
Native browser support for 3D rendering and physics

using WebGL, HTML5 and Javascript

Rovshen Nazarov
American University in Bulgaria

Blagoevgrad 2700
Bulgaria

ran090@aubg.bg

John Galletly

American University in Bulgaria
Blagoevgrad 2700

Bulgaria
+359 73 888 466

jgalletly@aubg.bg

1st

ABSTRACT
In the last few years, JavaScript libraries have been developed to
enable developers to create and manipulate 3D objects in the
browser. These JavaScript libraries incorporate physics and 3D
processing algorithms, HTML 5 elements and technologies (such
as canvas and background workers), and the Web Graphics
Library (WebGL). This paper provides an insight into these
technologies, and describes the experience gained in using the
latest innovations for client-side programming - using the browser
as an application processing unit to enable plugin-free running of
a high-quality and computing-intensive game application with 3D
graphics rendering and physics effects.

Categories and Subject Descriptors

General Terms
Performance, Design, Human Factors, Languages.

Keywords
Client-side programming, 3D objects with physics effects,
JavaScript libraries, HTML 5, Web Graphics Library (WebGL),
rendering engines, physics engines

1. INTRODUCTION
Initially, web browsers were not intended for 3D graphics
applications, but were designed for rendering simple web pages
with static content. With the advent of dynamic content and
client-side scripting languages, the demand for some sort of 3D
graphics support in browsers started growing steadily.

One of the first technologies for rendering 3D in browsers was

VRML, which has now been superseded by X3D. Other popular
technologies that were introduced after VRML are ShockWave,
Flash, Silverlight, QuickTime and others. Additionally, 3D
objects may be developed using programs such as Maya, 3ds Max
or Blender, and then imported into a browser. There are also
several 3D game engine plugins, such as Unity3D, available for
the browser.

All of the above technologies require browser plugins to play.
Unfortunately, there is no standard that sets common practices for
the development of 3D applications using plugins. There are many
different plugins for 3D rendering, and therefore a user will need
to install a different plugin to use a certain 3D application in the
browser. Different plugins introduce compatibility issues and
make using and developing such applications difficult. Even
more, plugins can be a security problem. So, instead of relying on
plugins, developers began to look towards JavaScript as a means
to create and manipulate 3D objects directly in the browser.

One JavaScript 3D rendering package that has been developed in
recent years is WebGL (Web Graphics Library) [1]. It is derived
from OpenGL ES 2.0 and provides similar rendering functionality
but specifically for web applications. It uses the HTML5 Canvas
element for rendering 3D elements, and, importantly, it has a
JavaScript API, thus allowing JavaScript programs running in a
browser to gain access to the GPU without a plugin. With WebGL
there is no need to install a plugin - 3D applications can be run
directly from the browser. WebGL has gained a huge interest in
the development community and there are already many stunning
3D demonstrations available on Internet.

2. WebGL
At the core of the WebGL technology are scripts known as
shaders - they define how everything is drawn on the screen.
There are two shaders in WebGL: the vertex and fragment shader
These shaders are responsible for position calculation and colour
specification respectively. The vertex shader basically converts
the points in the 3D model into 2D screen coordinates. The
fragment shader tells WebGL what colour a given point in the
model should be. (Figure 1).
As noted above, WebGL is based on OpenGL, which is a rather
old type C-style library. It features a long list of functions used to
set different states and pass data to the GPU. WebGL is not 3D in
itself, but it is a drawing API that gives JavaScript access to the
hardware accelerated graphics GPU. Thus, a developer cannot just

BCI'13 September 19-21, Thessaloniki, Greece. Copyright © 2013 for the individual papers by the papers' authors.
Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.

21

go ahead and use WebGL to create a 3D model without a strong
knowledge of geometry and C-like language.

Figure 1 Shader Structure

Shaders do not get executed in the browser like JavaScript, but
they need to be precompiled using JavaScript code and shader
functions and attributes from WebGL. After their initial pre-
compilation, the shaders need to be linked. Attributes and
uniforms, which are part of the WebGL technology, are the way to
bridge JavaScript run in the browser and the shaders run on the
GPU.
However, developing in pure WebGL is not an easy task as it is
based on the vertex and fragment shader scripts, requiring the
developer to be familiar with the mathematics of 3D geometry.
Luckily there is solution since many developers have dedicated
their free time to create open-source libraries written in
JavaScript, built on top of WebGL (Figure 2).

Figure 2 WebGL Stack

3. WebGL JAVASCRIPT LIBRARIES

3.1 Rendering Engines
Developing in pure WebGL can be time consuming, and
therefore, to make it accessible to a wider range of developers,
many wrapper libraries that turn WebGL into an object oriented-
like library have been created.

One of the most popular, most developed and supported of the
WebGL wrapper JavaScript libraries is Three.js[2]. Three.js
allows the creation of 3D objects and effects with a few lines of
code. Using Three.js plugins for 3D object development software
such as Maya and Blender, makes it possible to convert a 3D
object created on those platforms into a JSON object and then

load that object using the Three.js JSON loader into a web
application.

CubicVR.js[3] is the main competitor for the Three.js rendering
engine. It supports both rendering and physics (using Ammo.js for
physics). However, its documentation is limited to a basic
description of the class parameters. CubicVR.js is a port from the
CubicVR 3D Engine, C++ Version.

Scene.js[4] is an open-source 3D engine for JavaScript which
provides a JSON-based scene graph API on WebGL. Scene.js
specializes in efficient rendering of large numbers of objects as
required by high-detail model-viewing applications in engineering
and medicine. Game engine effects like shadows, reflections etc.
are not supported. Using a JSON API makes it easier to integrate
it well with AJAX, parsers and databases.

CopperCube[5] is a proprietary package that allows the creation
of 3D applications without programming. It is aimed primarily at
non-programmers, for creating 3D applications in a drag-and-drop
fashion based on a behavior and action-based logic system.

3.2 Physics Engines
The ability to draw 3D graphics is not enough for realistic-looking
dynamic applications. The application may also need to simulate
the effects of physics – the effects of gravity and collisions, for
example.

A very popular JavaScript physics library for WebGL is
Ammo.js[6], which is a direct port of the famous Bullet physics
engine[7] to JavaScript. Ammo.js is used almost always in
conjunction with Three.js. However, Ammo.js is a non-trivial
physics library and requires some knowledge of the Bullet physics
library class structure. Furthermore, it is not well-documented for
use with the 3D rendering libraries such as Three.js. You have to
have certain skills to benefit from most of the capabilities offered
by Ammo.js.

PhysiJS.js[8] is an alternative physics framework for Three.js,
having a much simpler user interface than Ammo.js. In fact,
PhysiJS.js is built on top of Ammo.js but runs the physics
simulation in a separate thread (via a JavaScript Web Worker) to
avoid impacting on the application's performance. Again, a lack of
documentation means that the developer has to look at the code of
the library and understand its logic. In addition, if PhysiJS.js is
used, usage is limited to only those objects and functions defined
in PhysJS.js.

One more physics engine, JigLibJS2.js[9], is claimed to be faster
than Ammo.js, but speed comes with a limitation on the
functionality of the library. JigLibJS2.js is a JavaScript 3D
physics engine port of JiglibFlash. The code is generated
automatically from the AS3 code so all functionality works
exactly like the AS3 version.

A recent entry to JavaScript physics engine libraries is
Cannon.js[10]. It is described as a lightweight and simple 3D
physics engine, and smaller in size than ported physics engines
such as Ammo.js and JigLibJS, but it is still under development
and, in the future, it may become full featured library.

In August 2012, Prall [11] (who actually developed PhysJS.js)
wrote an interesting comparison of four physics engines:
Box2dweb, Ammo.js, JigLibJS, and Cannon.js. (The first of
which only simulates two-dimensional scenes, and the last one
was still in development at the time of the comparison.) Prall’s

22

conclusion stated “Box2dweb does not support 3D worlds;
Ammo.js can suffer from performance issues, and JigLibJS.js is
affected by its API design and lack of functionality. Challengers
such as Cannon.js and others which are 100% written in
JavaScript are beginning to appear, but none are yet ready to be
widely used”.

Both Ammo.js and JigLibJS2.js are ports of existing physics
engines. Because they are ports, and not hand-coded, they are not
optimized for the web. Of the above, PhysiJS.js and Cannon.js are
directly written in JavaScript.

4. EXPERIENCES
In order to get real experience of some of the new technologies
related to WebGL discussed in this paper, a basic racing car game
with physics effects was implemented. Unsurprisingly perhaps,
many problems were encountered, especially at the beginning of
the implementation in 2011.

The main problem was the lack of documentation for the WebGL-
based JavaScript libraries, and also for the few demonstrations
that were available at that time. Often, it was necessary to look at
the developer’s code to understand how the WebGL wrapper
libraries worked. Fortunately, the WebGL developers’ community
is very supportive and united, and the main library developers
would answer questions and offer constant feedback very quickly.
But even now, while developing a game application with 3D
graphics rendering and physics effects that uses Three.js and
Ammo.js, a developer is still forced to look into the library code
to understand how a more complex scene could be created. For
the racing car game referred to above, it was necessary to look at
three different implementations of car 3D objects that were
implemented using the Three.js library to understand how to
create a connection between the Ammo.js and Three.js libraries.

When it came to the physics, things became more complex.
Ammo.js is port from a C++ library, with very limited
documentation. Thus, to use this physics library with the
rendering library (Three.js), it was necessary to experiment with
different settings and configurations for creating and tracking two
objects: a 3D object that the user sees on the screen, and a
separate physics object that manages the effects such as collisions.
Moreover, these two objects have to be like one, so it was
important to ensure that the two different libraries were well
integrated to achieve even a simple collision effect.

On the other hand, creating simple 3D scenes with basic collision
(using Ammo.js and Three.js) has become easier today than it was
in 2011. A basic scene with a ground of any material and with
some lighting can be easily created with reference to the
numerous short tutorials available for Three.js on Internet.
Creating a 3D object, such as a box, is as simple as a few lines of
code.

An object’s skeleton is created using Three.js library’s
ShapeNameGeometry constructor with the appropriate shape
parameters, such as radius for a sphere. Then the
MeshLambertMaterial constructor is used to load an image and
convert it to a Three.js object. This material object is wrapped
around the 3D skeleton like a skin using the library’s Mesh
constructor. This mesh object represents the final product, a 3D
object that may be added to the 3D scene at a certain position.

Even though creating a 3D scene is trivial, adding physics to it
using Ammo.js is non-trivial and requires some knowledge about

both libraries and how they can be synchronized. There are very
few tutorials explaining examples of the above mentioned
combination. Thus, some analytical skills and good JavaScript
knowledge is needed to look into the code of the demonstrations,
which implement both the physics and rendering to understand on
what basis the two libraries can collaborate.

To add physics using Ammo.js, one first needs to set up a physics
world (as opposed to the Three.js 3D scene world created above),
as a separate process. To do this, several Ammo.js’s objects need
to be created, such as the collision configuration; a dispatcher; an
overlapping cache pair; a sequential impulse constraint solver and
the most important discrete dynamics world (which is a physics
scene of an infinite size). After setting up the physics world,
adding objects is easy and comes down to several lines of code.
However, adding just physics objects is not enough and the
developer needs to make sure that the physics objects are
synchronized with the 3D objects. The easiest way to do this is to
copy the values of the objects’ x, y, z positions and quaternion
(which is also represented by x, y, z and an angle) from the
physics object to the 3D object. The important point is to do this
during the animation phase for both 3D and physics objects
because the physics engine calculates all effects and the 3D
objects should reflect those calculations.

If one decides on adding a more complex customized 3D object,
one can use, for example, a free 3D model from Internet and
convert it using Blender to Three.js’s JSON format. After that the
object can be loaded using another Three.js library extension
called JSON loader. This loader will generate geometry and
material Three.js objects that can be used later to create a Three.js
mesh, which is a 3D object.

In addition to simple objects, Ammo.js also allows generation of
complex classes, such as car classes implemented in the racing
game mentioned above. The idea behind the Ammo.js vehicle
class is very simple - one provides all car-related parameters, such
as engine power, suspension stiffness, and other similar real car-
like parameters and Ammo.js controls the car interaction with
other objects in the scene. The trickiest part is to handle the
synchronization of Three.js library generated 3D objects and
Ammo.js shapes that represent wheels. However, by looking at the
Bullet physics documentation, or by asking on the Three.js forum,
one can find a solution for any obstacle.

Moreover, user interaction, the most interesting aspect of 3D or
any animation, can be easily implemented using Three.js’s First
Person Control library, or a JQuery’s mouse control extension, or
one’s own implementation of key event handling procedures.
Once one sets up the car properly, one can also define how the
physics objects should behave on collision with respect to their
velocity and mass. For instance, the objects with zero mass are
known to be static and are not expected to be moved, and
therefore, if an object hits such static object, it should bounce off
with different velocity than it would from a non-static objet.

Once the physics and 3D scene is set and ready, one can add extra
features to the scene to make the scene feel more realistic.
Three.js allows adding different filters, postprocessors and
shaders for enhancing the quality of generated 3D objects. An
interesting addition to a 3D object would be reflection. In
addition, one may want to add audio to the scene, or to the car
engine when the forward button is pressed. Adding these extra
features is non-trivial, but Three.js has many demonstrations that
implement all of the effects that one might want to use. And

23

again, one will have to look into the code to see how the effects
are applied and try to use that knowledge to enhance one’s own
scene. In the car racing game, a sky effect, shades, panoramic
surround, and object reflection have been added to make the scene
feel more realistic.

A key factor for making WebGL, and support for it grow are the
enthusiasts who spend their free time developing demonstrations
and writing WebGL wrapper libraries.

5. THE FUTURE
Although WebGL is a big step forward in terms of 3D rendering
for browsers, it is not the end of the story. One thorny problem is
that of security. Arguments rage about the vulnerability of
WebGL in terms of security issues. Microsoft has taken the
position that WebGL is too great a security risk and the existing
defences are not robust enough – Internet Explorer does not
support WebGL. On the other hand, Mozilla takes the position
that the defences they have put in place will be adequate, and that
WebGL provides is an important tool for the web.
Another drawback is performance. Execution of WebGL
applications can overload low-performance machines, and most of
typical video cards cannot support the full range of 3D effects
offered by WebGL.
Moreover, adding physics and many 3D objects may slow down
performance significantly. In some cases, after running a 3D scene
for few minutes, a browser may start freezing and be unresponsive
or slow to respond. This is a huge problem for complex 3D
games, and therefore, even more needs to be done to make
browsers run JavaScript even faster and more efficient.

There is still a lot to improve in terms of browser-level hardware
access and the 3D rendering capabilities of WebGL. Many
developers today expect web browsers to provide all the features
necessary for creating a desktop level-like 3D experience in the
browser. To fulfill this expectation, much more needs to be done.
Moreover, sufficient documentation needs be developed so that
more complex 3D applications may be created by less-
experienced developers, which is not the case for the moment.
However, many initiatives have been started by web development
enthusiasts.

6. CONCLUSION
In the last few years, much has improved in terms of JavaScript
rendering and physics engines, but there is still some way to go.
Although very complex and dynamic 3D scenes may not yet be
achievable, a number of interesting developments are now

presenting themselves. The blending of easily accessible
technologies in today’s browsers makes a very interesting
environment for realistic 3D modeling and viewing. Moreover,
continued support from the browser development companies,
Google and Mozilla, for WebGL, and the continued improvement
and extension of hardware access from the browser is enabling
developers to create the first prototypes of desktop-level, high-
quality 3D applications with physics for the browser. As pointed
out at the beginning, the main advantage of this technology is that
there is no need to install or download anything for viewing a
high-quality 3D application.

7. REFERENCES
[1] WebGL home page

http://www.khronos.org/webgl/
[2] Three.js home page

http://mrdoob.github.com/three.js/
[3] CubicVR.js home page

http://www.cubicvr.org/
[4] Scene.js home page

http://scenejs.org/
[5] CopperCube home page

http://www.ambiera.com/coppercube/
[6] Ammo.js home page

https://github.com/kripken/ammo.js/
[7] Bullet physics engine home page

http://bulletphysics.org/wordpress/
[8] PhysiJS.js home page

http://chandlerprall.github.com/Physijs/
[9] JigLibJS2.js home page

http://www.brokstuk.com/jiglibjs2/
[10] Cannon.js home page

http://schteppe.github.com/cannon.js/
[11] Prall, Chandler 2012. JavaScript Physics Engine

Comparison. Build New Games. 10 (Aug. 2012)
http://buildnewgames.com/physics-engines-comparison/

24

