
Improving RAID-5 performance by reducing data

redistribution time
Genti Daci

Polytechnic University of Tirana
Faculty of Information Technology

Sheshi Nënë Tereza 4, Tirana, Albania

 gdaci@acm.org

 Mirela Ndreu
Polytechnic University of Tirana

Faculty of Information Technology
Sheshi Nënë Tereza 4, Tirana, Albania

mirela.ndreu@fti.edu.al

ABSTRACT

RAID is a storing technology that is very often used in nowadays

systems and in general this storing volume provides more data

security, availability and performance to the existing system.

Being an important component of the system, the data storage

volume and its performance affect directly the performance of the

entire system. This is the motivation why it is convenient for us to

improve as much as it is possible the weaknesses of the RAID

volume. We are focused on data redistribution problem which is

necessary to be performed after adding disks to the volume. In this

paper we will review some algorithms and in particular we will

discuss FastScale approach, which resulted in satisfactory values

of data redistribution time when it was applied on RAID-0. Our

proposal is a short algorithm that interacts with FastScale and

adjusts it for RAID-5 volumes. The main structure of FastScale is

not changed and this gives us reason to anticipate lower

redistribution time and higher performance in RAID-5 volumes,

as happens in RAID-0.

Categories and Subject Descriptors

D.4.3 [Operating Systems]: File System Management –

maintenance; D.4.3 [Operating Systems]: Performance –

modeling and prediction.

General Terms

Algorithms, Performance.

Keywords

RAID-5, data redistribution time, parity block.

1. INTRODUCTION
RAID systems give higher performance, more capacity and data

reliability to the existing system. RAID volumes can be managed

as a single device and they are useful for the support of every kind

of user application [1]. They are very often used in nowadays

systems to support data storage. As part of the different

components that are present in systems, the performance of the

entire system depends on RAID performance also. Efforts to

increase even more the performance of RAID 5 led us to the

weakness of this device. One situation that we are always faced

with is a continuous increase of user data and thus the continuous

requirement for larger storage capacity. To supply this necessity

we perform a disk addition. This disk addition is termed “RAID

scaling”. The problem that is to be solved after scaling is the

redistribution of data onto all the disks of the volume.

As hardware and software of systems have changed and improved,

also different techniques have developed for redistribution of data

in different types of systems [6], [7], [8], [9]. We will make a

general summary of some of the data redistributing approaches.

Especially, we will discuss the features of every technique used by

them. Initially we will take a look on SCADDAR approach. It is

an efficient, online method to scale disks in a continuous media

server and it is based on using a series of REMAP functions

which derive the location of a new block using only its original

location as a basis [5]. SCADDAR ensures load balancing of

blocks and in general low complexity computation to the system.

The development of scaling approaches has advanced achieving

other levels of performance and efficiency.

We will review also another approach that is based on the fact that

during the data redistribution process and there is always a

reordering window where no valid data chunk will be overwritten

while changing the order of data movements [3], [22], [23]. The

reordering window is a window where data consistency can be

maintained while changing the order of chunk movements and its

characteristic provides a theoretical basis for solving the problem

of scaling RR-striped volumes. SLAS approach utilizes the

features of the reordering window and guarantees data consistency

and does not enlarge the impact on the response time of

foreground I/Os. Experiments have shown that SLAS has a good

performance, but during redistribution it moves all the blocks of

data into all the disks and this have been proved that is a

weakness for SLAS that decreases the performance. We are

interested in finding an approach that performs the redistribution

of data, but it also minimizes system loading and redistribution

time. Further, there is ALV approach that increases the efficiency

of a scaling process based on the reordering window and applies it

on RAID-5 storage volume [4], [16], [17], [18]. It takes

advantage of the qualities of the reordering window and uses three

added techniques to make it appropriate for RAID-5. From the

experiments result it was concluded that ALV had a noticeable

improvement over earlier approaches in two metrics: the

redistribution time and the user response time. Based on the fact

that we are interested in the redistribution of data in RAID-5,

ALV is an interesting case, but the development of techniques has

progressed even more. FastScale is an algorithm that best fulfills

our requirements for a performing and efficient approach [2],

[15], [20], [21]. It is implemented and proven in RAID-0 and the

experiments values are the reason why we decided to treat this

algorithm and to make it adaptable for RAID-5. The significant

results of this approach derive by its addressing function.

FastScale has a very small redistribution time against SLAS,

because its addressing function minimizes data movement.. In

Figure 1 is showed the movement of data blocks on RAID-0 with

FastScale. FastScale is not implemented in RAID-5 because it has

not included parity bit in its addressing function During the

review of FastScale we noticed that the blocks change move from

BCI'13 September 19-21, Thessaloniki, Greece. Copyright © 2013 for the individual papers by the papers' authors.
Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.

52

old disks to the added ones, but they do not change the physical

address. Our contribution in this paper is exactly the modification

of FastScale. We add some lines to include the parity bits on

FastScale. The position of the parity block is important in RAID-5

volumes and we take account of them in our algorithm.

Figure 1. The moving of blocks in RAID-0 after adding two

new disks using FastScale.

We rely on the fact that the main strengths of FastScale that

improve the performance of RAID-0 are not changed, and thus we

anticipate that even in RAID-5 will have short redistribution time

and high performance.

2. SCALING TECHNIQUES

2.1 Data migration techniques on different

systems

2.1.1 SCADDAR
The first requirement that the approach must fulfill is making

redistribution of data without interruptions of the activity.

SCADDAR [5] is an approach that was developed according to

this requirement for the continuous media server. This is the

example of one of the approaches that performs an efficient,

online scaling process when we add disks in a continuous media

server.

The redistribution is oriented by pseudo-random placement

without moving all the blocks after each scaling operation.

SCADDAR requires a storage structure for recording scaling

operations, rather than a directory for storing block locations, as it

happens in other cases. The storage structure for the scaling

operations in SCADDAR is significantly less than the number of

all block locations. One of the particularities of SCADDAR is the

computation of the new locations of blocks on-the-fly for each

block access by using a series of inexpensive mod and div

functions. In practice, it uses a series of REMAP functions which

derive the location of a new block using only its original location

as a basis. The redistribution_funciton() and access_function(),

that are the main components of the SCADDAR approach,

satisfies all the objectives that were presented. It makes the

movement only over those blocks that have the necessity to move,

and thus blocks either move onto an added disk or off of a

removed disk. REMAP always uses a new source of randomness

to compute the remapped number of the block. Also, block

accesses only require one disk access per block.

After several experiments that was performed with SCADDAR, it

resulted that it provides load balancing. In other words,

SCADDAR maintains load balancing of blocks across disks after

several scaling operations. After eight scaling operations

performed on 20 different objects, the percentage of load

fluctuation reaches the threshold level in which redistribution of

all blocks is recommended. The uniform distribution, the balanced

load after redistribution, the retrieved redistributed blocks at the

normal mode of operation and the low complexity computation

are the restrictions that SCADDAR satisfies.

2.1.2 CRUSH
CRUSH (Controlled Replication Under Scalable Hashing) is a

scaling approach that supports different hierarchy levels that

provide the administrator finer control over the data placement in

the storage environment. It works like a pseudo-random,

deterministic function that maps an input value, and in practice

this value is an object or object group identifier, to a list of

devices on which to store object replicas. The difference from

conventional approaches in that data placement is that it does not

rely on any sort of per-file or per-object directory. The only

condition that should met from CRUSH before it performs the

data movement is the need to have a compact, hierarchical

description of the devices comprising the storage cluster and

knowledge of the replica placement policy. Its main advantages

are: first, it is completely distributed such that any party in a large

system can independently calculate the location of any object; and

second, what little metadata is required is mostly static, changing

only when devices are added or removed. CRUSH is designed to

optimally distribute data to utilize available resources, efficiently

reorganize data when storage devices are added or removed, and

enforce flexible constraints on the object replica placement that

maximize data safety in the presence of coincident or correlated

hardware failures. CRUSH supports different data safety

mechanisms, including n-way replication (mirroring), RAID

parity schemes or other forms of erasure coding, and hybrid

approaches (e. g., RAID-10). These are the real features that make

CRUSH suited for managing object distribution in extremely large

(multi-petabyte) storage systems where scalability, performance,

and reliability are critically important.

Figure 2. The computation time of CRUSH compared to

RUSH.

Fig.2 illustrates the result of one of the experiments that were

performed in comparison with RUSH [9]. In general, all

experiments, demonstrated that CRUSH’s performance—both the

execution time and the quality of the results are better. In its

present form, approximately 45% of the time spent in the CRUSH

mapping function is spent hashing values, making the hash key to

both overall speed and distribution quality and a ripe target for

optimization.

2.1.3 Other techniques
The development of the scaling and data redistributing techniques

includes a variety of situations according to the system where we

want to make the distribution. For example, DRP is a technique

that was focused on the mathematical modelling of the problem of

disk replacement, when one disk fails and it was proved that the

best solution is a variation of the single-source shortest path

problem [6]. The upper bound on the complexity of finding the

53

optimal sequence is polynomial. DRP guarantees that after every

atomic operation the data is balanced across the devices involved;

and also after every atomic operation all the block locations are

well randomized, i.e., The workload imposed on every device is

approximately equal. Migrating the data and respecting a

constraint on the total number of available disk slots was a

condition to be ensured when a sequence of disk additions and

removals of a storage system is found. There are two term the

operation: if the system has enough empty disk slots to add all

new disks the operation is termed unbounded; otherwise, it will be

bounded. The DRP’s limitation was that the authors have not

addressed the limited storage of each disk. It is possible in some

cases that algorithms may exceed the physically available storage

on some devices temporarily.

Another approach that was thought to scale to exascale

environments, as either their memory consumption, their load

deviation, or their processing overhead is too high, is Random

Slicing. In general, the other approaches are able to easily adapt to

changing environments, a property which cannot be delivered by

table- or rule-based approaches, but the Random Slicing strategy

combines the advantages of different approaches by keeping a

small table and thereby reducing the amount of necessary random

experiments. The evaluations and comparisons with well known

strategies studied by the authors [7], [10], [24] shows that

Random Slicing is able to deliver the best fairness in all the cases

studied and to scale up to exascale data centers. During the

comparison of different hashing-based data distribution strategies

that are able to replicate data in a heterogeneous and dynamic

environment, there were shown the strengths and drawbacks of

the different strategies as well as their constraints. Random

Slicing overcomes the drawbacks of randomized data distribution

strategies by incorporating lessons learned from table-based, rule-

based and pseudo-randomized hashing strategies [25], [26]. It

keeps a small table with information about previous storage

system insertions and removals. This table helps the most to

reduce the required amount of randomness in the system and thus

reduces the amount of necessary main memory by orders of

magnitude. One important note is that all randomized strategy

map (virtual) addresses to a set of disks, but do not define the

placement of the corresponding block on the disk surface. This

placement of the block devices has to be resolved by additional

software running on the disk itself. This way to manage the

addition is different from the conventional block-based hard

drives, object based storage devices that manage disk block

allocation internally, exposing an interface that allows others to

read and write to variably-sized, arbitrarily-named objects.

2.2 Scaling approaches on RAID systems
Our attention was focused on RAID systems, and especially on

level 5 RAID. As we mentioned before, the redistributing

techniques have developed time after time, improving

performance of different systems where they are applied. In this

subsection we have brought a short summary of two scaling

approached that are developed for RAID systems.

2.2.1 SLAS
When we make a division of the striping policies, we can

mention: round-robin policy and random policy. This

classification is based on one of the most important problems in

current systems, the increasing demand of applications for higher

I/O performance and larger storage capacity. Random striping

appears to be more flexible when adding new disks or deleting

existing disks. But random striping is not as much a satisfactory

solution as expected because its poor performance and lack of

qualified randomized hash function. Round-robin striping,

instead, gives to the system uniform distribution and low-

complexity computation and this makes usable it the most of

applications that demand high bandwidth and massive storage.

The storage systems where round-robin striping is applied in are:

disk arrays, logical volume managers, and file systems. We add

disks to the round-robin striped volumes when storage capacity

and I/O bandwidth of many systems need increasing.

The basis of the SLAS approach starts when the concept of the

reordering window was defined. The need to have another data

redistribution approach generated the researches on the reordering

window. During the data redistribution process, there is always a

reordering window where no valid data chunk will be overwritten

while changing the order of data movements. The reordering

window is a window where data consistency can be maintained

while changing the order of chunk movements and its

characteristic provides a theoretical basis for solving the problem

of scaling RR-striped volumes.

Figure 3. Mapping management based on a sliding window for

the data redistribution

Fig. 3 illustrates the concept of the sliding window during the

process of redistribution. The sliding window is similar to a small

mapping table, and it describes the mapping information on a

continuous segment of the striped volume. Before the data

redistribution, the original mapping function is used, and 2 disks

are used to serve requests. During the data redistribution, only

data within the range of the sliding window are redistributed. The

foreground I/O requests, sent to the logical address in front of the

sliding window, are mapped through the original function; those

sent to the address behind the sliding window are mapped through

the new function; and those sent to the address in the range of the

sliding window are mapped through the sliding window.

After all of the data in the sliding window are moved, the window

slides ahead by one window size. Thus, the newly added disk is

gradually available to serve foreground I/O requests. The data

redistribution of the whole volume is completed when the sliding

window reaches the end of the original striped volume. SLAS

guarantees data consistency and does not enlarge the impact on

the response time of foreground I/Os. SLAS changes the

movement order of data chunks in a sliding window in order to

aggregate reads/writes of multiple data chunks and SLAS serves

foreground I/O requests between aggregate chunk reads/writes in

a disk-scaling operation. The data redistribution causes the

increase of the number of metadata writes. SLAS uses an

additional technique to decrease this number: lazy updates of

metadata mapping.

Among the SLAS features we have to mention that it can not only

be used to add new disks to a RAID-0 volume; it can also be

extended to remove existing disks from a RAID-0 volume and to

add/remove disks to/from a RAID-4 or RAID-5 volume [3]. The

experiments made with SLAS demonstrated that it shortens the

redistribution duration and the maximum response time. We are

interested also on another SLAS feature: during redistribution it

moves all the blocks of data into all the disks and moving all data

54

blocks is not necessary because this reduces system performance.

Later we will discuss another approach that changed in exactly

this feature of the technique and its results a performing solution.

2.2.2 ALV
ALV is another approach [2] that increases the efficiency of a

scaling process based on the reordering window applying it on

RAID-5 storage volume. The main achievement of the authors

was to take advantage of the qualities of the reordering window

and then they used different techniques to make it appropriate for

RAID-5. In general, every approach coordinates with other

techniques that increase performance level. The three techniques

that ALV uses to improve RAID-5 performance are the following:

first, ALV changes the order of data movements to access

multiple successive chunks via a single I/O. Second, ALV updates

mapping metadata lazily to minimize the number of metadata

writes. Data movement is not check pointed, until a threat to data

consistency occurs. And third, depending on application

workload, ALV adjust the redistribution rate using an on/off

logical valve. The operation mode of ALV approach is similar to

SLAS approach because of their common basic technique: the

reordering window. Using the new techniques, ALV achieves

higher efficiency. It was concluded from the experimental results

that ALV had a noticeable improvement over earlier approaches

in two metrics: the redistribution time and the user response time.

Figure 4.A series of states in data redistribution for RAID-5

scaling from 3 disks to 4. The reordering window is

represented by “R”.

The difference between RAID-5 and RAID-0 is precisely the

presence of the parity bits, and in one way or another, these bits

will influence the scaling process. In the Fig. 4 are illustrated the

initial states of the redistribution process in RAID-5 volume using

ALV. The presence of parity blocks orients all the blocks

movement. This example of the process proves that the reordering

window solves properly the influence of the parity blocks. In the

figure, “P” represents the parity before scaling and with “Q” is

noted the parity that will be calculated after the redistribution

process. ALV changes the order of the block movement and this

gives the possibility to avoid unnecessary parity blocks, and to

recalculate the new parity blocks.

ALV is derived from SLAS and we found an approach that has a

better performance compared to SLAS. Our focus is precisely on

RAID-5 volumes and this is why we will propose an algorithm

that can be applied to it.

2.3 FastScale
Before proposing our approach we will summarize the main

features of FastScale. It is an approach that tolerates multiple disk

addition moving the minimum amount of data. The basic idea of

the FastScale approach is shown in Fig. 5.

Figure 5. Data migration using FastScale. No data is migrated

among old disks.

FastScale moves only data blocks from old disks to new disk

enough for preserving the uniformity of data distribution, while

not migrating data among old disks. The main strength of

FastScale is its elastic addressing function. This addressing

function computes easily the location of one block, without any

lookup operation. FastScale changes only a part of the data layout

while preserving the uniformity of data distribution. So, FastScale

minimizes data migration for RAID scaling during the

redistribution process.

Figure 6. The stages of the scaling process in RAID-0 using

FastScale.

55

One RAID scaling process can be divided into two logical stages:

data migration and data filling. In Fig. 6 are shown both of the

stages, a fraction of existing data blocks is migrated to new disks

and then filled in. For the RAID scaling, we group into one

segment each 5 sequential locations in one disk. For the 5 disks, 5

segments with the same physical address are grouped into one

region. In the figure, different regions are separated by a wavy

line. The data migration and data filling process is the same for

every different region. In a region, all of the data blocks within a

parallelogram will be moved. The base of the parallelogram is 2,

and the height is 3. In other words, 2 data blocks are selected from

each old disk and migrated to the new disks. The example in Fig.

6 shows the general operation that FastScale makes to the data

blocks during the migration process in RAID-0.

FastScale satisfies all the requirements of a scaling algorithm.

FastScale maintains a uniform data distribution after RAID

scaling; minimizes the amount of data to be migrated entirely;

preserves a simple management of data due to deterministic

placement; can sustain the above three features after multiple disk

additions. The success of FastScale depends also on other special

physical optimization made to the process of data migration. It

uses aggregate accesses to improve the efficiency of data

migration. It records data migration lazily to minimize the number

of metadata updates. However, data consistency is ensured, even

metadata updates are minimized.

Figure 7. Performance comparison between FastScale and

SLAS under the same workload.

Fig.7 shows graphically the results of a comparison made between

FastScale and SLAS under the same workload. All the results of

the experiments done [2] show that FastScale has a high

performance even in different workload. FastScale is implemented

and proved on RAID-0 volumes when we add disks, but it is not

implemented when we remove disks. Otherwise for RAID-5 it is

not implemented yet, because the factor of the parity bits is not

taken into account in the addressing function of the approach.

3. THE PROPOSED ALGORITHM FOR

RAID-5
Our goal is to give to RAID-5 scaling a higher performance using

the techniques that FastScale owns. The restriction of FastScale to

RAID-5 is that it does not include parity bits in the algorithm. We

worked exactly on including the parity bits in the scaling process.

Looking carefully the structure of RAID-5, we notice that the

position of every parity block is defined by a certain rule. In

RAID-5, as it happens in RAID-0, we group blocks in regions. As

it is shown in Fig.8, in every region of a RAID-5 volume we have

a parity block in every disk and these blocks correspond to

different physical addresses. In other words, there is only a parity

block for every physical address of the system. After the addition

of new disks the parity blocks change their position and their

value. Our algorithm gives a solution how FastScale can include

the parity blocks in the redistribution process.

Figure 8. The structure of RAID-5 and the blocks with the

same physical number.

The other fact that we will use in our algorithm is: during the

redistribution, FastScale does not change the physical number

inside of blocks, but they only move from old disks to the new

ones with the same physical address. Basically our approach does

not change anything to FastScale approach. The redistribution

process after scaling RAID-5 is conducted form FastScale and the

blocks move regardless of the content of the block.

Our proposal must be implemented exactly after the migration of

data blocks and before the computation of the new parity value.

At first, our algorithm controls if the position of the parity block

is right, then it calls the parity computation procedure. The

control if the position of parity is right includes three situations:

 The new position of parity block is empty

 The new position of parity block has the “old” parity

block

 The new position of parity block has data written in it

The first and the second situation are less problematic, because we

can write and overwrite the “new” parity safely, without losing

data. The third situation requires more attention. If there is written

data in the block, the new parity cannot be written there. Given to

the facts that parity blocks have specific positions, and that there

must be an “old” parity block, that is not more needed anymore,

with the same physical number b and we can make an exchange

between them. This way, we save the data and write the parity bits

where it is required.

Our algorithm works in addition to the function that calculates

parity. We have not defined a specific function for the calculation

of the parity.

Figure 9. The redistribution process in RAID-5 using the

proposed algorithm.

56

In Fig.9 is illustrated schematically the process of data

redistribution on RAID-5 using our algorithm. Initially, this

algorithm makes a control of the content of every position that

should be a parity block. If the block is empty, the function of the

parity calculation is called. Otherwise, if the block is not empty,

we must distinguish if the content is parity or data bits. In the case

of parity bits, we do the same as it was empty: we write over it

because the old parity is not needed, the new one is written. If the

content is data, we cannot write over it, because we lose the data.

In this case, we find the old parity block that has the same

physical number and perform an exchange of blocks. On one side,

we protect data and save them, and on the other side we write the

new parity bits in the proper position.

It is explained by W. Zheng and G. Zhang [2], that FastScale

gives high performance by minimizing the data movement. The

phase of the calculation of parity is unavoidable in RAID-5

volumes and it adds latency to the process of redistribution. But,

due to the fact that we do not change any part of the addressing

function of FastScale, we predict that the performance of RAID-5

with FastScale will be at high levels too.

The proposed Algorithm:

ParityBitPositionControl (m, n, d, b)

d: the disk holding block x

b: physical block number

m: the number of old disks

n: the number of new disks

if R[(m+n) – bmod (m+n-1) - 1][b] == null

// we control if the physical block is written

 d0  R[(m+n) – bmod (m+n-1) - 1], b0  b

// we define d0 and b0 like the coordinates of the position of the new

parity

 ParityComputationProcedure (d0, b0)

// we call the procedure that calculates the new parity

exit;

else if R[(m+n) – bmod (m+n-1) - 1] [b] == parity bit

 d0  R[(m+n) – bmod (m+n-1) - 1], b0  b

 R[d0][b0]  null

// the old parity is not necessary anymore, so we delete the

information in it, and then we write the new parity in it

 ParityComputationProcedure (d0, b0)

exit;

else if R[(m+n) – bmod (m+n-1) - 1] [b] == info bit

 d0  R[(m+n) – bmod (m+n-1) - 1], b0  b

// it is necessary to save logical block of the striped information, so

when we have information in the position where the new parity

should be, we move it to the physical block of the old parity

 R[m – bmod (m - 1) – 1][b]  R[d0][b0]

 R[d0][b0]  null

// after moving info bits, the old parity is not necessary, so we can

delete it

 ParityComputationProcedure (d0, b0)

exit;

R[x][y] – is noted the position of the block in the whole system.

ParityComputationProcedure – this instruction calls the

procedure that is used in the system to calculate parity.

4. CONCLUSIONS
Data storing devices are an important component of nowadays

systems and their performance affect to the entire system

performance. RAID volumes are storing devices that provide

more data security, availability and performance to the existing

system. Our attention was concentrated on RAID-5 and especially

in finding a way how RAID-5 could be even more efficient and to

improve the performance of the system. Due to the fact that there

is a continuous need to add disks to the volume, then we face with

the problem of data redistribution. After reviewing some

algorithms that perform the redistribution, further we discussed

FastScale that is an approach with high levels of performance.

The contribution of this paper is an algorithm that interacts with

FastScale and includes the parity blocks in the redistribution

process of data blocks. This algorithm makes possible the

application of the FastScale algorithm and its techniques to

RAID-5 also. We rely on the fact that the main strengths of

FastScale which enhance performance on RAID-0 are not

changed, and therefore we anticipate that even in RAID-5 will

have short redistribution time and high performance. However,

the focus during our future work will be on proving our prediction

through experimental values and numerical analysis.

5. REFERENCES
[1] D. A. Patterson, G. A. Gibson, R. H. Katz. A Case for

Redundant Arrays of Inexpensive Disks (RAID), in

Proceedings of the International Conference on Management

of Data (SIGMOD’88), June 1988. pp. 109-116

[2] W. Zheng and G. Zhang. Fastscale: Accelerate raid scaling by

minimizing data migration. In Proceedings of the 9th

USENIX Conference on File and Storage Technologies

(FAST), Feb. 2011.

[3] G. Zhang, J. Shu, W. Xue, and W. Zheng. SLAS: An efficient

approach to scaling round-robin striped volumes. ACM Trans.

Storage, volume 3, issue 1, Article 3, pg 1-39, March 2007.

[4] Guangyan Zhang, Weimin Zheng, Jiwu Shu, "ALV: A New

Data Redistribution Approach to RAID-5 Scaling," IEEE

Transactions on Computers, vol. 59, no. 3, pp. 345-357,

March 2010.

[5] A. Goel, C. Shahabi, S-YD Yao, R. Zimmermann.

SCADDAR: An efficient randomized technique to reorganize

continuous media blocks. In Proceedings of the 18th

International Conference on Data Engineering (ICDE’02), pg.

473-482, San Jose, 2002.

[6] Beomjoo Seo and Roger Zimmermann. Efficient disk

replacement and data migration algorithms for large disk

subsystems. ACM Transactions on Storage (TOS), volume 1,

issue 3, pg 316-345, August 2005.

[7] A. Miranda, S. Effert, Y. Kang, E.L. Miller, A. Brinkmann, T.

Cortes. Reliable and Randomized Data Distribution Strategies

for Large Scale Storage Systems on 18th Annual International

Conference on High Performance Computing Bangalore,

India, December 18-21, 2011.

[8] D. Yao, C. Shahabi, Per-Åke Larson. Disk Labeling

Techniques: Hash-Based Approaches to Disk Scaling.

Technical Report, University of Southern California, 2003.

[9] S. A.Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn.

CRUSH: Controlled, Scalable, Decentralized Placement of

Replicated Data. In Proceedings of the International

57

Conference on Super Computing (SC’06). Tampa Bay, FL.

2006.

[10] A. Brinkmann, K. Salzwedel, and C. Scheideler. Efficient,

distributed data placement strategies for storage area

networks. In ACM Symposium on Parallel Algorithms and

Architectures, pp. 119-128. 2000

[11] A. Devulapalli, D. Dalessandro, and P. Wyckoff. Data

Structure Consistency Using Atomic Operations in Storage

Devices. In Proceedings of the 5th International Workshop on

Storage Network Architecture and Parallel I/Os (SNAPI),

pages 65 – 73, Baltimore, USA, 2008.

[12] R. J. Honicky and E. L. Miller. A fast algorithm for online

placement and reorganization of replicated data. In

Proceedings of the 17th IEEE International Parallel and

Distributed Processing Symposium (IPDPS), Nice, France,

Apr. 2003.

[13] A. Thomasian, Y. Tang, "Performance, Reliability, and

Performability Aspects of Hierarchical RAID," nas, pp.92-

101, 2011 IEEE Sixth International Conference on

Networking, Architecture, and Storage, 2011

[14] Y. Kwak, B. Gu, S. Cheong, J. Hwang, Y.Choi, Performance

Analysis of RAID Implementations, U- and E-Service,

Science and Technology, Communications in Computer and

Information Science Volume 62, 2009, pp 47-52

[15] J. Gonzalez and T. Cortes, “Increasing the Capacity of

RAID5 by Online Gradual Assimilation,” Proc. Int’l

Workshop Storage Network Architecture and Parallel I/Os,

Sept. 2004.

[16] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. Ganger,

“Argon: Performance Insulation for Shared Storage Servers,”

Proc. Fifth USENIX Conf. File and Storage Technologies

(FAST ’07), Feb. 2007.

[17] C. Lu, G. Alvarez, and J. Wilkes, “Aqueduct: Online Data

Migration with Performance Guarantees,” Proc. First

USENIX Conf. File and Storage Technologies (FAST ’02),

pp. 219-230, 2002.

[18] L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen, Z.

Wang, and Z. Song, “PRO: A Popularity-Based Multi-

Threaded Reconstruction Optimization for RAID-Structured

Storage Systems,” Proc. Fifth USENIX Conf. File and

Storage Technologies (FAST ’07), pp. 277-290, Feb. 2007.

[19] C.R Franklin and J.T. Wong, Expansion of RAID

Subsystems Using Spare Space with Immediate Access to

New Space, US Patent 10/033,997, 2006.

[20] Suzhen Wu, Hong Jiang, Dan Feng, Lei Tian, and Bo Mao,

WorkOut: I/O Workload Outsourcing for Boosting the RAID

Reconstruction Performance, In Proceedings of the 7th

USENIX Conference on File and Storage Technologies

(FAST ’09), San Francisco, CA, USA, pp. 239-252. February

2009.

[21] R. J. Honicky and E. L. Miller. Replication under scalable

hashing: A family of algorithms for scalable decentralized

data distribution. In Proceedings of the 18th International

Parallel and Distributed Processing Symposium (IPDPS’04),

IEEE, 2004.

[22] K. Dasgupta, S. Ghosal, R. Jain, QoSMig: Adaptive rate-

controlled migration of bulk data in storage systems. In

Proceedings of the International Conference on Data

Engineering (ICDE’05), 2005, 816–827.

[23] A. Verma, U. Sharma, J. Rubas, An architecture for

lifecycle management in very large file systems. In Proceeding

of the 22nd IEEE-13th NASA Goddard Conference on Mass

Storage Systems and Technology (MSST’05), 2005.

[24] A. Brinkmann, S. Effert, F. Meyer auf der Heide, and C.

Scheideler. Dynamic and Redundant Data Placement. In

Proceedings of the 27th IEEE International Conference on

Distributed Computing Systems (ICDCS), Toronto, Canada,

June 2007.

[25] C. Schindelhauer and G. Schomaker. Weighted distributed

hash tables. In Proceedings of the 17th ACM Symposium on

Parallel Algorithms and Architectures (SPAA), pages 218–

227, Las Vegas, Nevada, USA, July 2005.

[26] R. J. Honicky and E. L. Miller. Replication Under Scalable

Hashing: A Family of Algorithms for Scalable Decentralized

Data Distribution. In Proceedings of the 18th IEEE

International Parallel and Distributed Processing Symposium

(IPDPS), 2004.

58

