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ABSTRACT 

Finite Element Method constitutes one of the most powerful 

numerical methods when there is need for approximate solutions 

of a problem. In this work an application with a user-friendly 

graphical interface, developed in Matlab, is presented which 

facilitates the calculation and graphical presentation of the 

propagation constants and modes of various types of optical 

waveguides using FEM. To check the validity of our simulations 

the results have been compared with those presented in the 

literature. 

General Terms 
Computing methodologies, Modeling and simulation. 

Keywords 
Finite Element Method, Variational Method, Propagation Modes. 

1. INTRODUCTION 
Optical Waveguides have been used for decades giving the ability 

to transfer the information through high speed networks and 

devices. In order to achieve better performance or adaptation to 

specific problems, waveguides with different characteristics and 

materials were introduced. The need to calculate some important 

characteristics, such as the number of modes and their 

corresponding propagation constants of the waveguides was 

necessary and both analytical and numerical methods have been 

proposed [2-3]. 

One of the most powerful analytical methods is the Finite Element 

Method (FEM) [4]. The main advantage of the method is the fact 

that it can be applied to any waveguide geometry. This flexibility 

gives us the ability to use FEM to any waveguide, without 

changing the course of the analysis, but just using the 

corresponding functions for every type of waveguide.  

The main notion behind FEM is that the region is divided into 

many small elements and then analytical functions are applied to 

every element. The results are summed up to global matrixes and 

an eigenvalue matrix equation is produced. The final step is to 

solve the eigenvalue matrix equation and retrieve the propagation 

modes and the corresponding propagation constants [5]. Thus, 

instead of trying to solve a problem with infinite number of 

unknowns, we transformed it to a problem with finite unknowns 

for which a solution can be reached [4]. 

In this work we present a FEM mode solver for optical 

waveguides which is easy to configure through its Graphical User 

Interface (GUI). The application gives the ability to analyze 

rectangular 3D (ridge or rib) waveguides, find the propagation 

constants of the supported modes and plot the results.    

In section 2 the selected FEM and the developed Matlab [8] 

application will be described. The simulation results are presented 

in section 3. Finally in section 4 we summarize our results.  

2. THE APPLICATION 

2.1 The selected FEM 
 

In the Finite Element Method there are two main directions which 

can be followed: The Scalar FEM – SC FEM and the Fully 

Vectorial FEM – V FEM [5]. Both of them have their merits and 

their weaknesses. However, the former has been chosen in our 

implementation, because there are no spurious problems and the 

produced eigenvalue matrixes are sparse and symmetrical, a 

characteristic which makes the calculations more efficient and 

consequently the application faster. Furthermore, regarding the 

calculation of the characteristics of the elements, for simplicity 

reasons we used the Variational Approach compared to the 

Weighted Residual Approach [6]. More specifically, the 

methodology described by Katsunari Okamoto [1] has been 

followed as the theoretical basis for the application. In this 

methodology the Scalar Wave Equation (1) is solved using the 

Scalar FEM in combination with the Variational Approach.  
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Before a detailed description of the application, it is necessary to 

provide the steps which are followed and also provide the 

necessary definitions. The steps can be summarized as follows: 

• The meshing of the area is performed in many small elements. 

An element consists of nodes. An element can be either a 

triangle with tree nodes (first order element) or six nodes 

(second order element), or a rectangle with four nodes (first 

order element) or eight nodes (second order element) and 

similarly any other shape which follows the above pattern 

(Figure 1). The meshing can be performed by a plethora of 
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algorithms, such as Delaunay [7] or any other which meets our 

needs.  

 

 

 

Figure 1. Different element shapes 

 

• The interpolation functions are chosen and applied to the 

nodes of the elements. Usually, polynomial functions are used 

because they can be easily differentiated. Also, the degree of 

the polynomial is correlated with the order of the element 

used. 

• The parameters of the elements are calculated and expressed 

in a matrix form. For the calculation of the parameters we 

used the Variational approach.    

• The matrixes of the elements are combined in order to 

generate an eigenvalue matrix equation which describes the 

global system. 

• The necessary boundary conditions are introduced in the 

system. The boundary conditions which are used are the 

Neumann and Dirichlet conditions [5]. 

• Finally, the eigenvalue matrix system is solved using a 

suitable method according to the problem at hand. The most 

common algorithms which can be used are the Jacobi’s and 

Householder’s methods [1]. By solving the equation, the 

propagation constants of the modes and the corresponding 

field distributions are produced.  

 

2.2 The implementation 
 

Crucial to our implementation was the need for accuracy in the 

results and at the same time efficiency and fast mathematical 

calculations. The complexity of the system is in a direct 

correlation with the number of the elements which are used for the 

meshing of the area. The higher the number of elements, the 

higher the complexity of the system which is going to be solved 

and consequently the slower the calculation of the results [10]. 

Matlab has been chosen as the development platform. The 

application consists of the following: 

 

Waveguide creating engine 

This module is creating the waveguide and its related parameters. 

One could choose between two different 3D waveguide types: 

Ridge (or Rib) and/or Rectangular. Also, the user has to setup the 

initial parameters of the waveguide which describe its 

characteristics, the optical pulse and the area of analysis. The 

parameters are summarized in Table 1. 

 

 

Meshing engine 

This module is responsible for meshing the examining area with 

elements and calculating the appropriate properties for the meshed 

area. A variety of algorithms could be used for this purpose 

depending on the application. In our case a simple custom 

meshing algorithm has been used. According to the given 

parameters, points are created in the analysis area and every point 

is connected to its neighboring point in order to produce first 

order triangle elements. Figure 2 shows the representation of the 

nodes.  

 

Figure 2. Example of node connection 

The connection is performed starting from the upper left corner of 

the area to the bottom right corner moving vertically at each pass. 

Every node is examined from the top to bottom direction and two 

triangles are created. When we examine the node i, then the 

triangles (i,j) – (i+1,j) – (i, j+1)  and  (i+1,j) – (i+1, j+1) – (i, j+1) 

are created. Anticlockwise numbering is used for the nodes.  

Table 1. Waveguide parameters 

 

Parameter Description 

nc Refractive index of the core 

ns Substrate refractive index 

na Refractive index of air 

Wavelength The wavelength (λ) of the optical pulse 

Core with 
The width of the core at the central area 

of the waveguide  

Core height The maximum height of the core 

Profile height 

The height of the core at the side of the 

central core of the waveguide (for the 

ridge waveguides only) 

X axis analysis 

length 

The length (in µm) of the analysis area 

along the x axis 

Area space 

north 

The free space at the top part of the 

analysis area 

Area space 

south 

The free space at the bottom part of the 

analysis area 

Elements at core 

x axis 

The number of elements along the x axis 

at the central core of the waveguide 

Elements at 

profile y axis 

The number of elements along the y axis 

at the side core of the waveguide. 

Percentage 

change x axis 

The percentage (0.00 to 1.00) change of 

the side of the elements at the x axis.  

Percentage 

change y axis 

The percentage (0.00 to 1.00) change of 

the side of the elements at the y axis. 

 

26



The meshing engine produces two arrays. The first array holds the 

node data while the second array the element data, where the node 

values and the refractive index of every element are stored. A 

similar approach has been used at [9]. Figure 3 shows an example 

mesh of a ridge waveguide. The outline of the waveguide is 

marked with a thicker stroke. 

 

Figure 3. Area meshing 

The meshing of the area is performed with different densities for 

the core and the cladding. The higher the accuracy we want to 

achieve the higher the number of elements that have to be used. 

However, as it has already been mentioned at the preceding 

section, the complexity of the calculations is increased when more 

elements are used. Although we want more accuracy and better 

results, it is not necessary to perform high meshing at all parts of 

the examining area, but mainly at the core of the waveguide. For 

that reason, the parameters «percentage change x axis» and 

«percentage change y axis» were introduced. The former 

indicates the step of the element side change along the x axis. This 

step is used for the elements that their nodes have 

x a> and x a< − . The latter indicates the step of the element 

side change along the y axis. This step is used for the elements 

that their nodes have y h>  and 0y < . By applying this 

technique the meshing of the area has higher density at the core of 

the waveguide and lower density at the cladding. This is also 

shown at Figure 3, where the meshing is gradually decreased for 

the areas that are away from the waveguide core. In that way, the 

computations are kept in a balance and both accuracy and low 

cost performance are achieved. Furthermore, presuming that the 

waveguides are symmetrical, there is no need for meshing all the 

area, but only half of it and then mirror the mesh a process that 

speeds up the meshing time.  

 

FEM solving engine 

The solving engine is responsible for the application of FEM 

functions, the creation of the eigenvalue matrix equation and the 

solution of it. After the meshing has been performed, then the 

analytical functions are applied to each element. The results are 

added to global matrixes and the eigenvalue matrix equation [10] 

is created (2).  
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[ ] [ ] 0A Bλ φ− =                            (2) 

The global matrixes A and B in equation (2) are created from the 

analytical function at the elements. The λ is the unknown 

eigenvalue which we derive from the solution of the system, in 

our case the propagation constants, and φ is the distribution of the 

field for the corresponding eigenvalue. The number of 

propagation constants shows the number of supported modes for 

the waveguide. The solutions of the eigenvalue equation are not 

all acceptable. We accept only those which meet the necessary 

criteria. More specifically, the neff (the effective index) has to 

satisfy the following inequality: 

                                     
s eff c
n n n< <                                    (3) 

where neff is defined as: 
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where b is the propagation constant which has been calculated 

from the solution of equation (2). After deriving the accepted 

propagation constants, then the corresponding field values are 

retrieved.  

Graphical User Interface (GUI) 

The solutions of the system and the graphical field distribution are 

presented to the GUI. The main purpose of the GUI design was to 

achieve an intuitive environment where a non-expert user could 

employ the application by providing only the necessary 

parameters and without any knowledge for command line 

configuration and this is the main advantage of our 

implementation. Anyone, without having to deal with a complex 

configuration, can use the application and generate results fast 

providing an ideal tool for students who want a free and optical-

oriented FEM mode solver in order to experiment with optical 

waveguide propagation characteristics. Figure 4 presents a 

screenshot of the GUI with a meshed Ridge waveguide. 

Moreover, the user can select from the options menu to show the 

number label of the elements and their corresponding node 

number labels. Finally, using any of the solutions generated one 

can produce the corresponding contour diagram, Figure 5. 

 

File import/export handler 

The import/export handler is responsible for the file manipulation 

of the application. The user has the ability to store the setup of the 

waveguide and the results to a file. Also, the user can import the 

exported file to any other application without having the need to 

make the computations from scratch. The results and the setup are 

saved in a Matlab .mat format. 

27



 

Figure 4. FEM mode solver GUI 

 

 

 

Figure 5. Contour diagram for selected mode 

 

3. SIMULATION RESULTS AND 

CONCLUSION 

3.1 Simulation results 
 

In order to verify that the proposed implementation produces 

results that are comparable with those presented in the literature, a 

series of simulations have been run.  

 

Simulation No1 

For the first simulation the setup was selected from Katsunari 

Okamoto [1] and some slight modifications have been made in 

order to be adapted to our implementation. The setup is 

summarized in Table 2 and 3. 

 

 

 

 

 

Table 2. Ridge waveguide parameters 

Parameter Value 

nc 3.38 

ns 3.17 

na 1 

Core width 1.5µm 

Core height 0.75µm 

Core profile height 0.3µm 

 

Table 3. Area parameters 

Parameter Value 

Area width 13µm 

Area north space 3µm 

Area south space 4.5µm 

Elements at core x axis 10 

Elements at core y axis 2 

Percentage change x axis 0.1 

Percentage change y axis 0.1 

 

The wavelength used is λ = 1.55µm. The meshing generated 1485 

nodes and 2816 elements. The results are presented at table 4. 

 

Table 4. Results of simulation No1 

Propagation constants Neffs 

0.45039 3.2663 

0.078518 3.187 

0.015126 3.1733 

0.014002 3.1733 

 

The results in table 4 indicate that the described waveguide can 

support 4 different modes. However, examining more carefully 

the results, we could eliminate the last three values as 

unacceptable. Plotting some of the results in contour diagrams 

(Figures 6, and 7) it is apparent that for the mode with b = 

0.0152126 the propagation takes place mostly at the cladding 

while for the mode with b = 0.45039, the propagation is confined 

in the core. As a result, we conclude that the aforementioned 

modes (with b = 0.078518, 0.015126, 0.014002) can not be 

propagated. The reason for these false results can be attributed to 

the solving method used for the eigenvalue matrix equation or the 

errors produced from the rounding calculations.  Our results are in 

good agreement with the results presented in [1]. 
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Figure 6. Contour diagram for mode with b = 0.45039 

 

Figure 7. Contour diagram for mode with b = 0.015126 

 

 

Simulation No2 

For the second simulation a Ridge waveguide has been used and 

its parameters are presented in Table 5 and 6. 

 

Table 5. Ridge waveguide parameters 

Parameter Value 

nc 3.48 

ns 1.48 

na 1 

Core width 1µm 

Core height 1µm 

Core profile height 0.6µm 

 

 

Table 6. Area parameters 

Parameter Value 

Area width 15µm 

Area north space 3µm 

Area south space 2µm 

Elements at core x axis 10 

Elements at core y axis 4 

Percentage change x axis 0.1 

Percentage change y axis 0.1 

 

The simulation wavelength is λ = 1.55µm. The meshing generated 

1595 nodes and 3024 elements. The results are presented in Table 

7. 

Table 7. Results of simulation No2 

Propagation constants Neffs 

0.87043 3.2902 

0.8547 3.2663 

0.85461 3.2662 

0.84208 3.2624 

 

Similarly to the previous example, plotting the corresponding 

contour diagrams, it can be seen that the mode with b = 0.87043 is 

the only mode which can propagate at the core of the waveguide, 

Figure 8.  

 

 

Figure 8. Contour diagram for mode with b = 0.87043 

 

Although the accuracy of the results is of vital importance, 

another factor which has to be taken into consideration is the 

performance of the application. For that reason a benchmark test 

has been conducted. The computer used for the simulations had 

an Intel Core i5 M450, 2.4GHz CPU and 4.00 GB RAM with the 

Matlab version 7.12.0 (R2011a) - 64bit. 
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To run the benchmark five different waveguide setups have been 

selected. All of them had the same basic settings. The only 

different parameter is the number of elements, i.e., the different 

percentage changes of the elements at the axis, and consequently 

the total number of nodes at the examining area. The setups are 

presented in the Table 8.  

 

Table 8. Waveguide setups 

Waveguide setup 
Number of 

elements 

Number of 

nodes 

Setup 1 1120 609 

Setup 2 1320 713 

Setup 3 1700 910 

Setup 4 2816 1485 

Setup 5 4032 2109 

 

The results of the benchmark are displayed in the Figure 9. It can 

be easily observed that as we increase the number of the elements 

more time is needed for the calculations. However, the most 

costly operation in the calculation process is the solution of the 

eigenvalue matrix equation. From the diagram it is obvious that 

the time needed for that operation increases exponentially. The 

calculation time difference between the Setup 3 and Setup 4 can 

be marked as the most significant. The Setup 4 has 1116 more 

elements compared to the Setup 3 and the calculation time is 

90.45 seconds more. A possible improvement in the calculation 

process could be achieved by analyzing only half of the 

examining area. Our presumption is based on the fact that the 

Ridge waveguides are symmetrical along the y axis [11].  

 

 

Figure 9. Benchmark results 

 

Furthermore, a better eigenvalue equation solving algorithm could 

be used, which would handle the sparsity of the matrixes in a 

more efficient way. Examining the curve of the calculation 

parameters, it can be concluded that this process is fast and is 

insignificantly influenced by the number of elements in 

comparison with the solution process of the eigenvalue matrix 

equation. In addition, the meshing times for the corresponding 

Setups are presented in Figure 10 showing an insignificant 

increase with the increase in the elements number. 

 

 

Figure 10. Meshing benchmark results 

 

4. CONCLUSIONS & FUTURE WORK 
 

The presented implementation constitutes an accurate and easy to 

use application. With a complete GUI, the experimentation and 

the simulation of a Ridge (or Rib) or Rectangular waveguide can 

be performed without having to deal with complex configurations. 

Our application can be used by students or researchers 

investigating the characteristics of a waveguide before fabrication. 

The accuracy of our application was successfully proven 

comparing our results with those in the literature.  

Some issues that we have already scheduled to deal with are the 

introduction of a more sophisticated meshing engine and the 

performance improvement of the algorithm for the solution of the 

eigenvalue matrix equation. Finally, the construction of a web 

platform and a complete infrastructure where the application 

would be available publicly through a web interface are also at 

our plans.  
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