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Abstract

”Millions of programmers use StackOverflow
to get high quality answers to their program-
ming questions every day. There has evolved an
effective culture of moderation to safe-guard it.
More than six thousand new questions is asked
on StackOverflow1 every weekday. Currently
about 6% of all new questions end up ”closed”.
The goal of this paper is to build a classifier that
predicts whether or not a question will be closed
given the question as submitted, along with the
reason that the question was closed.

1 Introduction
In recent time question-answer services like StackOver-
flow are becoming more popular. Knowledge of such
services has been steadily growing so it requires more
resources to moderate. Some automation of this process
would ease this task. The problem solved in this paper
is a small step in this direction. The task was a contest
organized by kaggle2. It has two stages: public and pri-
vate, for public and private datasets accordingly. In first
one user who submitted solution could see their results
immediately, but they could do it no more than 2 times a
day. In private stage users were doing prediction for pri-
vate dataset but results can be seen only after the compe-
tition. The results of all participants can be seen in public
leaderboard, but those who submitted post-deadline are
not shown there. We submitted our solution after dead-
line and the best position we’ve got is 5th with 0.31467
points.

StackOverflow is a service where users ask questions
about programming and it belongs to StackExchange
network which contains many thematic websites. Ques-
tions on StackOverflow can be closed as off topic (OT),
not constructive (NC), not a real question (NRQ), too lo-
calized (TL) or exact duplicate. Exact duplicate reason
was excluded from competition because it depends on
posts history. Posts history actually is present in Stack-
Overflow database dump but its size is about 6GB in xml
format, which requires many resources to analyze.

Off topic is a question that is not on-topic of the site
or is related to another site in Stack Exchange network.

Example: Is there a way to turn off the automatic text
translation at the MSDN library pages ? I do prefer En-
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glish text but due to having a German IP address Mi-
crosoft activates the automatic translation on every new
page load which gives me a yellow box with a German
translation of the text I am currently hovering over with
the mouse.

This happens regardless what language is initially set
in the right upper corner and regardless of whether I am
logged in or not. I can’t tell how annoying this is !! Any
ideas, anyone ?

Too localized is a question that is unlikely to be help-
ful for anyone in the future; it is only relevant to a small
geographic area, a specific moment in a time, or an ex-
traordinary narrow situation that is not generally applica-
ble to the worldwide audience of the internet.

Example: Is it time to start using HTML5? Someone
has to start sometime but is now the time? Is it possible
to use the new HTML5 tags and code in such a way as to
degrade gracefully?

Not constructive is a question that is not a good fit
to Q&A format. It is expected that the answers gener-
ally involve facts, references, or specific expertise; this
question will likely solicit opinion, debate, arguments,
polling, or extended discussion.

Example: What is the best comment in source code
you have ever encountered?

Not a real question is a question when it’s difficult to
tell what is being asked here. This question is ambigu-
ous, vague, incomplete, overly broad or rhetorical and
cannot be reasonably answered in its current form.

Example: For a few days I’ve tried to wrap my
head around the functional programming paradigm in
Haskell. I’ve done this by reading tutorials and watch-
ing screencasts, but nothing really seems to stick. Now, in
learning various imperative/OO languages (like C, Java,
PHP), exercises have been a good way for me to go. But
since I don’t really know what Haskell is capable of and
because there are many new concepts to utilize, I haven’t
known where to start. So, how did you learn Haskell?
What made you really ”break the ice”? Also, any good
ideas for beginning exercises?

The process of question closing includes user voting.
Thus users with a certain reputation can vote a ques-
tion to be closed with one reason. When question gains
enough close votes it is closed by moderator. So this can
be automated if it will be possible to predict which ques-
tion will be closed.

2 Dataset
For this task the data was provided by kaggle and it in-
cludes train data which contains 3664927 posts and train



sample data consisting of 178 351 posts. Full train data
and sample train data distribution on closed reasons is
shown in table 1 .

Table 1: Training data distribution over categories
Dataset NRQ NC OT Open TL
Train 38622 20897 20865 3575678 8910
Sample 38622 20897 20865 89337 8910

Also StackOveflow database dump of august 2012
was available. Database dump contains all users and
posts information including history of the post editing,
commenting and many other information.

3 Related work
User interaction analysis in social media. As was men-
tioned above questions on StackOverflow are closed by
user voting. So user’s feedback is very important compo-
nent also it’s a valuable source of post quality. In [1] user
relationships were analyzed to gain significant amount of
quality information. Authors applied link-analysis algo-
rithms for quality scores propagating; the main idea was
that ”good” answerers write ”good” answers. This idea
can be propagated onto the questions that peoples who
do not asks ”bad” questions are less unlikely to do so
in the future. In process of link-analysis user-user graph
was built to represent those relationships. This graph can
be noted as G = (V,E) in which V is a set of vertices
stands for users set, and E represents relationships be-
tween the users. In [4] authors classified questions as
conversational and informational. In their work they di-
vided peoples into two categories: answer people, who
answers many questions and discussion peoples who in-
teract often with other discussion people. To do so they
also analyzed user’s question answers ego-network. Au-
thors of [7] showed that almost the same user interaction
features are significant during classification of a question
as social and non-social.

Text content quality analysis. In [1] were presented
features to represent grammatical properties of the text.
In their work they also take into account punctuation and
typos, syntactic and semantic complexity. It’s important
because this content is generated by the users. Their fea-
tures for text quality analysis were helpful for us because
one of the close reason - not constructive - is essentially
a conversational question.

4 Used methods
We’ve compared three methods during our research.

4.1 Random forest

We took baseline’s scikit-learn random forest with 50 es-
timators implementation and used it with our new fea-
tures to see how these new features may affect the result
predictions.

4.2 Support Vector Machine

We’ve used liblinear3 library support vector machine im-
plementation. Support Vector Machines (SVM) have

3www.csie.ntu.edu.tw/c̃jlin/liblinear

been shown to be highly effective at traditional text cate-
gorization [5]. We chose this because of amount of data.
As mentioned above it is slightly less than 4 millions of
samples and we didn’t balanced data as we did for ran-
dom forest classifier. Liblinear do not use kernels and
is trained very quickly. Liblinear also provides an op-
tion to select regularization parameter C. The value for C
parameter that we found to be optimal for our dataset is
1.

4.3 Vowpal Wabbit

Vowpal Wabbit (VW)4 is a library and algorithms devel-
oped at Yahoo! Research by John Langford. VW focuses
on the approach to stream the examples to an online-
learning algorithm [6] in contrast of parallelization of a
batch learning algorithm over many machines. The de-
fault learning algorithm is a variant of online gradient de-
scent. The main difference from vanilla online gradient
descent is fast and correct handling of large importance
weights. Various extensions, such as conjugate gradient
(CG), mini-batch, and data-dependent learning rates, are
included. We found that default algorithm works much
better on our dataset. We trained VW with samples in
chronological order and for reasons of clarity in shuf-
fled order and the result for the shuffled data were much
worse - 0.3340 versus 0.31467 for ordered dataset in con-
dition that we used the same feature set for both of them.

As mentioned above the algorithm used in Vowpal
Wabbit is a modified stochastic gradient descend al-
gorithm. Unlike the typical online-learning algorithms
which have at least one weight for every feature the ap-
proach used in VW allows to induce sparsity in learned
feature weights. The main idea of truncate gradient is
that it uses the simple rounding rule of weight to achieve
the sparsity. The most of the methods rounds small coef-
ficients by threshold to zero after a specified number of
steps. In truncated gradient amount of shrinkage is con-
trolled by a gravity parameter gi. Weights are updated in
according with update rule f(wi):
f(wi) = T1(wi − η∇1L(wi, zi), ηgi, θ)
where T1(v, α, θ) = [T1(v1, α, θ), ..., T1(vd, α, θ)]

with

T1(vj , α, θ) =

 max(0, vi − α) ifvj ⊆ [0, θ]
min(0, vj + α) ifvj ⊆ [−θ, 0]
vj otherwise

,

θ is a threshold,
gi is a gravity parameter so gi = 0 if i

K is not an
integer and gi = K if i

K is an integer. Here K is the
number of steps after which the weights are updated. gi
is used with θ to control sparsity.
ηe is a step size and calculated as
ηe =

ldn−1ip

(i+
∑

e′<e ie′ )
p ,

where l is a learning rate, d is a decay learning rate, i
is an initial time for learning rate, p is a power of learning
rate decay.

The update rule parameter were chosen empirically
and it’s values is: logistic loss function, p = 0.5, l = 1, d
= 1

Also VW provides online latent Dirichlet allocation
algorithm which we used for 200 topics. 200 topics were

4https://github.com/JohnLangford/vowpal wabbit/



optimal for our data. We’ve tried for 50, 100, 200 and
300 values, but 200 gave the best result.

4.4 Baseline

Baseline model was provided by kaggle. It includes six
features to represent each post as a vector of features:

OwnerUndeletedanswersAtPostCreation. This is the
count of answers posts the user had made that were un-
deleted when that row’s question was submitted.

BodyLength. This is the initial body length including
its code blocks lenth.

ReputationAtPostCreation. User reputation at post
creation time.

NumTags. Number of tags that the assigns to the post.
Its maximum value is 5 per post.

TitleLength. Title length of the post.
UserAge. This is the system user age. Not actual user

age which user fills in his profile, but the time elapsed
from the time a user logs into the system.

Classification was carried out using scikit-learn ran-
dom forest (RF) implementation (50 estimators) for
training data sample. The output is a raw prediction
which then is updated to get the posterior probability
because it was trained on balanced data. The posterior
probability for the modified model is
P (C|D,T ) = P (C|D,S)P (C|T )

P (C|S) ,
where P (C|S) is the old prior (frequencies of closed

questions in balanced sample), P (C|D,S) is the clas-
sification outputs (posterior) from the model which is
based on S and P (C|T ) is the new prior (frequencies of
closed questions in unbalanced train data). Here S means
trained on balanced sample data and T means training on
unbalanced train data.

So classifier infers the probability of classC (distribu-
tion over a parameter C - close reason in our case) which
is denoted as P (C|D,S) based on explicit data D (the
data to be predicted) and on a prior balanced data S. We
need to modify this prior to get the probability of class C
for modified model P (C|D,T ) based on data D and on
unbalanced data T.

Baseline does not take into account the content of the
post, so we decided to focus on this. We presented text in
vector from using two techniques. First is tf-idf weight-
ing technique; the second is Latent Dirichlet Allocation
(LDA) [2]. We used these techniques with different pre-
viously described methods. For building LDA model for
train data we’ve been using GibbsLDA++5 implementa-
tion using Gibbs Sampling technique for parameter esti-
mation and inference. At the same time Vowpal Wabbit
has its own online LDA implementation.

5 Features
As was mentioned above along with baseline features we
used our features to represent data as vectors. All these
features can be divided into three categories. We describe
just some interesting features. Full list of features can be
found in the full version of paper which may be obtained
by e-mailing6 to the author.

5http://gibbslda.sourceforge.net/
6galina.lezina@gmail.com

5.1 User Features

User features describes user parameters on StackOver-
flow server such as reputation, personal information
completeness and interaction between all users. To take
into account interaction between users we calculate some
features by building user interaction graph. Along with
baseline user features we calculated are listed below:

Reputation. User reputation at the time of the Stack-
Oveflow database dump creation. The idea is that users
with high reputation ask incorrect questions less often
than users with low reputation.

AgeFilled, AboutMeFilled, LocationFilled, Website-
Filled, AllInfoFilled. These features are binary and cor-
respond to filled information in user’s profile. We tested
if users with fully filled profile more

UpVotes. Votes up the user received for his posts.
DownVotes. Votes down the user received for his

posts.
CVInDegree, CVOutDegree.. Close votes received by

the user for his posts, Close votes given by the user for
other user’s posts.

QAInDegree. Number of answers received by the
user.

QAOutDegree. Number of answers given by the user.
QAClustCoef. The clustering coefficient of the

question-ask ego network. The hypothesis was that users
with high QA clustering coefficient are more communi-
cable. In [4] it was summarized that users asking con-
versational questions have more densely interconnected
than users asking informational question. In our case
not constructive category questions are conversational in
fact.

5.2 Features of a Post

Post features include information about the title and body
contents. In addition to direct representation the text as
a vector using tf-idf or LDA we calculate so-called text
parameters along with post features from baseline:

CBCount. Number of code blocks in the post’s body.
LinkCount. Number of links in the post’s body.
Dates, Times. The number of occurrences of dates

and time periods in the body of the post. As described in
StackOverflow FAQ, the too localized posts is closed as
time or place specific.

NumberOfDigits. Number of digits in the post body.
NumberOfSentences. Number of sentences in the post

body excluding code blocks.
NumberOfSentencesStartsWithI. Number of sen-

tences in the post body which start with ”I”.
NumberOfSentencesStartsWithYou. Number of Sen-

tences in the post which start with ”you”. In [4] it was
concluded that conversational questions are more often
directed at readers by using word ”you”, while informa-
tional questions are more often focused on the asker by
using the word ”I”.

UpperTextLowerTextRatio. The ratio of the number of
upper letters to lower letters in the text. Besides of text it
may give some answerer characterization like accuracy.

FirstTextLineLength. Length of the first text line.
Usually first short line implies personal appeal or greet-
ing. The former case is the most interesting if it is pecu-
liar to one of the close categories.



Figure 1: Relative feature importance.

NumberOfInterrogativeWords. Number of interroga-
tive words such as ”what”, ”where” and so on.

NumberOfSentencesStartsWithInterrWords. Number
of sentences which starts with interrogative words. It
provides an information on whether the post is a ques-
tion.

NRQCloseRate, NCCloseRate, OTCloseRate,
OCloseRate, TLCloseRate. We encounter close rate for
each category. These values are calculated for every
10000 posts. For predicting samples we take latest close
rate values.

The rest of features include such information as punc-
tuation marks, indentation in code blocks, some features
from post title and many others are described in paper
linked at the beginning of this section.

5.3 Tag Features

During prediction we’ve been using information about
the tags affixed to the posts by its owner. Every new
question asked on service must be tagged with at least
one tag. During classification we counted close frequen-
cies for each tag and each category. Also we counted
questions close frequency for every tag pair. The hy-
pothesis is that tags reflect some topics of the post and
a pairwise occurrence of some tags can mean that two
topics that lead to disputes may occur in one post.

5.4 Feature Selection

To select most important features we used two ap-
proaches. The first method is based on estimating rela-
tive importance of features by constructing big amount of
trees for randomly selected subsets of features and is de-
scribed in [3]. The result was used while classifying data
using random forest and support vector machine classi-
fiers as the output of this method can be used to train any
classifier.

The example is shown in figure 1. This figure shows
relative importance for some features described earlier
in the text. As we can see from the figure the most rel-
evant feature is a time elapsed since the opening of the
post before it was closed. The longer post is open the
less likely that it will be closed. The next is the number
of code blocks in the post, its score and so on. While
selecting features we also measured importance in com-
bination with LDA topics and tf-idf weights.

The second approach is a feature selection using the
Vowpal Wabbit. VW has a small wrapper around it called

vw-varinfo. VW-varinfo produces input variable names
as an output and any other parameters including the rela-
tive distance of each variable from the best constant pre-
diction - feature relevance score. So in final VW training
we removed all features with zero relative scores.

6 Evaluation
Prediction results were evaluated for the public and pri-
vate data provided by kaggle7 using metric called mul-
ticlass logarithmic loss (logloss). Class labels for public
and private data is hidden and still is not accessible for
participants. So the result for these data can be calculated
only on the kaggle’s server using logloss metric.

6.1 Multiclass Logarithmic Loss

The metric is negative log likelihood of the model that
says each test observation is chosen independently from
a distribution that places the submitted probability mass
on the corresponding class, for each observation. Mul-
ticlass logarithmic loss (MLL) is calculating by the fol-
lowing formula.
MLL = − 1

N

∑N
i=1

∑M
j=1 yi,j ln(pi,j) ,

where N is the number of observation, M is the num-
ber of class labels, yi,j is 1 if observation i is in class j
and 0 otherwise, and pi,j is the predicted probability that
observation i is in class j.

6.2 Outline the results

In table 2 we present results for different methods we
used and for clarity best public leaderboard result also
provided.

Table 2: MLL for used methods
Method MLL Leaderboard

position
leader 0.29837 1
vw+uf+tf+lda200 0.31467 5
vw+uf+tf+tf-idf3+lda200 0.31994 5
vw+if+uf+tf+lda200 0.31795 5
vw+tf+lda200 0.31909 5
vw+uf+tf+tf-idf3 0.34141 15
vw+uf+lda200 0.44828 35
vw+lda200 0.45577 35
svm+tf-idf3+tf+uf+if 0.38152 24
svm+lda200+tf+uf+ if 0.41366 29
rf+tf-idf3+tf+uf+if 0.44045 34
rf+lda200+tf+uf+if 0.44846 35
baseline 0.46102 36

Here in table of results
uf means user features which are described in User

Features section except user interaction features which is
marked in results separately,

tf is a text features which are fully described in Post
Features section and it also includes tag features,

lda200 is a representation of text as vector of topics
probability distribution and includes post title and post
body text along with tags attached to it,

7https://www.kaggle.com/c/predict-closed-questions-on-stack-
overflow/data



if is a user interaction features and includes question-
answer and close vote features such as in-degree, out-
degree and clustering coefficient.

rf is a scikit-learn random forest implementation used
with 50 estimators,

svm is a support vector machine
vw is a vowpal wabbit library.
As we can see from the table of results for vowpal

wabbit user interaction features worsen outcome for a
small value. And if we compare using vw with user fea-
tures and text features (along with lda200 in both cases)
we will see that text features contribute much more to the
result than user features.

The model of Vowpal Wabbit which gave us the best
result utilizes a logistic loss function and one against all
classification. Also we measured the result for tf-idf vec-
tors counted for 3-grams and it is interesting that it didn’t
outperformed our result for the model which uses only
LDA for 200 topics. Also the SVM and RF classifiers
require preliminary LDA model construction which re-
quires a lot of resources while VW has online LDA im-
plementation so it can build it while training.

As we mentioned earlier baseline doesn’t take into ac-
count the content of the post and as we’ve seen the text
feature is very informative. So our solution benefits from
the post context.

7 Future work
After some manual analysis we’ve noted that some ques-
tions’ status is open but it actually should be closed.
Sometimes it’s reflected in the comments and it would
be useful to consider such close recommendations from
comments. Such information can be taken from Stack-
Oveflow database dump. So we are planning to make
better use of the database dump not only for further text
feature extraction but for seeing user communication.
Posts can be edited by different users depending on who
owns the post - community or owner, so we can watch
changes which make ”bad” post (which received some
votes for closing ) to be a ”good” one.

Also it’s very hard to determine too localized question
in some case because sometimes it can be seen from the
text of the post, and sometimes it is enough to look at the
code included in the post body. But we didn’t analyze
the content of the code in any way during classification.
It is nontrivial task to determine if the code works for
specific conditions and will never be useful for anyone
else in the future. Some code analysis might be helpful
because in StackOverflow the code includes actually not
only the code but some stack trace is also considered to
be a code but when user posts full stack trace he can ask
very specific question associated with his error. Deter-
mining type of code language may be helpful if we are
trying to see if user compares the same thing in different
language which is like to ask ”what is better” but this is
not constructive.
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