Fast soundness verification of workflow graphs

Thomas M. Prinz

Friedrich Schiller University Jena, Germany
Thomas.PrinzQuni-jena.de

Abstract. This paper shows a new approach to check the soundness
of workflow graphs. The algorithm is complete and allows a very good
localization of the structural conflicts, i.e. local deadlocks and lack of
synchronizations. The evaluation shows a linear processing time in the
average and an up to quadratic in the worst case.

Keywords: Soundness, Workflow Graphs, Deadlock, Lack of Synchro-
nization, Localization

1 Introduction

Creating a business process is accompanied by control-flow errors which is shown
by various studies [IJ2]. These errors evoke wrong or unexpected results and
restricts the correct simulation and execution of business processes [I.

We deal with business processes as workflow graphs [3[4l5]. Formally, a
workflow graph is a directed graph WG = (N, E) at which N consists of activities,
fork, join, split, merge nodes and one start node as well as one end node. (1) An
activity has exactly one incoming and exactly one outgoing edge, (2) a fork or
split node has exactly one incoming and at least two outgoing edges, (3) a join
or merge node has at least two incoming edges and exactly one outgoing edge,
and (4) each node n € N lies on a path from the start to the end node. Figure
illustrates an example of a workflow graph. We use the notion en to describe all
predecessor nodes and ne to describe all successor nodes of a node n.

We call a workflow graph simple if and only if the predecessors and successors
of each fork, join, split, merge, start or end node are activities, e.g., the workflow
graph of Figure [I|is simple. Workflow graphs observed by this paper are simple
and could have cycles. All splits and merges have an XOR semantic and all forks
and joins have an AND semantic. The restriction of simple workflow graphs is
not a limitation, because a transformation of a common workflow graph to a
simple one is possible in O(F) (see appendix). The execution of such a workflow
graph starts in an initial state that means the outgoing edge of the start node
owns one token.

As structural correctness criterion of workflow graphs, the classical notion
of soundness [4] is used in this paper. This notion was introduced on workflow
nets. [I] has shown that a workflow graph is a so called free-choice workflow
net and the soundness of such a graph corresponds with the absence of local

Fig. 1. A workflow graph containing a local deadlock and lack of synchronization

deadlocks and lack of synchronizations [3I1]. To introduce both error types, we
take a look at the simple example of Figure [1| taken from [I] that includes a lack
of synchronization and a local deadlock.

If a token travels the true edge leaving the split D in our example, then
the token will reach the join J via the upper incoming edge. However, there is
no other token that will ever arrive at the lower incoming edge of J. Such a
reachable state is called local deadlock. Formally, a local deadlock is a reachable
state s of the workflow graph that has a token on an incoming edge e of a join
node such that each reachable state from s also contains a token on e [I].

When a token reaches the false edge leaving the split Dy, the token enables
the firing of fork F'. So one token reaches Ms and it is possible that the other
token will firing the cycle Dy, My, D1, F. The result is a possible state with
multiple tokens on the incoming edge of M. Such a reachable state is called
lack of synchronization. Formally, a lack of synchronization is a reachable state s
containing an edge that has more than one token [IJ.

The analysis of the absence of lack of synchronizations and local deadlocks
is well established by various studies (see [3J4I5]6] for example). However, the
processing time of the current approaches is at least cubic or the workflow graphs
are critically restricted (acyclic, incomplete or well-formed). The diagnostic
information also ranges from no information (fast algorithms) over displaying the
failure trace (Petri net based techniques) to detailed information (for restricted
workflow graphs). A good overview over such techniques gives the introduction
of [6]. Therefore, it exists a divergence of fast or informative algorithms.

The remainder of this paper is structered as follows: Sect. [2] introduces
the basic ideas and marginal cases of our new approach. These ideas will be
complemented in Sect. [3| following an evaluation of our approach in Sect. [4]
Finally, Sect. [5| concludes the paper.

2 Basic idea and marginal cases

Our basic idea is to detect local deadlocks and lack of synchronizations structurally
by finding entry points which control the firing of a join node. Then we assume
a state allowing the firing of such an entry point. Further, we find each local

deadlock and lack of synchronization isolated. That means, such an error can not
occur if a local deadlock or lack of synchronization occurs before. These isolated
local deadlocks and lack of synchronizations are called potential. The task is to
determine entry points to detect potential LDs and lack of synchronizations.

Therefore, we introduced so-called bottle necks, which are fork or split nodes,
e.g., the nodes Dy, F' and Dy of Figure [l A bottle of a bottle neck ny is a
subgraph G, = (Ny,, Ey,) of the workflow graph such that each path from the
start node to a node n € N,,, contains n; or a merge node n,, € N,,. From this
it follows that, IV,,, contains only a join node n; if en; C N, is valid. If the
bottle n;, contains a merge node n,, that has a predecessor node n, beeing not in
Ny, , then no state should be reachable from the initial state which has a token
on the incoming edge of n;, and on the edge (ny;n.,) (see Figure . A lack of
synchronization is reachable having two tokens on the outgoing edge of n,,.

For example the bottle of Dy of Figure[I]is the sub graph containing all nodes
except S and A; and the bottle of F5 of Figure [3| contains the nodes A3 and Ajy.

Fig. 2. A bottle that contains a merge

Fig. 3. A sub graph of a workflow graph
node

After all, an entry point of a join node n; is a bottle neck with a bottle
containing n;, e.g., the entry points of J of Figure|l|are D;, F' and D, and an
entry point of J of Figure [3]is F}.

If a join node n; has no entry point, then there exists no bottle neck which has
a bottle containing all predecessors of n;. That means at least one predecessor
of n; is only reachable from the start node when n; fires. A local deadlock is
reachable.

Lemma 1. If a join node has no entry point, a potential local deadlock occurs.

An entry point of a join node is named immediate if and only if there exists
at least one path from the entry point of the join node containing no other entry
point of the join. If we determine all immediate entry points of a join node, then
the join node is only reachable over these nodes. So all entry points of J in our
example of Figure |l| are immediate, e.g., there is a path (A4s, M, A4) from F' to
J with no entry point.

Now, we consider an immediate entry point of a join node n; being a split
node n,. There is a path from n, to n; containing no other immediate entry

point of n;. So if no local deadlock occurs on this path, it is possible that after
firing n, a token reaches exactly one incoming edge of n;. n; cannot fire. If we
assume that, at this point the entry point or another entry point fires, a token
can reach the same incoming edge of n; over again. So either a local deadlock
occurs or a lack of synchronization is possible.

Lemma 2. If a join node has at least one split node as immediate entry point,
a potential local deadlock is reachable.

We call an entry point of a join node n; complete if and only if no path from
the entry point to n; contains an other entry point of n;. We assume that, n;
has a non-split immediate entry point n, which is not complete. We know, there
is a path P, from n. to n; which contains no other immediate entry point. Let
us assume that, P; contains the edge e = (z,n;). We know, there is also a path
P, from n. to n; containing another immediate entry point n;. Because n; is also
an entry point of n;, there is a path P3 from n; to n; containing also the edge
e. If n fires and there is no local deadlock on the observed paths, then a token
reaches e and the incoming edge of n;. n; can also fire and a token reaches also
e. A lack of synchronization occurs. This situation is only avoidable if a local
deadlock occurs.

Lemma 3. If a join node has at least one immediate entry point being not
complete and not a split node, a potential lack of synchronization is reachable.

Definition 1 (Well-formed). The immediate entry points of a join node are
called well-formed if and only if none of the lemmata[d], [§ and[3 is valid.

3 Processes

Let us consider all paths from all immediate entry points to exactly one predecessor
of a join node n; (and so to an incoming edge) which contains no entry point
of n;. We merge all these paths to a sub graph P = (Np, Ep) called process
of nj, because (related to a business process) such a process can be executed
from one entity (like a human or machine). n; is named terminator T(P) of the
process, because this node ends the execution of the process. Supplementary, we
define a main process for generalization. A main process is the process containing
all nodes of a workflow graph except the start and end node. For example, the
processes in ﬁgureare {A3, Ma, Ay, A5} and {A7, D2, Ag} and the main process
is N\ {S, E}. At this point, we need the simpleness of a workflow graph, because
every process should have at least one node.

Hence, we observe a join node n; having only well-formed immediate entry
points. If we assume that on the join node n; with its complete entry points
Ngp occurs a local deadlock, then we conclude that at least one process P of
n; contains a split node n, with nse Z Np. On a local deadlock is at least one
token on an incoming edge and at least no token on another. We assume P is the
process which contains the predecessor node n,, of n; and (n,,n;) bears no token.

One entry point n, € Ngp has to been fired. There exists a path from n. to n,.
So if we assume there is no local deadlock on this path, a token can travel from
the outgoing edge of n. to the outgoing edge of n,. How could a token leave this
path? The only way is a split node which lies on the path and has a successor
node with no path from this node to n,. That means this successor node is not
in the process. So our assertion is correct.

Lemma 4. If a process P = (Np, Ep) contains a split node ns with nse Z Np
a potential local deadlock is reachable.

For example the process {A7, D2, Ag} contains the split node Dy which
satisfies the conditions to cause a potential local deadlock.

Processes have nice properties on closer inspection. If a process P contains a
join node nj, each process P’ which ends in n; is a sub graph of P called sub
process (written P’ C P) and P is called super process respectively. This results
on the definitions of processes and entry points. Furthermore, the process P is
called active on a node n if there is no sub process of P containing n. We called
it active, because an entity processes P actively regarding to a business process
engine, while passive processes have to wait.

Each lack of synchronization starts in a fork node which produces two tokens
joining the same edge later. So the detection of lack of synchronizations is the
detection of processes which are active on the successor nodes twice or more.
Because of the definition of an active process, there is no join node on the path
to its terminator splitting the process. It has to be a merge node. This results in
a lack of synchronization (see Figure [4] and [7]). But an active process could be
hidden by another active process (see Figur and @ If a sub process P’ of a
process P starts in a fork node ny, we can assume a (maybe infinitesimal) short
time between the firing of ny and the activation of P’, in that P is also active.
We name these hidden active processes simply hidden active. Altogether we can
express the following lemma.

- Ng -7 | ,j
fy l ~~~~~ §>n "I]T{§m 77777 (] §>n @»I
Fig. 4. Case 1 Fig. 5. Case 2 Fig. 6. Case 3 Fig. 7. Case 4

Lemma 5. Let M be a multi set containing all active and hidden active processes
of all successors of a fork node. If M contains a process twice or more, then a
potential lack of synchronization is reachable.

For example the fork node F' in our example contains the active main process
twice in its successor nodes (once active and once hidden active).

Now, we have determined all potential local deadlocks and lack of synchro-
nizations by handling marginal cases and processes. Thus, it is possible to exactly
localize them by the entry points, the terminators, the processes and split and
fork nodes. Because of the fact, that a potential local deadlock is not only
reachable from the initial state when another potential local deadlock or lack
of synchronization occurs, and a potential lack of synchronization is not only
reachable when a potential local deadlock occurs, we can determine the soundness
of a workflow graph. Altogether we can formalize the following lemma.

Theorem 1. A workflow graph is sound if and only if it contains neither a
potential local deadlock nor a potential lack of synchronization.

The basic algorithms to determine the entry points, immediate entry points
and processes are in the appendix. It is reasonable that |E| < 2 % |N| is valid for
simple workflow graphs. Altogether, the processing time is in worst case quadratic
to N.

4 Evaluation

We have implemented the algorithm in Java and stopped the soundness verifica-
tion when the algorithm found the first potential error. It followed the approach
of [1]. The benchmark was taken from http://www.service-technology.org/
soundness, is splitted in 5 libraries (A, B1, B2, B3 and C) and was also used
by [1]. The input was a PNML file which was parsed and transformed from a
Petri net to a workflow graph. So we could compare it with other tools like LoLLA
(http://www.informatik.uni-rostock.de/tpp/lola/).

Our runtime environment was a system with a 64 bit Intel® Core™2 CPU
E6300 processor and 2 GB main memory. The system rans a Linux 3.1.0-1.2-
desktop x86_64 kernel and an Oracle OpenJDK JRE 1.6.0_.22. Because of the
hot spot compiler of the JRE, we created a startup as long as the optimizing
system needed to optimize the most hot methods. We ran each of the 5 libraries
10 times, removed the two best and worst results and calculated the average
run time. Furthermore, the number of nodes, edges and explored nodes were
determined. We chose LoLA for comparison and ran it on the same machine like
our algorithm and subtracted the read and build time of the petri net. Altogether,
we determined only the validation time and no transformations. Table [1] shows
the results.

Compared to the results of LoLLA we determined the same sound and unsound
processes. So it accompanies with the correctness of our approach.

The results showed, the number of edges grows linear with the number of
nodes and that the number of split, fork and join nodes is less (< 20%). It
accompanies with the nearly linear number of max. approx. 11-times inspections
of nodes. So the runtime results showed that our approach is nearly linear in
the worst case. This is also represented by the analysis times of the libraries.
They were approx. 150-times faster as the times of LoLA in average. Although,

http://www.service-technology.org/soundness
http://www.service-technology.org/soundness
http://www.informatik.uni-rostock.de/tpp/lola/

Library: A |B1 |B2 B3 |C

Processes/Sound 282/152 |288/107 |363/161 [421/207 [32/15
Avg./Max. |N| 84/202 [82/402 |83/437 [93/501 |136/567
Avg./Max. |E|\ |N]| 1.3/1.9 [1.3/1.9 |1.3/19 [1.2/1.7 [1.1/13
Avg./Max. |vis.N|\ [N| [3.6/7.1 [3.4/7.9 [3.5/10.8 [3.4/7.7 [2.4/7.1
Analysis time [ms] 16.4 15.4 20.7 28.4 1.7

Analysis time LoLA [ms] 2373.0 2395.9 3126.1 3651.3 303.8
Per process avg./max. [ms] ||0.06/0.28 |0.06/0.36 [0.06/0.47 |0.07/0.69 |0.06/0.31
Per process LoLA avg. [ms]||8.5 8.4 8.7 8.7 9.5

Table 1. Results of the benchmark evaluation

the comparison was difficult regarding the different implementation technologies.
Altogether, a single process took always less than one millisecond to be validated.

To verify these results we added our complete algorithm to the Activiti
BPMN 2.0 designer (http://activiti.org). When drawing a workflow graph-
like business process, the plugin verifies the process in-time and visualizes all
errors. It underscores the efficiancy of our algorithm and the very good error
localisation.

5 Conclusion and Outlook

In this paper we presented and evaluated a new approach to detect structural
conflicts in workflow graphs, i.e., the soundness. The approach and the resulting
algorithm found all structural conflicts and were able to localize them. We showed
a soundness verification is possible during the drawing of a business process. This
is possible, because the algorithm has an up to quadratic worst case processing
time.

The main issues for future work are to present a complete proof of our approach,
solving the soundness for OR-splits and OR-merges, to use the introduced
processes to verify the operability of workflow graphs and to transform data-
extended workflow graphs into a CSSA-based form.

Acknowledgments

This paper was written in the context of the SimProgno research project (support
code: 01IS10042B) funded by the German Federal Ministry of Education and
Research. Special thanks to Wolfram Amme for discussing the ideas of this paper.

References

1. Fahland, D., Favre, C., Koehler, J., Lohmann, N., Vélzer, H., Wolf, K.: Analysis on
demand: Instantaneous soundness checking of industrial business process models.
Data Knowl. Eng. 70(5) (May 2011) 448-466

2. Mendling, J.: Empirical studies in process model verification. In Jensen, K., Aalst,
W.M., eds.: Transactions on Petri Nets and Other Models of Concurrency II, Berlin,
Heidelberg, Springer-Verlag (2009) 208-224

http://activiti.org

A

. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction tech-

niques. Inf. Syst. 25(2) (April 2000) 117-134

. Aalst, W.M.P.v.d., Hirnschall, A., Verbeek, H-M.W.E.: An alternative way to analyze

workflow graphs. In: Proceedings of the 14th International Conference on Advanced
Information Systems Engineering. CAiSE ’02, London, UK, UK, Springer-Verlag
(2002) 535-552

. Eshuis, R., Kumar, A.: An integer programming based approach for verification and

diagnosis of workflows. Data Knowl. Eng. 69(8) (August 2010) 816-835

. Vanhatalo, J., Volzer, H., Leymann, F.: Faster and more focused control-flow analysis

for business process models through sese decomposition. In: Proceedings of the
5th international conference on Service-Oriented Computing. ICSOC ’07, Berlin,
Heidelberg, Springer-Verlag (2007) 43-55

Appendix

Algorithm 1 Transforming a workflow graph into a simple one with processing
time: O(E).

Input: A workflow graph WG = (N, E)

Output: A simple workflow graph WG’ = (N', E')

1

: for all e = (ns,n;) € E do

N'«+ N' U{ng,n.}

if n, and n; are not activities then
N’ + N'U{ng},n, is a new activity
E' + E'U{(ns,ng), (na,nt)}

else
E' + E' U{e}

Algorithm 2 Determining a bottle for one bottle neck with processing time:
O(N + E).

Input: A fork or split node n of a workflow graph WG = (N, E)

Output: A set Np of nodes of the bottle of n

1

— =
Lo

: for all ng € ne do
determineBottle(ny)

: function DETERMINEBOTTLE(n,)
if n. ¢ N, then
if n. is a join node then
if en. C Np then
Np + NpU{n.} and mark n as entry point of n,
for all n, € n.e do
determineBottle(ns, Ng)
else
Np < NpU {nc}
for all n, € n.e do
determineBottle(ns, Np)

Algorithm 8 Determining a subset of immediate entry points and one process of
a join node respectively with processing time: O(N + E).
Input: Predecessor node n, of a join node n; and the entry points N, of n;
Output: Process P = (Np, Ep) and a subset of immediate entry points N; of
nj
1: determineProcess(np)
2: function DETERMINEPROCESS(n.)
3: if n. ¢ Np then
if n. € N, then
else
Np < NpU {nc}
for all n, € en. do
determineProcess(n,,)

	Fast soundness verification of workflow graphs
	Introduction
	Basic idea and marginal cases
	Processes
	Evaluation
	Conclusion
	Appendix

