
Representing a Relational Database as a Directed Graph
and Some Applications

Radoslav Radev
Faculty of Мathematics and Informatics, Plovdiv University 'Paisii Hilendarski', Plovdiv, Bulgaria

4001 Plovdiv, Bulgaria, Chemshir str. 6, ap. 8
+359 889 472 575

radoslav_radev@gbg.bg

ABSTRACT
In this paper we represent the relational database as a directed
graph, regarding tables as nodes and foreign keys as edges. We
also make several definitions to describe the dependencies
between tables. Then algorithms are proposed for identifying all
tables dependent upon a certain table and ordering them in a
specific way so every table to appear before all tables that depend
on it in the sequence. After that we define dependencies between
records and represent a set of records also as a graph. In the end
several applications of the algorithms are shown as well as
practical problems that could be solved by them.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and networks, Records

General Terms
Algorithms, Design, Languages.

Keywords
relational database, foreign key, directed graph.

1. INTRODUCTION
The point of departure of this paper is a complete practical
problem. Let us have a record (we will call it base record) in a
relational database table (let us call it base table) and let other
tables have foreign keys to this table. In these other tables there
are records with foreign key values corresponding to the primary
key value of the chosen record, i.e. these records “point” to the
base record. Let us call them directly dependent records, because
they depend on the existense of the base record – if the base
record does not exist in the database, they also cannot exist
because of the foreign key constraint. In turn there are other tables
and records in them “pointing” to these dependent records, and
they are in turn dependent on them, so these records are indirectly
dependent on the base record. In this way we have a set of tables
dependent on the base table through foreign keys and a set of
records in them depedent on the base record (directly or
indirectly). Here is a simple example (Figure 1):

Figure 1

Table Buildings is our base table and record Building A is our
base record. Table Owners has a foreign key (on the column
BuildingID) and two records directly dependent on the base
record - Owner 1 and Owner 2. It is the same with table Wings,
but the dependent records are Wing A and Wing B. Table Floors
does not have a foreign key to the table Buildings, but is has a
foreign key to the table Wings (on the column WingID). Records
Floor A1 and Floor A2 depend on record Wing A, and record
Floor B1 depend on the record Wing B. But because records Wing
A and Wing B depend on the base record Building A, we can say
that records Floor A1, Floor A2 and Floor B1 are indirectly
dependent on the base record.

The problem we want to solve is how to find all such directly or
indirectly dependent records in the database and to order them in
such a way that every record appears after all records it depends
on. For example, such an order for Figure 1 is: Building A, Owner
1, Owner 2, Wing A, Wing B, Floor A1, Floor A2, Floor B1.

For the purpose first we will represent the relational database as a
directed graph (Chapter 2). After that we will describe algorithms
for idenfifying the dependent tables and ordering them (Chapter
3). In the end we will give examples of some practical
applications of the solution (Chapter 5).

Buildings

ID Name

1 Building A

... ...

Wings

ID BuildingID Name

11 1 Wing A

12 1 Wing B

...

Floors

ID WingID Name

111 11 Floor A1

112 11 Floor A2

121 12 Floor B1

...

Owners

ID BuildingID Name

11 1 Owner 1

12 1 Owner 2

...

BCI'13 September 19-21, Thessaloniki, Greece. Copyright © 2013 for the individual papers by the papers' authors.
Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.

1

2. REPRESENTING A RELATIONAL
DATABASE AS A DIRECTED GRAPH
Every relational database can be represented as a directed

(oriented) graph),(FTG  , where:

 },...,,{ 21 NTTTT  is the set of all tables in the database,

i.e. every table is regarded as a node in the graph.

 },...,{ 21 MFFFF  is the set of all foreign keys defined

in the database, i.e. every foreign key is regarded as a directed

edge),(TbTaFx  , where FFx and TTbTa , .

The foreign key in a relational database identifies a column or a
set of columns in a referencing/child table that refer to a column
(or a set of columns) in the referenced/parent table. But every
column also could be nullable or not nullable. So let us make the
following definitions:

 A foreign key is a single-column foreign key, if it maps a
single column in the referencing/child table to a single column
in the referenced/parent table.

 A foreign key is a multi-column foreign key, if it maps more
than one column in the referencing/child table to more than
one column in the referenced/parent table.

 A single-column foreign key is a nullable foreign key if the
column in the referencing/child table is nullable. Otherwise,
the foreign key is not nullable.

 A multi-column foreign key is a nullable foreign key if all
columns in the referencing/child table are nullable. Otherwise,
the foreign key is not nullable.

So we can devide the set F into two subsets:

 }{FxFN  , where Fx is a nullable foreign key, i.e. NF
is the set of all nullable foreign keys in the database.

 }{FxFNN  , where Fx is a not nullable foreign key, i.e.

NNF is the set of all not nullable foreign keys in the

database.

Because one foreign key is either nullable or not nullable, it is
true that:

 FFF NNN 

  NNN FF

Let us make some more definitions:

 We will call TTx dependent on table TTy if and

only if a walk exists between Tx and Ty .

 We will call TTx directly dependent on table TTy
if and only if there exists FFx , where),(TyTxFx  .

 We will call TTx indirectly dependent on table TTy
if and only if a walk exists between Tx and Ty , but there

does not exists FFx , where),(TyTxFx  .

 We will call TTx strongly dependent on table TTy
if and only if Tx is dependent on Ty and there exists a walk

between Tx and Ty in which at least one of the edges is a

not nullable foreign key.

 We will call TTx weakly dependent on table TTy if

and only if Tx is dependent on Ty and every walk between

Tx and Ty consists only of nullable foreign keys.

 We will call TTx indepedent on table TTy if and

only if a walk does not exist between Tx and Ty .

A table TTx is dependent on itself if and only if there exists

a directed cycle in the graph G that includes the node Tx .

Let us choose a table TTs . Then let us define:

 }{TxPTs  , TTx , where Tx is dependent to Ts , i.e.

TsP is the set of all tables dependent on table Ts .

 }{TxPTs  , TTx , where Tx is not dependent to Ts ,

i.e. TsP is the set of all tables not dependent on table Ts .

If Ts is a self-referencing table, i.e. there exists a foreign key

from Ts to Ts , then TsPTs . Otherwise TsPTs .

But for defining our algorithm below it will be more convenient

always to include Ts in the set of dependent tables, so let us
define two more sets:

 }{* TxPTs  , TTx , TsTx  or TsPTx , i.e.
*

TsP

is the set of all tables dependent on table Ts including table

Ts itself even if it does not depend on itself.

 }{* TxPTs  , TTx , TsTx  and TsPTx , i.e.

*
TsP is the set of all tables indepedent on table Ts , but

without table Ts itself.

Because of the definitions there immediately follows:

 TPP TsTs 

  TsTs PP

 TPP TsTs  **

  **
TsTs PP

2

Accordingly we can devide F in the following manner:

 }{FxFTs  , FFx ,),(TbTaFx  ,

*, TsPTbTa  , i.e. TsF is the set of all foreign keys between

the tables in
*

TsP .

 }{FxFTs  , FFx ,),(TbTaFx  ,
*

TsPTa or

*
TsPTb , i.e. TsF is the set of all foreign keys, for which

the referencing/child table and/or the referenced/parent table

do not belong to
*

TsP .

Again, it is true that:

 FFF TsTs 

  TsTs FF

In this way we can create a subgraph from the graph G :

),(*
TsTsTs FPG  , i.e. a subgraph of all tables dependent on

table Ts and the foreign keys between them.

We will call such a subgraph table-dependent subgraph for Ts .

Figure 2

But we can define also one specific subset of TsF :

 NNTsTs FFxFFxFxF  ,},{*
, i.e.

*
TsF is the set of

all not nullable foreign keys in TsF .

Then we can define one more subgraph:

),(***
TsTsTs FPG  , i.e. a subgraph of all tables dependent on

table Ts and the not nullable foreign keys between them.

We will call this graph not nullable table-dependent subgraph for

Ts .

3. IDENTIFYING AND ORDERING THE
DEPENDENT TABLES

3.1 Definition of the Task
We want to order all tables dependent on the base table Ts in
such a way, that every table appears after all tables it depends on.
In other words, every table appears before all tables that depend
on it. This is needed for the solutions of the practical problems
described in the Chapter 5 of this paper.

We can define the task as follows:

We seek an ordered set },..,,{ 10 kTs TTTPP  , for which is

true that:

 For],0[kx  *
TsTTx .

 For every table TsTTx],0[ky , for which

TyTx  , i.e. every table dependent on Ts appears in the

set TsPP .

],0[kx , for which TxTs  , i.e. Ts appears in the

set TsPP .

 If TyTxyx  , for],0[, kyx  , i.e. every

table appears only once in the set TsPP .

 For yxkyx ],,0[, , Tx is independent on Ty .

It is possible that such a set TsPP does not exist. This is the case

when in the graph TsG there exists at least one cycle. Practically

it means that in the database there exists at least one table, that is
dependent on itself.

Also, in general case, TsPP is not unique. There could be many

ordered sets TsPP satisfying the conditions above. In this paper

we will limit our efforts on finding one such set.

3.2 Identifying Dependent Tables
First we have to identify all tables dependent on Ts . We can do

this with any graph-traversal algorithm [8], starting at Ts as a
root. For this reason it was needed to represent the relational
database as a directed graph, which we did in the Chapter 2. Once
we have done this, we can perform an algorithm for traversing the
graph, such as breadth-first search or depth-first search [8].

The only important thing we must have in mind is not to forget to
invert the edges when performing these algorithms. Because when

we start from node Ts we have to visit first all nodes that are
directly connected to it (see Figure 2). For this reason we have to
regard the edges as inverted. Once we have identified all tables

dependent on Ts , i.e. the set TsP (respectively the set
*

TsP), we

can continue with checking table-dependent graph for cycles.

Ts T1

T2 T3

T4

T7

T6

T5

T8T9

Table-dependent

subgraph for Ts

Tables,

independent on Ts

3

3.3 Checking the Table-Dependent Graph for
Cycles
Once we have identified the tables in TsP , we can easily identify

the foreign keys between them, i.e. the set TsF and construct the

graph TsG . But if there are cycles in TsG then there is no

ordered set TsPP satisfying the conditions listed above. So we

first have to check if there are cycles in TsG . This can easily be

done with any algorithm for cycle detection, for example depth-
first search. [7]

3.4 Ordering the Dependent Tables
Once we have identified TsG and have assured that there are no

cycles in it, we can continue with elaborating an algorithm for

finding an ordered set TsPP .

3.4.1 Algorithm for Ordering Dependent Tables
Here are the steps of the proposed algorithm:

1. First we have all tables in TsP unordered. In the next steps of

the algorithm we will assign a number to each table – its order in

TsPP .

2. For each still unordered table in TsP check if all tables it

depends on, if any, are already ordered. If so, we can order the
table in the series, i.e. to assign it the next order number. If not,
we cannot do that – so continue with another table.

3. Repeat step 2. until all tables are ordered. This is guaranteed if
there are no cycles of foreign keys. If we have not ensured that,
we may fall into endless loop here. Then we have to remeber
whether at least one table has been removed in step 2. If not, there
have remained only tables that are parts of cycles.

Here the algorithm is described with object-oriented pseucode
with comments in order to illustrate best the main idea:

class Table

{

ForeignKey[] ForeignKeys;

int OrderIndex = 0; // initially table is not ordered

}

class ForeignKey

{

Table FromTable;

Table ToTable;

}

int N; // tables count

// we suppose tables and foreign keys are properly initialized

Table[] tables = new Table[N];

// here we count how many tables we have already ordered

int tablesWithOrderFound = 0;

// Subroutine to check if we can order a table, which is possible

// only if all tables this table depends on are already ordered.

bool CanOrderTable(Table t)

{

foreach (ForeignKey foreignKey in t.ForeignKeys)

{

// if there is a foreign key to a still not

// ordered table, we cannot order this neither

if (foreignKey.ToTable.OrderIndex == 0)) return false;

}

// we are here if all tables that this table depends on are

// already ordered - we can order this table also

return true;

}

void Main()

{

while (tablesWithOrderFound < N)

{

// we must know if at least one table is ordered in this

// iteration of the while cycle; otherwise we are stuck

// because of cycles of foreign keys

bool wasTableOrderedInThisIteration = false;

for (int i = 0; i < N; i++)

{

// if table is already ordered - just skip it

if (tables[i].OrderIndex > 0) continue;

if (CanOrderTable(tables[i]))

{

4

tables[i].OrderIndex =
++tablesWithOrderFound;

wasTableOrderedInThisIteration =
true;

}

}

if (!wasTableOrderedInThisIteration)

{

// we have cycle(s) of foreign keys

}

}

if (tablesWithOrderFound == N)

{

// all tables are ordered correctly

}

}

We will call this algorithm Algorithm for ordering dependent
tables.

3.4.2 Algorithm for Ordering Strongly-Dependent
Tables
The algorithm above can be modified to the case of strongly-
dependent tables, i.e. to regard only not nullable foreign keys. The
reasons for this will become clear in Chapter 5 of this paper about
its practical applications.

So we seek for an ordered set },..,,{ 10
*

kTs TTTPP  , for which

we change only the last condition defined in the beginning of
Chapter 3. Instead of:

 For yxkyx ],,0[, , Tx is not dependent on Ty .

we want:

 For yxkyx ],,0[, , Tx is not strongly-dependent

on Ty .

This means that whenever we have a nullable foreign key we can
just ignore it as not creating dependancy at all.

In this case the step about checking for cycles must be done with

the not nullable table-dependent subgraph),(***
TsTsTs FPG  .

We will call this modified algorithm Algorithm for ordering
strongly-dependent tables.

Here is the object-oriented pseudocode:

class Table

{

ForeignKey[] ForeignKeys;

int OrderIndex = 0; // initially table is not ordered

}

class ForeignKey

{

Table FromTable;

Table ToTable;

bool Nullable;

}

int N; // tables count

// we suppose tables and foreign keys are properly initialized

Table[] tables = new Table[N];

// here we count how many tables we have already ordered

int tablesWithOrderFound = 0;

// Subroutine to check if we can order a table, which is possible

// only if all tables this table depends on are already ordered or

// the foreign keys to the still not ordered tables are nullable.

bool CanOrderTable(Table t)

{

foreach (ForeignKey foreignKey in t.ForeignKeys)

{

// if there is a not nullable foreign key to a still not

// ordered table, we can not order this neither

if (!foreignKey.Nullable &&

 (foreignKey.ToTable.OrderIndex == 0)) return false;

}

// we are here if all tables that this table depends on are

// already ordered or the foreign keys to the still not ordered

// tables are nullable - so we can order this table also

return true;

}

void Main()

{

5

while (tablesWithOrderFound < N)

{

// we must know if at least one table is ordered in this

// iteration of the while cycle; otherwise we are stuck

// because of cycles of not nullable foreign keys

bool wasTableOrderedInThisIteration = false;

for (int i = 0; i < N; i++)

{

// if table is already ordered - just skip it

if (tables[i].OrderIndex > 0) continue;

if (CanOrderTable(tables[i]))

{

tables[i].OrderIndex =
++tablesWithOrderFound;

wasTableOrderedInThisIteration =
true;

}

}

if (!wasTableOrderedInThisIteration)

{

// we have cycle(s) of NN foreign keys

}

}

if (tablesWithOrderFound == N)

{

// all tables are ordered correctly

}

}

4. RECORD DEPENDENCY
We can extend the concept of dependent tables to that of
dependent records. Let us make the following definitions:

 Record A in Table A is dependent on Record B in Table B if
and only if Record A cannot exists in the database without
Record B, i.e. that would violate at least one foreign key
violation constraint. That may happen only if Table A is
strongly dependent on Table B.

 Record A in Table A is directly dependent on Record B in
Table B if and only if Table A is directly dependent on Table

B and the foreign key values of Record A match the candidate
key values of Record B. For example, in Figure 1 record Wing
A is directly dependent on record Building A.

 Record A in Table A is weakly dependent on Record B in
Table B if and only if Record A is dependent on Record B, but
is not strongly dependent. For example, in Figure 1 record
Floor A1 is weakly dependent on record Building A.

 Record A in Table A is independent on Record B in Table B if
and only if Record A can exists in the database without
Record B, i.e. that would violate no foreign key violation
constraint. The important thing here is that it does not mean
that Table A is independent on Table B. For example, in
Figure 1 record Floor A1 is independent on record Wing B
although table Floors is dependent on table Wings.

In this way a dependency graph could be constructed for the
records, similar to the table-dependent graph. We will call it
record-dependent graph. Here is an example for the record-
dependent graph of record Building A in Figure 1:

Figure 3

5. PRACTICAL APPLICATIONS
On the basis of the above representations and algorithms there
could be solved some practical problems in the domains of
relational databases, object-relational mapping (OR/M) and
enterprise applications.

5.1 Inserting Records with OR/M Framework
Many OR/M frameworks use Unit of Work design pattern [4].
Among the examples are some of the most popular OR/M
frameworks today – Microsoft’s Entity Framework [2], Hibernate
for Java [1] and NHibernate [5] for .NET. These frameworks
allow a set of entities to be added to the Object Context, which is
responsible for inserting them into the database in a single
transaction. This means that the tables corresponding to the
entities must be identified from the OR/M metadata and
corresponding insert statements must be generated and executed
against the database in a correct order, so that a foreign key
violation not to occur.

It also important that during the process of inserting the records
no foreign key constraint must be disabled or deactivated, because
if an error occurs in the insert process the database must stay in a
consistent state, i.e. with all foreign keys active and consistent.
This is very critical especially in data warehouse environment [3]
with a heavy traffic and a lot of parallel connections to the
database. In this case disabling or deactivating foreign key
constraints for a period of time might end in an expected

Building A

Owner 1

Owner 2

Floor B1

Floor A1

Wing BWing A

Floor A2

6

behaviour and, even worse, the data in the database could be in
such a state that enabling/activating them could be impossible
because of wrong or corrupted data.

As a general rule, every record must be inserted after all records it
depends on are already inserted, in order to ensure that all foreign
key constrants are satisfied. But there are exceptions of this rule.
For example, if a foreign key is nullable, i.e. it allows NULL
values to appear in the referencing/child table column(s). Then a
record could be inserted before another record it depends on, but
with NULL foreign key values. That is only possible if the
corresponding foreign key is nullable.

For example, if we want to insert the records in Figure 1 and the
foreign key between tables Floors and Wings is nullable, we can
implement the following sequence:

1. Insert record Floor A1 with NULL value for WingID column.

2. Insert record Wing A1.

3. Update record Floor A1 and set its WingID value to 11.

In this way we can find a workaround for the problem described
in Chaper 3.3. If there are cycles in the table-dependent graph and

the ordered set TsPP does not exists, we can use the order
*

TsPP
and for every nullable foreign key, for which the referencing/child
table is before the referenced/parent table in the sequence, first to
insert the records with NULL foreign key values and to update
later with the correct ones.

A possible problem that may occur here is that of violating some
check or unique constraint defined on the foreign key column(s)
in the table. For example, if an unique constraint is defined on
column WingID in table Floors and there is already a record in the
table Floors with WingID = NULL. Then step 1. will fail because
of the unique key violation.

So we can propose the following algorithm in order to find the
best possible solution and to cover most various cases:

1. Identify all entities that are to be inserted by the Object
Context.

2. Take the corresponding database tables from the OR/M
framework metadata.

3. Choose any table found in step 2. This will be our Ts table.

4. Try to find TsPP with the algorithm for ordering dependent

tables described in Chapter 3.4.1. If there exists TsPP :

4.1. For every table in the sequence found:

4.2. Execute the insert statements against the database.

5. If TsPP does not exist, try to find
*

TsPP with the algorithm

for ordering strongly-dependent tables described in Chapter 3.4.2.
If found, then:

5.1. For every table in the sequence:

5.2. For every record to be inserted:

5.3. Generate an insert statement with NULL foreign key values
for every foriegn key, for which the referenced/parent table is
before the record’s table.

5.4. Execute the statement against the database.

5.5. Remember the record and when the referenced/parent record
is inserted later, update it with the proper foreign key values.

6. Because TsPP /
*

TsPP may not include all tables found in step

2, repeat steps from 3 to 5 until all insert statements are executed.

Different variations and optimizations of the algorithm above are
also possible, but they are outside the scope of this paper. Here we
want to describe only the general idea.

5.2 Cloning a Record Along with Dependent
Records
Another task is that of cloning a record in a relational database
along with all records dependent on it. It is similar to that of
inserting a set of records with OR/M framework described in
Chapter 5.1. The steps needed for solving this task are the
following:

1. Starting with the base record we want to clone, choose its table
as base table.

2. Find all tables dependent to it as described in Chapter 3.2.

3. Retrieve from the database all records in these tables that are
dependent on the base record. Start with the directly dependent
records, then for everyone of them take its directly dependent
records and so on.

4. Use the algorithm for inserting the set of records described in
Chapter 5.1, but choose as base table the one taken in step 1.

Here are two real-world scenarios that can often be found in
enterprise applications:

5.2.1 Backup Records
In an enterprise application it is often the case that we have a
record with many records related to it. For example, an order with
order items, or a hospital with rooms, devices, nurses and so on.
Imagine we are to make an important operation with such a record
that will affect many of the related records. For the sake of
sustainability we want to “backup” this record along with all
records related to it, so if the operation fails and leaves the initial
records in a inconsistent state (in theory that should not happen,
but sometimes in practise this cannot be ensured), we will have a
valid copy of them. In this case “backup” means to create a copy
of the base record and all records related to it.

5.2.2 Template Records
Many enterprise applications provide the functionality of creating
data by template. For example, in a hospital or a hotel, usually
there are several predefined templates of rooms with devices and
cabling plans. When you want to add a new room into the
database, you can select such a template and to have a lot of data
inserted automatically instead of adding manually records for
every device, cabling paths, furniture, stuff, etc. After that you can
update this automatically generated records if needed.

For implementing such a functionality it is extemely useful to
have the template records into the database and to have a general
mechanism for “cloning” them, creating the “real” records on the
basis of the template ones. Of course, this can be implemented
individually for every specific situation but a general and

7

universal solution is much preferrable in terms of time of
development, quality assurance and maintenance.

5.3 Deleting a Record Along with Dependent
Records
The task of deleting a database record along with all its dependent
records can be regarded as inverted to that of cloning them. Here
again we have to retrieve all dependent records, but to invert the
order found in the process of cloning. Then we can safely delete
them one by one from the database without violating foreign key
constraints.

Again, in the case of cycles of foreign keys, we can first update
the record’s foreign key values with NULL values – in this way
we “break” the dependancy between records – and after that to
delete them safely. The possible problems with violating check or
unique key constraints, mentioned in Chapter 5.1, are valid here
too.

This task can be accomplished if all foreign keys connecting the
dependent tables to the table of the record to be deleted are
cascade. In practise that is not always possible, for example
because:

 The RDMS does not support cascade foreign keys.

 There are restrictions of the cascade foreign keys in the
RDMS. For example, in Microsoft SQL Server a table cannot
appear more than one time in a list of all the cascading
referential actions that are started by either a DELETE or an
UPDATE statement. [6]

 We do not want to have cascade foreign keys because of
security or sustainability reasons.

 We work with a legacy database that must not be changed.

6. Conclusion
A practical solution of the problem described in Chapter 5.2 was
successfully implemented in the Research and Development
department of the Belgium company Televic. A functionality was
implemented on the base of the content in this paper that allows
cloning of any record in a relation database along with all records
dependent on it. The technologies used were:

 .NET Framework 4.0

 Entity Framework 4.0

 SQL Server 2008

7. ACKNOWLEDGMENTS
This paper is partially supported by Plovdiv University NPD grant
NI13-FMI (2013).

8. REFERENCES
[1] Bauer, C., and King, G. 2004. Hibernate in Action. Manning

Publications Co.

[2] Castro, P., Melnik, S., and Adya, A. 2007. ADO.NET Entity
Framework: raising the level of abstraction in data
programming, Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, ACM New
York, NY, USA, 1070-1072. DOI=
http://doi.acm.org/10.1145/1247480.1247609

[3] Devlin, B. 1996. Data Warehouse: From Architecture to
Implementation. Addison-Wesley Longman Publishing Co.

[4] Fowler, M. 2002. Patterns of Enterprise Application
Architecture. Addison-Wesley Professional, 184-194.

[5] Kuate, P.H., Harris, T., Bauer, C., and King, G. 2009.
NHibernate in Action. Manning Publications Co.

[6] Shapiro, J. 2006. Microsoft SQL Server 2005: the complete
reference. McGraw-Hill Osborne Media.

[7] Tucker, A. 2006. Applied Combinatorics. Hoboken: John
Wiley & sons, 49.

[8] Valiente, G. 2002. Algorithms on Trees and Graphs.
Springer.

8

