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Abstract. The relevance of many types of data perishes or degrades
over time; to support timely decision-making, data integration systems
must provide access to live data and should make it easy to incorporate
new sources. We outline methods, based on web architecture that enable
(near) real-time access to data sources in a variety of formats and access
modalities. Our methods also enable rapid integration of new live sources
by modeling them with respect to a domain ontology, and by using these
models to generate a Linked Data interface to access them. Finally, we
present initial experimental results of a scenario involving several static
and dynamic sources from the web.

1 Introduction

In recent years the number of web data sources and web APIs has increased
tremendously. The explosion is due to the overwhelming growth of available
Linked Data (e.g., [5]), the deployment of large numbers of sensors in many types
of environments (e.g., [1]) as well as the trend to offer all kinds of functionalities
over the web (e.g., [13]). In principle, these trends open up new opportunities
for building applications since data and functionalities are abundant and ”just”
have to be integrated for, e.g., decision making.

However, integration of the different sources and APIs requires programmatic
access over heterogeneous data sources that use different formats and protocols
following different paradigms for accessing dynamic data. Further, the ability to
quickly introduce new data sources into the application requires manual align-
ment and modeling, which is a labor-intensive and thus time-consuming process.

Integration of data sources in a variety of data source formats and access
mechanisms is a difficult problem, especially as we want to add sources on-the-
fly, i.e., while the application is running.
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One challenge is to decide on the handling of static and dynamic sources. In
many systems, dynamic sources push their updates in a streaming fashion to the
target; the target systems handle static and dynamic data sources differently.
However, most sources on the web follow a request/response communication pat-
tern based on polling of sources, with support for caching on the protocol level.
We investigate the use of polling for frequently changing sources; the only dif-
ference between sources are their update rates. The update frequency of sources
we currently consider is relatively low, ranging from seconds to months. One
research question we address is whether a uniform interface to all data sources
based on polling is a feasible approach in such a scenario. A main benefit of
using a uniform interface is a simplified and more robust overall architecture.

Another challenge is the amount of manual effort involved in building and
maintaining an integration system. We want to reduce the time needed for in-
cluding a new live source into a constellation of integrated sources. Thus, we aim
for a flexible approach based on declarative specifications rather than procedural
code. Declarative specifications are used in the modeling of sources, and in the
rules that encode how data sources are accessed and how data items relate to
each other.

There are different strands of research targeting real-time data access. We
are exploring the trade-off outlined by [19]. Many current Linked Data systems
use a warehousing approach: all data is loaded into a central repository and then
queried, with a considerable time lag between data loading and the first query.
There is work on Linked Data Streams (e.g., [11, 15]) which offers one possible
route to achieving real-time access. In contrast, our proposed system operates
on dynamic data compatible with the polling approach that many of the web
sources follow.

The overall benefits from the point of view of an application of such a method
and apparatus are as follows:

– We may achieve real-time access to data integrated from several sources,
some of them static and some of them dynamic.

– We can quickly integrate new data sources, as we use standard software
interfaces to poll the current state of resources at specified time intervals or
receiving updates and reacting to them, easing the transition from static to
dynamic sources.

– We can quickly integrate new data sources with the help of an application
allowing for the semi-automatic modeling and lifting of non-RDF sources to
the Linked Data level.

We begin with a scenario in Section 2, followed by an architectural overview in
Section 3. The main components, Karma [17] for modeling sources, and Data-Fu
[16] for specifying and evaluating integration programs, are covered in Sections
4 and 5. We extended these components to satisfy the requirements set forth in
the current work. We discuss initial experimental results in Section 6. We review
related work in Section 7 and conclude with Section 8.



Fig. 1. View of all data: bus stops (orange), buses (red), port data (yellow), campus
cruiser (green), points of interest (blue).

2 Scenario

The scenario we consider concerns users who want to go to an event (identified
via e.g., Eventful) in the Los Angeles metro area. Based on the users’ current
location, they want to know when to be at the next bus stop to arrive on time.

The scenario includes a real-time visualization of the area that is augmented
with current data from multiple sources to help a user make well-informed and
timely judgments. Finally, we want to be able to integrate new sources rapidly;
consider the addition of a new dynamic data source, for example the USC campus
cruiser source which provides access to campus taxis via a JSON API.

Figure 1 shows the final rendering of the integrated data in Google Earth3.
Different sources have different update intervals; the bus sources, for example, are
updated every several seconds, while others are updated once a month, following
the manually determined update interval of the original API. A list of sources
used in the prototype together with performance measurements can be found in
Section 6.

3 Final KML available at http://people.aifb.kit.edu/aha/2013/d3/index.kml.



3 Overall Approach

We employ Linked Data as a uniform abstraction for sources. Sources following
the Linked Data abstraction provide a standardized small set of supported op-
erations and a uniform interface for both their data payload (RDF) and their
fault handling (HTTP status codes). Such a common abstraction allowing the
manipulation of states as primitives enables us to specify the interactions be-
tween components declaratively both on the operational and data levels. Con-
sequently, we require mechanisms to quickly bring data sources to the Linked
Data abstraction.

In our system we consider the following data artifacts:

– D original data sources
– O domain ontology
– M Karma models based on domain ontology
– L data sources as Linked Data
– P data integration program, consisting of queries and rules

The main runtime components are Karma and the Data-Fu interpreter.
Karma uses the data sources D in conjunction with the domain ontology O
to create the models M; based on M, an execution component creates Linked
Data interfaces L to the original data sources. The Data-Fu interpreter evalu-
ates programs P that operate on L. We currently manually specify the update
intervals for the evaluation of P, which ranges from seconds to months. Finally,
Google Earth visualizes the query results. Figure 2 illustrates the components
of our system.

Design Time

Execution Time

Karma Modeling
Services
Sources

Karma Linked
Data Generator

Data-Fu
Interpreter

- Data
- ServicesD

- Domain
  OntologyO

- Linked
  DataL

P - Data-Fu
  Program

Model
RepositoryM

- Visualization

Fig. 2. Architectural overview.

To add a source (at design time), there are two places where manual effort
is involved: first, a user has to model a new source in Karma; second, a user has
to create a small Data-Fu program to specify what part of the data should be
fetched via rules, together with a query that returns the final results. Once the



models and the rules are deployed and linked in the main KML file, the new
sources are shown in the visualization component after the next refresh.

4 Rapidly Modeling APIs: Karma

One of the challenges in our scenario is the rapid integration of new data sources,
such as the service that provides status and location information for vehicles
that transport students to and from the USC campus (campus cruiser service).
The integration requires solving two key problems. First, the data from a new
source needs to be expressed in the same data format and vocabulary as the
data from the already integrated sources. Second, since we are dealing with real-
time information, it is necessary to generate the corresponding RDF dynamically
from the JSON data that the service returns. In this section we describe how
we support the automatic modeling of sources to make it possible to rapidly
integrate both static and dynamic sources into the system.

To bring in a new source or service, the first task is to produce a model
that defines the mapping from the source data or the data returned by the
service to a common ontology. In previous work [9, 18], we developed a system
called Karma that automates the process of mapping sources and services to
an ontology. Karma learns from the sources and services it has already seen
to suggest models that users can easily refine using a graphical user interface.
Figure 3 shows the model for the campus cruiser service.

Fig. 3. Screenshot of Karma showing the model of the campus cruiser source.

Karma supports the rapid modeling of both static and dynamic sources. In
the case of a static source, a sample of the records are loaded into Karma and
then the system can proceed to generate a model based on the data. Similarly,
Karma handles dynamic sources, such as a REST-based services [17]. Instead
of providing sample records, the user provides sample HTTP GET queries as
shown in the first column of Figure 3. The source would then be invoked to
generate the resulting output, which is JSON in case of the USC campus cruiser
source. Then the system would automatically produce a model of the hierarchical
JSON output by first applying a learned classifier to recognize the attributes of



the output and then generate an overall model that describes the relationships
between the attributes. The resulting model is shown in the top of the Figure.
Once the user has verified the model, the final source description is generated
and saved in R2RML4, which we extended to support hierarchical data.

The second task is to use the model on the fly to automatically produce RDF
data in terms of the shared domain ontology for a given input to a service. This
task is referred to as lifting since we have to take the JSON output and produce
a corresponding set of RDF data that uses the vocabulary from the ontology.
Karma is able to perform the lifting task automatically using the R2RML model
built in the first task. When Karma built the model in the first task, it parsed the
invocation URLs extracting the input arguments, and recorded this information
in the model. In the second task, when Karma receives a service request, it
automatically composes the invocation URL from the input arguments, invokes
the service, receives the JSON output, uses the model to automatically map the
service output into RDF in terms of the domain ontology, and finally returns
the RDF.

Please note that Karma supports the modeling of tabular sources. Thus,
tabular formats such as CSV and TSV can be directly loaded into Karma. Hi-
erarchical formats such as JSON are transformed to a tabular format before
modeling.

5 Executing Integration Programs: Data-Fu

Having access to all sources via a Linked Data interface, we can devise a Data-Fu
program [16] that collects the data and evaluates queries over the data, while
taking into account the semantics of ontology constructs. Consider the LA Metro
API: there are Linked Data resources about the routes, that contain links to the
relevant bus stops and the buses currently running on the route. To be able to
derive query results on the moving objects, we require to follow links from the
routes to the bus stops, and to the buses. We specify the method of traversal in
rules. Data-Fu programs live under a URI; programs are started via POSTing to
the program URI, optionally providing parameters that are used during program
evaluation. Once the program evaluation finishes, the query results are available
for GETing under the query URI. In addition to the research presented in [16],
we introduce a concrete rule syntax based on Notation35 and a web interface for
Data-Fu programs in a realistic scenario.

A Data-Fu program consists of i) facts and actions, ii) queries and iii) rules.
Facts are RDF triples; actions are HTTP operations, such as HTTP GET or
PUT. In our current scenario, we limit ourselves to read-only (GET) operations.
Data-Fu supports conjunctive queries that either return variable bindings (select
queries) or triples (construct queries). Rules consist of a conjunctive query in
the antecedent and either triple patterns (for deduction rules) or actions (for
interaction rules) in the consequent.

4 http://www.w3.org/TR/r2rml/
5 http://www.w3.org/DesignIssues/Notation3



The state manipulation abstraction and the declarative specifications de-
scribing the interplay between resources bring the following major benefits:

– Scalable execution: declarative specifications can be automatically paral-
lelized more easily than imperative programs.

– Uniform and consistent error handling: instead of being confronted with
source-specific error messages, universal error handlers can be realized.

– Substitution of resources: replacing a source only requires modeling the
source in Karma in terms of the domain ontology. Such flexibility is required
as in networked applications the underlying base resources may become un-
available and thus may put the entire application at risk.

– More flexible and cleaner specifications of interactions: the specifications
can concentrate on the business logic of the intended interaction, while the
operational interaction between components can be automated due to their
standardized interfaces.

The Data-Fu interpreter executes resource interactions specified in Data-Fu
programs. The engine holds the current state of the interactions as well as the
functionality to invoke interactions with resources as defined in the rules. In
practice, we translate a Data-Fu program into a logical dataflow network, which
is then transformed into an evaluator plan that actually implements the dataflow
network. For performing the HTTP operations, we use a multi-threaded lookup
component that carries out the HTTP requests and streams the resulting triples
into the dataflow network. The dataflow network then processes the triples and
provides information about further HTTP requests to the lookup component.
The division into dataflow network and lookup component is similar to the one
in [10].

The following program collects information on busses from the wrapped LA
Metro API. We omit prefix declarations which can be found on prefix.cc6. First,
we specify an HTTP GET request which retrieves RDF describing the bus routes.

[] http:mthd httpm:GET ;

http:requestURI <http://openeanwrap.appspot.com/route/> .

Then, we specify rules that trigger GET requests on :Route and geo:Point
URIs.

{ ?route rdf:type <http://km.aifb.kit.edu/people/aha/2013/d3/cruiser#Route>.

} log:implies {

[] http:mthd httpm:GET ;

http:requestURI ?route . } .

{ ?stop rdf:type <http://www.w3.org/2003/01/geo/wgs84_pos#Point>.

} log:implies {

[] http:mthd httpm:GET ;

http:requestURI ?stop . } .

6 http://prefix.cc/



We also may specify deduction rules that allow for the encoding of the se-
mantics of vocabulary terms. One can also use pre-defined rule-sets that specify
the entailment of certain OWL constructs7.

Finally, we specify a query that returns an identifier, a label, and lati-
tude/longitude information for all of the data that flows through the network.

<q1> qrl:select ( ?x ?label ?lat ?lon ); qrl:where {

?x rdfs:label ?label .

?x geo:long ?lon .

?x geo:lat ?lat . } .

The only thing left to do is to invoke the program and convert the query
results to a format that our visualization toolkit understands. Thus, we request
the query results in SPARQL XML Query Result format, and apply an XSLT
which transforms the query results into KML for display.

The amount of data fetched during the evaluation of Data-Fu programs can
range in the tens of MBs. As fetching all the data at query time is infeasible,
we decouple evaluation of programs from the access to query results. The eval-
uation of the program can be triggered with a HTTP POST request (optionally
including input data such as bounding box); the program then evaluates and the
query results are updated. User agents can then GET the query results under
the query’s URI. One particular aspect we want to exploit in future versions are
update mechanisms based on headers for cache control and expiry of documents.
Thus, the interpreter can use the server-provided expiry headers to update query
results automatically once the validity of one of the sources expires.

Data-Fu integration programs can be used for slowly changing sources (up-
date intervals measured in months) and frequently changing sources (update in-
tervals measured in seconds). Initial experiments on running Data-Fu programs
in a realistic settings with real data are described in the following section.

6 Experiments and Evaluation

We implemented a prototype data integration system to test the feasibility of
our method. We first describe the domain ontology O for the scenario, then
we explain how we constructed Linked Data interfaces L to the original data
sources D, and finally we show performance results for evaluating the integration
programs P.

The domain ontology consists of several terms from dc, dct, foaf, geo and
others. In the following we describe how we model moving objects. There is a
class :Vehicle; each location reading is part of an :Observation, which con-
nects to a :Vehicle and contains a geo:Point, and optionally additional infor-
mation such as heading or a timestamp. Such a representation is sufficient to
query the moving objects and display the results on a map.

The types of relevant original data sources D include:

7 e.g., http://semanticweb.org/OWLLD/



– Static sources such as 2D maps, 3D models and point-of-interest (POI) data
from files in XML, JSON or CSV, Linked Data, and web APIs.

– Dynamic sources producing state updates (e.g. of moving objects or event
information), continuously or periodically, possibly with additional spatial
and temporal properties, through web APIs.
All sources with a Linked Data interface L support dereferencable URIs.

However, we require means to query for sets of URIs with certain properties.
Thus, we arrive at additional lookup or query possibilities for sources:
– Keyword lookup, which returns a list of URIs matching the keyword
– Point lookup, which returns a list of location URIs near the specified point
– Bounding box lookup, which returns a list of location URIs within the bound-

ing box
Table 1 lists properties of the sources as Linked Data L and shows the query

time for retrieving the information necessary to render points on the map. The
table also contains the lines of code and the number of rules per integration
program for each source. One objective of our approach is that we are able to
quickly add new sources: the lines of code for data integration programs P give
an indication as to the effort required to add sources.

Table 1. Data sources.

Data Source Input Size Triples Runtime LoC Rules
Marine vessels (AIS) bounding box 39 KB 224 0:01 min 33 2
Campus Cruiser - 65 KB 406 0:01 min 19 1
Crunchbase keyword 14 MB 87,477 12:08 min 31 2
Eventful keyword 55.3 MB 293,975 57:13 min 46 5
GADM bounding box 10.8 MB 68,640 7:08 min 33 2
GeoNames (Wikipedia) bounding box 2.3 MB 14,746 1:00 min 32 2
GeoNames (cities) bounding box 304 KB 2,629 0:04 min 32 2
LastFM point 10.1 MB 77,431 13:39 min 34 2
LA Metro (vehicles) - 130 KB 860 0:01 min 39 5
LA Metro (routes) - 2.5 MB 17,349 1:03 min 43 6
OpenStreetMap bounding box 8.4 MB 57,904 8:29 min 36 2
Wikimapia bounding box 8.8 MB 51,714 0:19 min 41 3

The table also shows that the Data-Fu interpreter scales from small sources
(hundreds of triples) to sources of moderate size (hundreds of thousands of
triples). Small sources (such as marine vessels and LA Metro vehicles) can be
repeatedly polled to retrieve their current state. The number of moving objects
changes depending on the time of day; on a weekday noon we have seen 56 buses
and 72 vessels in the current configuration.

We have anecdotal evidence that our infrastructure is capable of much faster
polling than supported by the sources. Our infrastructure can handle all LA
Metro vehicles; however, we restrict the number of tracked bus lines in the pro-
totype to avoid overloading the source. We additionally throttle lookups and
restrict the number of parallel lookups to four. Future work will have to include



further investigation of performance and stability of sources, and mechanisms to
alleviate their load, as we had repeatedly to deal with APIs that were down.

We present initial measurements of three configurations for transforming D
to L: transformation via procedural wrappers on Google App Engine (GAE) and
on a local Tomcat installation, and transformation via Karma. The Crunchbase
wrapper (JSON to RDF in Java) deployed GAE has an overhead of -29 %, that
is, the wrapped source is actually responding faster than the original source. Our
hypothesis is that the wrapper on GAE is closer in the network (12 hops/6.1 ms
measured with traceroute) than the original API (22 hops/161.5 ms), while
the remaining data transfer is routed via Google’s optimized internal infrastruc-
ture.The AIS wrapper (XML to RDF via XSLT) deployed on Tomcat incurs an
overhead of 246 % (76 ms average for direct API access vs. 263.8 ms for wrapped
access). The campus cruiser source modelled and transformed via Karma (JSON
to RDF in Karma) incurs an overhead of 29 %. Further studying the overhead
for transforming original sources is part of future work.

7 Related Work

We survey related work in two areas: sensor systems and web systems. In these
areas we differentiate between two fundamental architectures for accessing dy-
namic data: pull-based (polling) and push-based (streaming) data acquisition.
We distinguish between source (i.e., the site where the data originates, such as
the sensor) and target (i.e., the site where data and queries are processed). We
further present related work in the area of declaratively specified networking.

There has been a considerable amount of research in the area of streaming
data, i.e. data that arrives at intervals. The goal of stream data management
systems is to evaluate queries over high-velocity data, often in the context of
physical sensors. Systems are able to process aggregation queries (often including
query clauses with a temporal component) over time-stamped data.

With pull-based (polling) data acquisition, the target accesses the sources
in intervals and coordinates data access centrally. Pull-based access is used, for
example, in TinyDB [12], which refreshes data from sources in specified intervals.
With push-based (streaming) data acquisition, the data sources autonomously
decide when to communicate data.

We also distinguish between pull-based and push-based systems in related
work in the area of query evaluation over web sources. Polling is the predom-
inant mechanism used in systems based on RESTful architecture, such as the
web, and is supported in HTTP. Hartig et al. describe a system that allows for
query evaluation over Linked Data [8]. Fionda et al. describe a graph query lan-
guage which supports the combined querying and navigation of Linked Data [7].
Umbrich et al. describe a live query system which includes reasoning to improve
the recall of query results [20]. All of these systems use polling via HTTP GET.
We combine several features of these systems, with the addition of interaction
rules and generic rule-based reasoning.



In contrast to the pull-based approaches, there are several proposals for
streaming query processing over RDF. Notable references in the area of Linked
Data include Linked Stream Data [15] and streaming SPARQL systems such
as C-SPARQL [3], SPARQLStream [6] and CQUELS [11]. C-SPARQL has been
used in a system which includes means for inferencing [4]. Unlike these and other
streaming approaches (see, for example, [14] who also address a scenario combin-
ing static and dynamic sources), we solely build on the Linked Data abstraction
and polling to gain (near) real-time access to data.

Although there are historical datasets which provide time-stamped observa-
tions of e.g. weather phenomena, and the W3C Semantic Sensor Networks XG8

specified a vocabulary for describing sensors and observations, to date there is no
established protocol for streaming over the web, and the availability of streaming
sources online is scarce. Finally, there has been work on declaratively specifying
data-centric programs in a cloud setting [2] which encompasses batch processing
on large amounts of data. We use rule-defined integration programs for targeted
access to web data sources in real-time.

8 Conclusion and Future Work

We have shown the feasibility of on-the-fly integration of static and dynamic
sources for applications that consume Linked Data. We believe that current web
architecture offers the right abstraction and allows for the cost-effective imple-
mentation of such systems. Linked Data already supports the integration of static
data and the same mechanism can be used to achieve real-time functionality. We
have shown how to provide interactive access to data, which requires to execute
integration pipelines at query time within seconds for real-time sources.

We can envision to extend our research in the following directions:
– Temporal aspects: in the prototype, we are concerned with showing the cur-

rent state of the tracked objects. We would like to extend the temporal model
to include past states of the objects, and potentially future (predicted) states.

– Fault handling: although our current system is robust in terms of failing
APIs (the failing source is just not displayed in the refresh cycle), we need
to further investigate fault handling and error reporting.

– Reducing network traffic: we plan to experiment with HTTP expires and
caching mechanisms to reduce the amount of data transferred while keeping
the query results up to date.

References

1. I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor
networks. Communications Magazine, 40(8), 2002.

2. P. Alvaro, W. R. Marczak, N. Conway, J. M. Hellerstein, D. Maier, and R. Sears.
Dedalus: datalog in time and space. In Proc. of the 1st Int’l Conference on Datalog
Reloaded, Datalog ’10, 2011.

8 http://www.w3.org/2005/Incubator/ssn/XGR-ssn/



3. D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus. Querying rdf
streams with c-sparql. SIGMOD Record, 39(1), 2010.

4. D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, Y. Huang, V. Tresp, A. Rettinger,
and H. Wermser. Deductive and inductive stream reasoning for semantic social
media analytics. IEEE Intelligent Systems, 25(6), 2010.

5. C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. Int. J.
Semantic Web Inf. Syst., 5(3), 2009.
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