spiral

We introduce the five activities of our design approach, which can be performed
sequentially or iteratively, forming the loops of a spiral as shown in Fig. 1a.

4.1 Model Design

We define a partial model of a service in Alloy: we specify its data structures,
the initial predicate and make initial assumptions about our model defining
model invariants. These invariants replace the properties required by the business
specification and are used to control the model complexity.

4.2 Model Simulation

We simulate our partial model by using the Alloy Analyzer tool. Technically,
a partial model written in Alloy represents a logical formula; model simulation
means searching for a model instance that satisfies this formula. If it exists, it
indicates that the formula is consistent (i.e., no contradictory constraints are
specified). In our design process, we first check our model for consistency, and
then test if it corresponds to the requirements and if there are some anomalies
by studying the random set of model instances generated by Alloy Analyzer.

4.3 Model Analysis and Anomaly Resolution

There are two types of anomalies that can be observed: anomalies due to under-
specification and anomalies due to overspecification.

Underspecification means that some model instances that are prohibited
by the specification still appear during the simulation. In this case, we restrict
the model by adding new invariants.

Overspecification means the opposite: some expected model instances are
not observed during the simulation. The modeler then has to relax invariant,
i.e. to replace an Alloy fact “X always holds” with an Alloy predicate “X holds
when. . . ” that can be activated in specific parts of the model only.



4.4 Model Validation

We make assertions about our model in order to test some desirable properties
and business rules. Alloy Analyzer validates our assertion by searching for a
counterexample: a model instance for which our assertion does not hold. If no
such counterexample is found, then our assertion is valid within a given value
domain. In the opposite case, the model has to be revised.

4.5 Model Refinement

In this activity, we implement new business requirements and extend our par-
tial model. We introduce new elements in a data structure and specify new
constraints. Refinement increases both the model complexity and its level of de-
tails, bringing it closer to its business specification. The complete design process
is illustrated in Fig. 1a.

(a) Service design process spiral. (b) Design process for ”Order Creation”
service.

Fig. 1. Spiral design process

5 ”Order Creation” Design: The Case Study

In this section, we present an example of using our method for enterprise design,
which involves both a technical and a business expert working together to define
a complete service specification while maintaining business/IT alignment. We
implement our service design process spiral step by step (Figure 1b).

5.1 Case Study: Générale Ressorts

Générale Ressorts SA is the market leader in watch barrel springs and a first-
class manufacturer of tension springs, coil springs, shaped springs and industry



components [18]. We illustrate our process by applying it to the design of the
“Order Creation” service for Générale Ressorts SA (GR). “Order Creation” is a
part of an “Order Processing”; it is followed by “Order Delivery” and “Account-
ing” (order-to-cash cycle).

An overview of “Order Creation” service is: “The company gets a request
from a customer (OrderRequest-with customer name, address, partID and part-
Info2) for manufacturing a specific watch component identified by its ID (par-
tID). A company agent (OrderEntryPerson) identifies the customer and the part
to be manufactured by entering the customer’s name and the partID into the
enterprise information system (EIS ). The process terminates with a creation and
confirmation of a customer order (OrderConfirmed) in the EIS.”

We specify the following business rules for our process:

– BR1: The created order must include the complete part specification (to be
used for the order fulfillment) and the complete customer details (to be used
for product delivery);

– BR2: The order can be confirmed only when the customer exists in the system;
– BR3: The order can be placed for the existing parts only;
– BR4: The company has to guarantee ”no faulty delivery”.

5.2 Order Creation: Model Design

The data structure for the “Order Creation” service is modeled using Alloy
signatures:

abstract sig GR {
orderConfirmedSet: set Order,
orderDeliveredSet: set Order,
orderPaidSet: set Order,
partSet: set Part,
customerSet: set Customer

}

one sig GR_pre extends GR {
orderRequest: one OrderRequest

}
one sig GR_post extends GR {}

Alloy signatures (sig) can be abstract or concrete, can have explicit cardi-
nalities (e.g., only one OrderRequest object can be treated by the service at a
time), and can contain one or multiple fields (as classes and attributes in object-
oriented (OO) languages). We can also define additional constraints on the initial
data structure with the invariants.

We express the behavior in terms of a state transition: we define a pre-state
that describes the state of a system before the service has been performed and
the post-state that describes the condition that must hold for the system upon
the service termination - the service result. Note, that following the declarative
modeling paradigm, we do not specify how the service will change the system’s
state.

We model the “Order Creation” service as a corresponding predicate in Alloy.

2 We put in italic the names that will appear in the Alloy models.



1.pred orderCreation(aGR_pre:one GR_pre,aGR_post:one GR_post){
2. one aCustomer: Customer | one aPart: Part | one aOrderConfirmed: OrderConfirmed |
3.
4. aPart=findPartByPartID[aGR_pre.orderRequest.requestedPartID,aGR_pre.partSet] and
5. aCustomer= findCustomerByName[aGR_pre.orderRequest.name,aGR_pre.customerSet] and
6. aOrderConfirmed=createOrderConfirmed[aPart,aCustomer] and aGR_post.orderConfirmed=
7. aOrderConfirmed and aGR_post.orderConfirmedSet=aOrderConfirmed+aGR_pre.orderConfirmedSet}

This predicate shows a transition between GR pre and GR post states; these
states are indicated as predicate parameters (line 1). In this predicate, the vari-
ables are declared (line 2), the customer and the part are found in the set (lines
4-5) and the order is created (line 6) and added to the set (line 7), as described
in the case study.

5.3 Order Creation: Model Simulation and Anomaly Resolution

We attempt to simulate this model in Alloy Analyzer: to check our model for
consistency and to test the random set of model instances to check for overspec-
ification and underspecification anomalies.

Example 1. “Missing Customer” anomaly Fig. 2 illustrates an anomaly in
our model behavior: In a pre-state we have Customer0, in a post-state we have
Customer1. As we show exactly one execution of the service “Order Creation”,
we expect both the customerSet and the partSet to remain the same in pre- and
post-state. However, the generated instance suggests the opposite.

NOTE: the inputs and outputs in our diagrams (e.g,, OrderRequest and Or-
derConfirmed in Fig. 2) are depicted with black rectangles; customer data (Cus-
tomer, Name, Address) and part data (Part, PartID, PartInfo) are depicted with
parallelograms and diamonds, respectively. We depict the pre-state (prior to the
order creation service execution) and post-state (upon the service termination) of
the GR company with “houses” and the corresponding labels: GR pre, GR post.

Fig. 2. Anomaly due to Underspecification: “Missing Customer”

This anomaly indicates that some constraints, which should prevent the cus-
tomer set and the part set from changing during the service execution, have to
be specified. Thus, it is an anomaly due to the underspecified model.



In fact, the declarative specification principles oblige us to explicitly state the
elements that must remain “unchanged” during the state transition. Therefore,
we need to add an invariant that states that the customerSet in post-state is the
same as the customerSet in pre-state. The same applies to part set.

fact customerSetSame{ GR_post.customerSet = GR_pre.customerSet}

In order to validate that we have resolved the “Missing Customer” anomaly,
we create an Alloy assertion that claims that for all Order Creation executions
(i.e., model instances), the customer set will remain the same in pre- and post-
states of GR.

customerPrePostSame: check{
all aGR_pre:GR_pre,aGR_post:GR_post |
orderCreation[aGR_pre, aGR_post] => aGR_post.customerSet=aGR_pre.customerSet}

Checking this assertion, we find no counterexamples.

Executing ‘‘Check customerPrePostSame’’ Solver=sat4j Bitwidth=4 MaxSeq=4 SkolemDepth=1
Symmetry=20 1014 vars. 109 primary vars. 1750 clauses. 32ms.
No counterexample found. Assertion may be valid. 12ms.

This confirms the assertion validity (for a given model scope). We repeat the
simulation until all anomalies are resolved (“design loop” in Fig. 1).

5.4 Order Creation: Model Validation and Anomaly Resolution

We check the validity of each of the business rules from Section 5.1, using Alloy
assertions. We show an example of BR4 validation (”no faulty delivery”).

Example 2. “Delivery to the Wrong Address” anomaly As OrderCon-
firmed is used for delivery, to ensure “no faulty deliveries” (BR4), we check that
the customer and part data in the confirmed order are exactly the same as in the
requested order. The assertion “orderConfirmedCorrect” is defined to validate
this BR:

orderConfirmedCorrect: check {
all aGR_pre:GR_pre,aGR_post:GR_post,oReq:OrderRequest, oCurrent:CurrentOrderConfirmed |
orderCreation[aGR_pre, aGR_post] => (oCurrent.ocCustomer.name=oReq.name and
oCurrent.ocCustomer.address=oReq.address and
oCurrent.ocPart.partID=oReq.requestedPartID and oCurrent.ocPart.partInfo=oReq.partInfo)}

When we run the assertion, we obtain the counterexamples. Fig. 3 shows an
example of the incorrect delivery: the order is created on the correct customer’s
name, but the delivery address associated with this name does not correspond to
the address provided in the OrderRequest. Therefore, the part can be delivered to
the wrong address. The anomaly observed is due to model underspecification.

In order to resolve the detected anomaly, we add a new invariant ”noOldAd-
dress” that states that we cannot have a customer in the system with the name
given in the requested order, but with an old/invalid address and vice versa:

fact noOldAddress{all c:Customer | c.address=OrderRequest.address<=>c.name=OrderRequest.name}

If we check now the assertion “orderConfirmedCorrect”, we get the result
“No counterexample found. Assertion may be valid.”, meaning that this assertion
holds in a given domain, and all orders will be delivered to the correct customers
to the correct address.



Fig. 3. Anomaly due to Underspecification: “Delivery to the Wrong Address”

We continue “debugging” the model by running the simulations, checking
if we have introduced some new unwilling behavior. We repeat the process for
other BRs. After validating all BRs and finding no anomalies, we conclude that
the designed model meets its business requirements at a given level of details.

5.5 Order Creation: Model Refinement

At the refinement, we can add new data structures and behavior to our model.
Then, we resolve all added anomalies, if any, in the “design loop”. The next
step is to check if the BRs still hold by repeating the “BR validation loop”
until all the BRs hold. The refinement specifies a new iteration on the spiral
(Fig. 1). The designer can continue refining the model until the desired level of
detail is achieved. The design process we propose will ensure that, upon each
iteration, the model remains consistent and has no anomalies. Refinement of
“Order Creation” service will not be considered in this paper. The resulting
design process of ”Order Creation” (Fig. 1b) represents an instance of the spiral
process illustrated in Fig. 1a.

6 Conclusion

We have presented a lightweight, interactive and visual method for service design
that supports the co-evolution of technical and business service specifications of
an enterprise. In particular, we have explored the power of Alloy formal method
beyond the technical domain and how it can be used as a toolbox for both
technical and business specialists.

The evolution of service model in Alloy can be seen as an iterative introduc-
tion and modification of logical invariants. Invariants represent the assumptions
about business or technical properties of a modeled service and, consequently,
play the role of a linking mechanism between business and technical perspectives.



This work has illustrated how Alloy can be used as a design environment
for both technical and business specialists. For now, we expect that the Alloy
diagrams are interpreted and analyzed by designers and business analysts. These
specialists trace the observed scenarios back to the specification for its improve-
ment. Automated interpretation and traceability between scenarios generated
by Alloy and their specifications (business requirements, business rules, etc) is
a subject of our future research.

References

1. Luftman, J., Papp, R., Brier, T.: Enablers and inhibitors of business-it alignment.
Communications of the AIS 1(3es) (1999) 1

2. Wegmann, A.: On the Systemic Enterprise Architecture Methodology (SEAM).
In: ICEIS. (2003)

3. Jackson, D., Schechter, I., Shlyakhter, I.: ALCOA: The Alloy constraint ana-
lyzer. In: Proceedings of the 22nd International Conference on Software Engineer-
ing (ICSE), Limerick, Ireland (June 2000)

4. Boehm, B.: A Spiral Model of Software Development and Enhancement. ACM
SIGSOFT Software Engineering Notes 11(4) (August 1986)

5. Gordijn, J., Akkermans, J.: Value-based requirements engineering: Exploring in-
novative e-commerce ideas. Requirements engineering 8(2) (2003) 114–134

6. Yu, E.: i* - an agent- and goal-oriented modelling framework.
http://www.cs.toronto.edu/km/istar/ (page visited 2013)

7. Kirikova, M., Bubenko, J.A.: Enterprise modelling: improving the quality of re-
quirements specifications. (1994)

8. Montilva, J., Barrios, J.: Bmm: A business modeling method for information sys-
tems development. the Clei Electronic Journal 7(2) (2004)

9. Dietz, J.L.: Understanding and modelling business processes with demo. In: Con-
ceptual ModelingER99. Springer (1999) 188–202

10. Fuxman, A., Pistore, M., Mylopoulos, J., Traverso, P.: Model checking early re-
quirements specifications in tropos. In: Requirements Engineering, 2001. Proceed-
ings. Fifth IEEE International Symposium on, IEEE (2001) 174–181

11. Reynolds, M.C.: Lightweight modeling of java virtual machine security constraints.
In: Abstract State Machines, Alloy, B and Z. Springer (2010) 146–159

12. Kilov, H., Simmonds, I.: Business rules: from business specification to design.
Springer (1998)

13. Regev, G., Bider, I., Wegmann, A.: Defining business process flexibility with the
help of invariants. Software Process: Improvement and Practice 12(1) (2007) 65–79

14. van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements
engineering. Software Engineering, IEEE Transactions on 26(10) (2000) 978–1005

15. Jackson, D.: Alloy Analyzer tool. http://alloy.mit.edu/alloy/ (2013)
16. Rychkova, I.: Formal Semantics for Refinement Verification of Enterprise Models.

PhD thesis, EPFL (2008)
17. Jackson, D.: Software Abstractions- Logic, Language and Analysis. MIT Press

(2011)
18. GR: Generale ressorts site. http://www.generaleressorts.com/ (2013)
19. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems

research. MIS quarterly 28(1) (2004) 75–105


