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Abstract

In this paper we consider multidimensional in-
dexing with the additional constraint of lexi-
cographical ordering. In order to deal with
this problem we discuss two well-known tree
data structures: R-Tree and B-Tree. We study
the problem in the transactional environment
with read committed isolation level. To evalu-
ate these approaches we had implemented these
structures (modified GiST ensures concurrency)
and provide extensive experiments.

1 Introduction

In this paper we consider the problem of multidimen-
sional indexing with one additional constraint — the lex-
icographical ordering of the resultset. Effective multidi-
mensional indexing is rather old and well-explored topic,
however, one can’t say that the problem is solved. New
approaches continue to emerge. The addition of the or-
dering requirement further drives this problem into the
domain of research activity.

Effective solutions for the problem of multidimen-
sional indexing are needed for geospatial data, CAD sys-
tems, multimedia data and also of use for OLAP data.

There are two main approaches for multidimensional
indexing: tree-based and hash-based. The former are R-
Tree, KDB tree, Octree, X-Tree and many others. The
latter are mainly used for nearest neighboor and similar-
ity query evaluation.

We are mainly interested in R-Tree because of it’s
popularity in commercial DBMS systems [4]: Post-
greSQL, Oracle, Informix, SQLite and MySQL use this
approach. This interest proves, that despite being rather
old (more than 25 years), R-Tree still may be called
industrial-strength technology. Moreover, until recently
R-Tree was the only one method of multidimensional in-
dexing in PostgreSQL!.
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This work was inspired by participation in ACM SIG-
MOD Contest 2012. This problem was provided by the
contest organizers, as well as benchmarks and example
Berkeley DB-based implementation. Our team partici-
pated in this contest and was ranked 5th on public tests.

The problem is formulated as follows: given a n-
dimensional space and queries in transactional environ-
ment, what kind of data structure should we use for opti-
mal performance?

In order to solve this problem we implemented a pro-
totype of multidimensional transactional index. This
index works within read committed isolation level.
Our prototype contains both B¥-Tree and R-Tree built
around GiST model.

The contribution of this paper is following:

e The validation of our prototypes by comparison
with industrial-strength databases: Berkeley DB
and PostgreSQL.

e Experimental study of influence of workload pa-
rameters on performance of these two structures.
These workload parameters include query window
size and others.

The rest of this paper is organized as follows. In the
next section we provide detailed specification of the task,
describe queries and data. Then, in the section 3 we
describe two alternative approaches and survey related
works. Section 4 contains overview of our system. In the
section 5 we provide evaluations and comparisons with
PostgreSQL and Berkeley DB.

2 The Task

The task offered at the contest was to build a multidimen-
sional high-throughput in-memory indexing system. The
index should support concurrent access by many threads
and work within read committed isolation level. The
index resides in-memory and no crash-recovery compo-
nent is required.

2http://wwwdb.inf .tu-dresden.de/sigmod2012contest/
leaderboard/



2.1 Queries

There are several possible types of queries:

e Point queries: insert, update, delete and select.

e Range queries — they select a subset of data and
the result should be sorted. This type of query is
defined by a conjunction of attribute predicates. The
individual predicates may be not only be intervals or
points, but also a wildcards.

The distribution of query types is described in the
specification and it can be tuned.

Another important aspect to consider is the admissible
amount of operations per transaction. It is specified, that
there are no more than few hundred retrieved points per
transaction. In particular, the original task states that no
more that 200 points are touched by any transaction. This
number is justified by the fact that OLTP transactions are
very light-weight. For examle, the heaviest transaction
in TPC-C reads about 200 records [12].

2.2 Data And Workloads

The task statement specifies several datatypes:INT(4),
INT(8) and VARCHAR(512). However, in this work, we
had to drop VARCHAR (see section 5 for details). The
key consists of several attributes of these datatypes. The
payload is represented by a sequence of bytes.

The data may come in one of several types of distribu-
tions: normal, uniform and zipf (each is applied to coor-
dinate independently). In our tests we used only uniform
one.

Duplicate keys are allowed, we refer the reader to the
web site for the detailed handling description.

In our experiments we heavily rely upon workloads
and benchmark driver provided by organizers. These
workloads are essentially synthetic datasets. We don’t
reuse workloads used during the contest, instead we use
the provided framework to define our own.

Thorough task specification can be found here?.

3 Related Work And Architectural Alter-
natives

In order to solve this problem two architectural ap-
proaches may be used. The first one is to use B*-Tree
and concatenate the values of individual coordinates into
the composite key. The B*-Tree [13] is the balanced
data structure, which contains values in the leaf nodes
while inner nodes contain pointers and intervals. These
intervals define the unique path to the leaf.
The strong points of this approach are:

e The overall simplicity of this data structure and gen-
eral easiness for implementation.

e The abudance of concurrency control mechanisms
for this kind of tree [13].

e It is possible to tune one, a lot of cache-conscious
modifications exist.
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e No need to sort, because keys are already stored in
the right order.

Let’s review the last item. Suppose that we have a
three dimensional index and a query: (1,2, x). In order
to evaluate it, we have to find the first entry with pre-
fix “1|2|” and then sequentially scan the tree until prefix
mismatch.

However one can name weak points:

e We have to pack and unpack the keys with each
comparison.

e Queries containing interval predicates are harder to
process.

e This tree may perform poorly with wildcard queries.

The first one is the minor drawback, its cost may be
negligible. However, the second and the third are more
formidable ones.

The intervals inside attributes can be processed in the
same manner as above, but additional checks are needed.
This results in additional complexity of the implementa-
tion.

Regarding the third item, consider query (1, *,3). In
order to evaluate it, we have to find the key starting with
a prefix “1”, then we have to iterate through all values
which have it. It will require a lot more of comparisons,
and what is more important, we will be forced to discard
a lot of value in the middle. Consider the following leaf
level:

11213, 11214, 1[2]4], ..., 1|2|4], 1[3]3].

In this situation we will need only two values: 1|2|3]
and 1|3|3]. But we would be forced to iterate through
all these values and discard them.The situation becomes
grave when we have wilcard condition in the first at-
tribute: (x,2,3). In this case we have to scan the whole
index.

R-Tree is the specialized data structure proposed first
by Antonin Guttman in [6]. This study prompted a wave
of research papers and one can say that it gave birth to
the new area of research. This research related to devel-
opment of the new R-Tree variants [4, 8, 11], niche ap-
proaches [10, 11], split techniques [2, 3, 5], concurrency
techniques [7, 9] etc. The study [10] states that there is
more than 100 variants of R-Trees.

R-Tree can be thought of as an extension of B-Tree
for multidimensional indexing. It shares some concepts:

e Data are kept in the leaves, too.
e This data structure is also balanced.

e Inner nodes keep bounding boxes, which may be
thought as the generalization of intervals.

The main differences are:

e There may be more than one path to the key. This is
the result of bounding box intersection permission.

e Node split is unambiguous, determining the optimal
node split is a very hard problem.



e No link to sibling leaves for easy range query exe-
cution.

GiST (Generalized Search Tree) [9] is a “template”
index structure which supports extensible set of queries
and datatypes. This index can be parametrized by a vari-
ety of data structures.

Unlike BT -Tree based one, this approach would re-
quire sorting of the results. This is a significant drawback
which may negatively impact performance. The goal of
this paper is to evaluate, which of these approaches is
better. Intuitively one can say that the outcome should
depend on the query selectivity.

4 System Overview

Our system follows classical design guidelines and con-
tains several components:

e A tree data structure. Currently implemented as
B™T-Tree and R-Tree. R-Tree is based upon GiST
[7], a popular template index structure including
concurrency control techniques. This model allows
to extend with the means of concurrent access al-
most any tree conforming to certain requirements.
This is a widespread approach and it is used, for ex-
ample, in PostgreSQL.

e Concurrency control. We used mechanism adapted
from [9] with locks, latches and Node Sequence
Numbers. Also we provided deadlock resolution
mechanism. Eventually, we ensure the read com-
mitted isolation level. However currently our proto-
type lacks logging and recovery features.

e Memory manager. It is a well-know fact that a
standard memory manager can’t provide optimal
performance for the whole range of applications
and sometimes it is desirable to find or implement
a specifically-tailored one. Our memory manager
is essentially a wrapper which intercepts new and
delete calls to make use a pool of free blocks.

e Sorting of the results. In order to solve the prob-
lem one must present lexicographically sorted re-
sults. While BT-Tree provides already ordered re-
sults, R-Tree does not. Our R-Tree implementation
sorts the results via merge-sort (we keep sorted data
inside boxes).

e Deletion of records. In our implementation we
don’t delete records, instead, we mark them as
“deleted” and take this into account during the pro-
cessing.

5 Validation and Experiments
5.1 Validation

We validated our implementation in two ways. First, we
used public unit-tests supplied by the contest organizers.
These unit-tests ensured correctness of an isolation level
(read committed) implementation and several other im-
plementation issues. We also extended basic set of test
cases with new ones. Then, our implementation partici-
pated in the contest [1].

5.2 PostgreSQL validation and tuning

We also compared our implementation with PostgreSQL
v9.1 database system. This step was needed to check the
relative level of achieved performance and general trans-
ferability of results. We implemented a simple wrapper
application which directed queries to PostgreSQL. Post-
greSQL uses a disk-based GiST index, while our proto-
type is an in-memory one. Also, our prototype lacks a
logging and recovery component. Thus, in order to con-
duct fair tests we had to simulate in-memory index in
PostgreSQL.

To completely eliminate slow disk-related operations
we placed database cluster on tmpfs. This way we can
be sure that every operation PostgreSQL performs (log-
ging, committing, buffers flushing, etc) does not involve
interactions with a hard drive.

Other important implementation aspects included:

e Wrapper connection pooling. We used a pool of
connections inside our wrapper to eliminate the cost
of connection creation every time a transaction is
executed.

o We parametrized GiST with cube data structure.

e To eliminate overheads related to durability we
turned off: fsync, full page writes and synchronous
commit. Checkpoint segments setting was left in-
tact.

e We were forced to abandon string datatype due to
PostgreSQL cube restrictions (only float parameters
supported).

e PostgreSQL runs in read committed isolation level
by default.

Unfortunately, due to several reasons, we were not able
to completely approach the performance of our system.
First, unlike BDB, PostgreSQL needs to maintain not
only the index, but also a table. Second, calls to Post-
greSQL via connections are less effective than the direct
function calls. The last issue is the security checks which
were also left intact.

5.3 Hardware and software setup

For the first group of experiments (comparison with Post-
greSQL and Berkeley DB) used the following hardware
and software setup:

o Intel Core i7-2630QM, 2.00 GHz, Hyper-Threading
Enabled, L1 Cache 64KB, L2 Cache 256 (per core),
L3 Cache 6MB, 6GB RAM

e x86_64 GNU/Linux, kernel 3.5.0-21, gcc 4.7.2
e PostgreSQL 9.1.7

The second group used the more performing one:

e Hardware: 2 x Intel Xeon CPU E5-2660 0 @
2.20GHz, 64GB RAM, MB S2600GZ

e Software: Linux Ubuntu 3.2.0-29-generic x86_64,
GCC4.6.3



5.4 Comparison with PostgreSQL and Berkeley DB

In this section we provide a comparison of our prototypes
with industrial strength systems. The wrapper for Berke-
ley DB was provided by the organizers, PostgreSQL
wrapper was developed by the authors (it’s architecture
was described earlier). We compare the performance var-
ing the number of dimension and use single 64MB index.
The query type distribution is the same as in the original
contest task, uniformly distributed data was used.
We can see:

e Our prototypes are comparable to industrial ones in
terms of overall performance.

e The solution which uses R-Tree significantly differs
from B*-Tree in terms of performance. This dif-
ference has prompted us into further investigation,
which resulted in this paper.

5.5 Experimental Evaluation

The goal of this paper is to evaluate, what is better: to
use R-Tree and to sort or not to sort with B1-Tree, but
risk excess comparisons.

In order to solve this problem we had conducted a se-
ries of experiments. In these experiments we evaluate
the performance of two systems, while varing the query
selectivity. We separately consider the following dimen-
sions: 2, 4, 6, 8. We had considered indexes of two sizes:
64 and 512 MB, uniform data distribution. We concen-
trate on the most interesting query type, which present
in the original contest workload: a range query without
wildcard predicates. These experiments were conducted
using our prototypes, which we had described in the pre-
vious section. The reason of this switch is the time it
takes to construct an index by PostgreSQL DBMS and
also the query plan problem. The plans which are gen-
erated by the optimizer are essentially the following: at
first, perform index scan (e.g. read all R-Tree boxes),
then sort the results. It is impossible to push down sort-
ing in PostgreSQL because it’s GiST selection method
doesn’t uses merge-sort. This is a critical drawback, be-
cause in our task we select at most 200 entries. Thus,
our prototype can read only a part of the data and don’t
sort all the content of the touched boxes. The query plan
problem is not an issue in BDB, because of the simplicity
of BDB and the fact that BT -Tree is already sorted.

The results are presented on Figures 3-6.

Note the double logarithmic scales, which we used in
order to illustrate our finds. They are the following:

e The throughput of the system depends on a query
selectivity. This dependence can be described by
the power law:

P=axS",

where P denotes the throughput, S'— query selec-
tivity, a and b are parameters. The graphs show this
kind of dependency by the straight line. This ap-
proximately linear dependency persists in all con-
sidered dimension sizes.

Tree type 2 4 6 8

R-Tree (64MB) —-0.43 | —0.22 | —0.10 | —0.01

R-Tree (512MB) | —0.61 | —0.25 | —0.11 | —0.01

BT -Tree (64MB) 0.50 0.69 0.62 0.55

BT-Tree (512MB) | 0.49 0.70 0.60 0.40

Table 1: Parameter values for R-Tree and BT -Tree

e The considered query type affects the performance
of the systems in the following way: the perfor-
mance of R-Tree degrades as the value of query se-
lectivity decreases, while at the same time BT -Tree
performance increases.

e As the number of dimensions increases, the expo-
nent b changes in the way shown in the Table 1. In-
creasing the dimensionality leads to b decrease in
case of R-Tree, i.e. having more dimensions lowers
impact of query selectivity. There is no manifested
trend in B*-Tree behaviour.

e The following hypothesis can be advanced: the ex-
ponent in power-law does not depend on size of the
index, only on dimensionality. To prove this hy-
pothesis more thoroughful investigation is needed.

e There is no simple way to determine intersection
point of R-Tree and B-Tree, it depends on number
of dimensions and index size.

6 Conclusions

In this paper we have considered the problem of multi-
dimensional point indexing and under condition of addi-
tional restriction: ordering the results. We have exper-
imentally evaluated two data structures — R-Tree and
BT -Tree on uniformly distributed data. The experiments
allowed us to establish the impact of the query selectivity
on system performance as power function. Also we ex-
amined the dependency of power-law parameters on di-
mension. As a future work we will provide more empiri-
cal evidence to the hypothesis of independance of power-
law exponent on index size. Recommendation for B-Tree
and R-Tree user: unfortunately, we were not able to find
an easy way to calculate intersection point, so workloads
should be evaluated ad hoc.
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