
The Increase of the Web Application Reliability to the End
Users

Isak Shabani
University of Prishtina,
St. Bregu i Diellit w/n

Pristina 10000, Kosovo
+377 (0) 44 979 318

isak.shabani@uni-pr.edu

Betim Çiço
Faculty of Contemporary Sciences

and Technologies, South East
European University,

St. Ilindenska w/n

 Tetovo 1200,

FYR of Macedonia
 +355 682 094 229

 b.cico@seeu.edu.mk
Fatos Halilaj

University of Prishtina,
St. Bregu i Diellit w/n

Pristina 10000, Kosovo
+377 (0) 44 451 592

fatos.halilaj@uni-pr.edu

Dhuratë Hyseni
Faculty of Contemporary Sciences

and Technologies, South East
European University,

St. Ilindenska w/n

 Tetovo 1200,

 FYR of Macedonia
 +377 (0) 44 202 109

dh11752@seeu.edu.mk

ABSTRACT

In the Kosovo institutions the e-Government is being implemented.

Regarding it, a web based assets management system is developed

and it is in use from 2009. This paper provides concrete results on

the reliability of software applications. As a sample many public

institutions are considered, where the assets management system is

being used from the beginning of 2009 to the end of 2012. During

the extractions of these results relating reliability, mathematical

methods are used and for the increase of reliability, a

synchronization algorithm is provided, which allow for the

application to operate in the absence of the network. Provided

methods have increased reliability of the software application to the

end-users.

Keywords

Web Application, Software Reliability, e-Pasuria, e-Government

1. INTRODUCTION
Often, when multi-user systems are developed to be used nation-

wide by the government and citizens, reliability of the software

should be taken under high considerations. Involvement of the end-

users in this process is very valuable. The aim of the reliability is

to make a system reliable and consistent with no-faults to the end-

users. Thus, measurements and information of a reliable software

application are very important. For every complex system that

includes multi-users and data-manipulations, it will be really hard

to achieve a consistent level of reliability. Detailed study and

analysis and research on software application reliability is provided

in this paper.

2. SOFTWARE RELIABILITY

MEASUREMENTS
Reliability 𝑅(𝑡) of a system at time t is the probability that the

system operates without failure in the interval[0, 𝑡], given that the

system was performing correct at time 0 [7]. High reliability is

required in situations when a system is expected to operate without

interruptions.

Reliability is a function of time. The way in which time is specified

varies considerably depending on the nature of the system under

consideration. For example when a system is required to do some

job in a short period of time, time is specified in units such as

minutes/seconds/milliseconds.

To exactly define system reliability we should rely on the concepts

related to software application. Based on these software application

needs we act on the same way, by operating in different point and

in different time; this way the failure can be expressed only in terms

of probability. Thus, fundamental definition for the software

reliability depends on concepts of the probability theory. These

concepts, provide basics of a software reliability, allow

comparisons among systems and they provide fundamental logic

for improvements of the fail rates, that will be reached during the

application life cycle.

In general, a system may be required to perform different functions,

each of which can have different reliability level.

In addition, in different time, software application can have

different probability to perform required functions from the user

under declared conditions.

Reliability represents probability of a success or possibility, that the

software application has to perform it’s functionality for the sake

of the project under certain limits. More specifically, reliability is a

probability that the product or part of it that operates in basis of

predefined requirements for a defined period of time, under

projects’ conditions (i.e. number of transactions, bandwidth, etc.)

works with no failure. In other words, reliability can be used as a

measurement of a system’s success for it to work as required.

Reliability is a quality characteristic that customers demand from

the producer of the product or better said a tool to evaluate safety

of a software application.

Mathematically, reliability 𝑅(𝐾) is the probability that a system be

successful in the time interval: [0-k]:

 𝑅(𝐾) = 1 − 𝑃(𝐾) (1)

BCI'13 September 19-21, Thessaloniki, Greece. Copyright © 2013 for the individual papers by the papers' authors.
Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.

145

mailto:isak.shabani@uni-pr.edu

 R(𝑡) = ∫
1

𝜃

∞

𝑡
𝑒−

𝑠

𝜃𝑑𝑠 = 𝑒−
𝑡

𝜃 𝑡 >= 0 (2)

The increase of R(k) decreases software application reliability (see

Figure 1).

In order to have a complete reliability in a system, the prediction of

mean time to repair (MTTR) is required for different conditions that

can occur during system use. This is based from the system

designers’ experience in the past and experts’ disposal for repair

handlings.

Time system repair is composed of two specific intervals:

 Passive time for software application repair

 Active time for software application repair

Passive repair time is defined mainly from the time taken from the

engineers that travel to the users’ locations. In many cases,

traveling time cost is exceeded by actual repair time cost. Active

time for software application repair is related directly with system

projection and is defined as follows:

Time between occurrences of a failure and user of the system is

notified about it:

 Time required to explore the failure

 Time required to change the components

 Time required to verify that the problem has been

solved and the system is fully functional.

Active time or software application repair can be correctly

improved if the system is designed in such a way that errors can be

identified easily and be corrected. The more complex the design of

the system is made, the harder to find the errors and improve things

in a system. Reliability is a measure that requires success for the

system for a particular period of time and such as that failures are

not allowed.

Availability 𝐴(𝑡) of a system at time t is the probability that the

system will be functioning at the instant of time t.

𝐴(𝑡) is also referred as point availability, or instantaneous

availability. It is often necessary to determine the interval or

mission available.

𝐴(𝑇) =
1

𝑇
∫ 𝐴(𝑡)𝑑𝑡

𝑇

0
 (3)

𝐴(𝑇) is the value of the point availability averaged over some

interval of time T. This is the time required for the system to

accomplish some task [7].

If a system cannot be repaired, the point availability 𝐴(𝑡) equals to

the system’s reliability, i.e. the probability that the system did not

fail in between 0 and t. Thus, as T goes to infinity, the steady-state

available of a non-repairable system goes to zero.

𝐴(∞) = 0

Steady state available is often specified in terms of downtime per

year. Figure 2 shows the values for the availability and the

corresponding downtime.

Figure 2. Availability and corresponding downtime values per

year

Availability is typically used as a measure for systems where short

interruptions can be tolerated. Surveys have shown that nearly 60

percent of web users say that they expect a website to load in less

than 3 seconds.

3. SOFTWARE RELIABILITY WITH

MANY FAILURES
Reliability should be integrated in the whole cycle, it should include

all the staff that take part in the project. It cannot be considered only

at the end, but technical state should be achieved to improve

software reliability that are included. All of these techniques are

classified in three different groups (see Figure 3).

Figure 3. Group of failure’s classification in software

reliability

With classification a process can be described and with it we can

lower the failures to the software as we suggested earlier. All of the

process can be optimized from errors, the goal of the application of

our technique for this process aims error identification and avoiding

them. Since it is very hard to implement a software that is error free,

application of tolerated errors if the system nature requires it since

we are never sure that there will not be errors left in a software.

This section represents some of the common distributions and some

risky models in software reliability. Binominal distribution is

mostly used in the case of reliability distribution and in the control

of performance. It is applicable in software engineering, i.e. in a

situation where an event is present in a success or failure. Software

reliability distribution is given with the following formula:

3.1.1 𝐏(𝐗 = 𝐱) = (
𝐧

𝐱
) 𝐩𝐱(𝟏 − 𝐩)𝐧−𝐱 𝐗 = 𝟎, 𝟏, 𝟐, …

3.1.2 𝐧 (
𝐧

𝐱
) =

𝐧!

𝐱!(𝐧−𝐱)!
 (𝟒)

0

15

30

45

60

75

90

1 2 3 4 5 6 7 8

Availability (%) Downtime (days/year)

Ignore Erros

Identify Erros

Tolerate Errors

Figure 1. Report between P(K) and R(K)

P(K) R(K)

146

Where, n – number of judgment, x – number of successes, p –

probability of judgment of a single success.

Software reliability function R (k), (namely. at least k is given by

the software and n are used software applications) given as [6]:

𝐑(𝐤) = ∑ (
𝐧

𝐱
)

𝐧

𝐱=𝐤

𝐩𝐱(𝟏 − 𝐩)𝐧−𝐱 (𝟓)

4. PRACTICAL EVALUATION OF

RELIABILITY RELYING e-PASURIA
Even though theoretical process of reliability evaluation doesn’t

seem to be very complex, safe development, complex, and exact

for the reliability evaluation systems requires a lot of effort and

research. This for the fact that each product has its own properties,

in concept, development and implementation. In the following we

will examine the module of amortization in the system e-Pasuria,

in details we will show the methodologies of reliability evaluation

relating the application life-cycle. Mathematically, part of the

failures are shown, all of these statistics will be presented in a

tabular and graphical form.

Relating the formula (2) for the first three months (2190 days):

P(0 < T ≤ 2190) = ∫
1

2022

2190

0

e−
t

2022
 dt ≈ 0.334

Then from the formula (1):

D(T) = 1 - P(T) = 1- 0.334 = 0.67

Where D(T) is the reliability of the software, whereas P(T) is time

of failure for the software which is determined based on

methodologies of evaluation of reliability relating the products’

life-cycle (for the problem of amortization which is very sensitive).

Main goal is the reliability of amortization of inventory accurately

for each equipment. First case is presented in table 1 (see Figure 4).

Table 1. First case with failure and reliability achievement

against first version of the software

P(T) D(T)

0.33 0.67

0.42 0.58

0.38 0.62

Figure 4. Case with failure and reliability achievement against

first version of the software application.

After this, an upgrade (update) to the current version has been

provided with amortization functionality provided allowing the

user to automatically calculate the amount of amortization for the

equipment based on categories provided in the system. Before the

update, user could calculate the amount of amortization on monthly

bases, and this was not accepted very well from officials/users

because it did not fulfill the needs required by audits. Audit,

required that the calculation of amortization be rectilinear, and

should be provided in days, months, and years, which is now

provided with the update. Initial results for the achieved reliability

are too low.

Now we present the case when equipment amortization is well

accepted by users and it is closely or better said very likely with

rectilinear method. Now, we give statistics which are taken for the

period of six months, after the release of the update to the software.

𝐏(𝟐𝟏𝟗𝟎 < T ≤ 𝟒𝟑𝟖𝟎) = ∫
𝟏

𝟐𝟐𝟏𝟏

𝟒𝟑𝟖𝟎

𝟐𝟏𝟗𝟎

𝐞−
𝐭

𝟐𝟐𝟏𝟏
 𝐝𝐭 ≈ 𝟎. 𝟏𝟎

4.1.1 D (T) = 1 - 0.1 = 0.90

Below, calculation of the reliability of the system after update are

provided, Table 2, Figure 5:

Table 2. First case with failure and reliability achievement

after the updates

P(T) D(T)

0.10 0.90

0.04 0.96

0.01 0.99

Figure 5. Case with failures and increase of reliability by

comparison

As is seen for the graphics (see Figure 5) with the changes made on

the update release, based on the methodologies for reliability

evaluation of software life-cycle, reliability has been achieved [6].

In the following, we provide software reliability of the sysetem e-

Pasuria, relying the formula (4):

 Regular time for functioning is taken as 90% of full time

 Successfull time is evaluated as an average of all values

from different modules

 An average of 95% out of 100% resulted successful in e-

Pasuria software:

 𝐑(𝟗𝟎) = ∑ (
𝟏𝟎𝟎

𝟗𝟎
)

𝟏𝟎𝟎

𝟗𝟎

(𝟎. 𝟗𝟏)𝟗𝟏(𝟎. 𝟎𝟓)𝟗𝟏−𝟓 ≈ 𝟎. 𝟖𝟕𝟕

It can be said that reliability of e-Pasuria software in general is

aproximately ~0.90, which indicates a high value of reliability.

0.5

0.55

0.6

0.65

0.7

1 2 3

D(T)1

0

0.5

1

1.5

1 2 3

D(T)1

D(T)2

147

5. DATA SYNCHRONIZATION
Optimistic replication strategies are attractive in a growing range

of settings where weak consistency guarantees can be accepted in

return for higher availability and the ability to update data while

disconnected [1]. These uncoordinated updates must later be

synchronized (or reconciled) by automatically combining non

conflict updates, while detecting and reporting conflict updates.

The ability to support mobile and remote workers is becoming more

and more important for organizations every day. It is critical that

organizations ensure users have access to the same information

they have when they are in the office. In most cases, these workers

will have some sort of laptop, office desktop, Smartphone, or PDA.

From these devices, users may be able to access their data directly

through VPN connections, Web Servers, or some other

connectivity method into the corporate networks. Synchronization

gained great importance in modern applications and allows

mobility in the context of information technology. Users are not

limited to one computer any more, but can take their data with them

on a laptop.

5.1 Data Synchronization Algorithm
In Kosovo there are still problems with infrastructure

reconstruction. Main problems are: non-regular power supply,

connection drops, server drops, which present a big problem in

software applications. Such problems cause activity interruption at

work and inability to do the service on time, which reflects the

service to the students. Situations of this nature; cause skepticism

to users, personnel and management in use of IT services. If there’s

connection, e-Pasuria (assets management system) works parallel

online and offline, which means the data are transferred in both

local and central databases. If the connection is lost, e-Pasuria

works with local server, which means that new data are being saved

in local server which are not in the central server and in this case

the synchronization component should synchronize the data with

the data center when connection is present. Web Service has the

information on how data should be synchronized through the

columns in the tables.

Considering those aspects and for the continuity of this project, a

solution to minimize the problems should be found. For this

purpose an offline mode is used, realized with the design of the

algorithm used for data synchronization based on Web Services [5],

as shown in Figure 4.

Figure 6. Algorithm for data synchronization in e-Pasuria

6. ASSETS MANAGEMENT SYSTEM

6.1 The Concept of the System

e-Pasuria is an Asset Management System which is in used by all

Ministries, Municipalities, Agencies in Kosovo. Through this

application monitoring and controlling from the auditing agency is

done for all integrated institutions in Kosovo. e-Pasuria provides

the management of assets, their usage, expandible materials,

equipment barcoding, amortization of equipments based on

amortization percentage provided with categories, stock

management, and online requests for officials when they require

the usage of assets (see Figure 7).

Figure 7. Online request in e-Pasuria

Application also supports internal and external transfers. By

internal transactions, assets are transferred internally to the

employees inside the institutions, and by external it is possible to

transfer assets from one institution to another (i.e. Ministry of

Public Administration (MAP), donates 20 Computers to the

Ministry of Science and Education (MSE), so assets from MAP

warehouse are transferred to MSE warehouse). With the use of this

integrated software it is possible to track government assets on all

stages of their life-cycle (i.e. from the day you buy them, to the last

day of their usage).

As this is a role-based system, it provides the following user roles:

 Administrator – top level administrator

 SubAdministrator – administrator for a particular

institution

 Warehouse official – In charge for warehouse operations

 Logistics official – in charge for internal transactions,

and internal asset tracking

 Property official – in charge for request approval,

external transfers from one institution to another,

equipment amortization and financial reporting

 Personnel official - Human resource management

operations

 Ordinary personnel – every employee, can make request

for assets, request tracking, reports on their load of assets.

 Auditor - full audits of assets for a particular institution

 General Auditor – full auditing for all institutions that use

e-Pasuria.

6.2 Statistics of Data Transfer in e-Pasuria
Statistics with real data usage for the transactions made by users in

e-Pasuria are given as follows, Figure 8:

148

Figure 8. Number of total invoices registered in e-Pasuria

In the following (see Figure 9), we provide number of transactions

per year (2009 – 2012):

Figure 9. User transactions per year in e-Pasuria

As seen in Figure 9, number of transaction is greatly increased from

2009 – 2012. With increased reliability of such a scale in the

system, number of integrated institutions is also increased [8].

As number of users is of a great value in the usage of the system,

we provide statistics on number of users per year (see Figure 8):

Figure 10. Number of registered users per year in e-Pasuria.

As can be seen on Figure 10, number of new users registered in e-

Pasuria has begun to lower, this is because of the total number of

integrated institutions from 2009 to 2011, as current number of

unintegrated institutions is less than 10 (this includes only agencies,

and some municipalities that are not yet integrated because of their

infrastructure and network which makes it impossible for the

moment).

6.3 Technologies used to develop e-Pasuria
Application is built using Microsoft Technologies using Microsoft

Visual Studio as a Development Environment, Microsoft

ASP.NET, SQL Server 2008, ADO.NET, and Communication with

other applications using Web Services and XML.

7. CONCLUSION
It is very hard to calculate the exact reliability of software, but to

come to those results we have included a bunch of factors involved

with this process, such as availability of the software, number of

transactions, users, downtime and we have shown mathematical

methods on how to increase reliability on the software application.

As we were unable to show in details the reliability provided in

each module for the Assets Management System (e-Pasuria) we

leave a lot uncovered and for further researches in the future.

8. ACKNOWLEDGMENTS
We are grateful to all the people working at Kosovo Government

that supported us on gathering of information and measurements on

e-Pasuria software to make this research possible.

9. REFERENCES
[1] Shabani, I., Çiço B., and Dika A. 2012. Solving Problems in

Software Applications through Data Synchronization in Case of

Absence of the Network. IJCSI International Journal of Computer

Science Issues, Vol. 9, Issue 1, No 3, January 2012, ISSN

(Online): 1694-0814. Port-Louis, Mauritius.

[2] Mauher, M., and Smokvina, V. 2008. Municipal Asset and

Property Management System for the Web Collaborative

Environment. Multidimensional Management Consulting, Ltd.

Zagreb Vinogradi 36 C, Zagreb, Croatia & City of RijekaKorzo

16, Rijeka, Croatia

DOI=http://www.majorcities.eu/generaldocuments/pdf/municipal

_asset_and_property_management_system_for_the_web_collabor

ative_environment.pdf

[3] Çiço, B., Hajdini, A,. Sadiku, S., Meha, S., and Shabani, I.

2011.The Increase of the Speed of Integration of Online Services

for Citizens Through Standardization of Municipality

Portals”. 15th International research/expert conference) Czech,

TMT.

[4] Kreutzkamp, J. Hagge, L. Deffur, E. Gellrich, A., and Schulz.

B. 2003. Experience with an IT Asset Management System.

DESY, Hamburg, Germany (Computing in High Energy and

Nuclear Physics, 24-28 March 2003, La Jolla, California).

DOI=http://www.slac.stanford.edu/econf/C0303241/proc/papers/

TUDT001.PDF

 [5] Shabani, I., Çiço B., and Dika A. 2011.Web services oriented

approach for data synchronization. 6th South East European

Doctoral Student Conference, Greece.

[6] Bailey, D. Frank-Schultz, P. Lindeque, J. Temple III. Three

reliability engineering techniques and their application to

evaluating the availability of IT systems: An introduction.

[7] Dubrova, E., 2007.Fault Tolerant Design. An Introduction

Department of Microelectronics and Information Technology

Royal Institute of Technology. Stockholm, Sweden.

[8] e-Pasuria. Assets Management System.

DOI=https://e-pasuria.rks-gov.net

0

10000

20000

30000

40000

50000

60000

2009 2010 2011 2012

143
7965

5066

3042

0

5000000

10000000

15000000

20000000

25000000

2009 2010 2011 2012

Inputs Loaded

143

7965

5066
3042

2009 2010 2011 2012

149

