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ABSTRACT 

RAID is a storing technology that is very often used in nowadays 

systems and in general this storing volume provides more data 

security, availability and performance to the existing system. 

Being an important component of the system, the data storage 

volume and its performance affect directly the performance of the 

entire system. This is the motivation why it is convenient for us to 

improve as much as it is possible the weaknesses of the RAID 

volume. We are focused on data redistribution problem which is 

necessary to be performed after adding disks to the volume. In this 

paper we will review some algorithms and in particular we will 

discuss FastScale approach, which resulted in satisfactory values 

of data redistribution time when it was applied on RAID-0. Our 

proposal is a short algorithm that interacts with FastScale and 

adjusts it for RAID-5 volumes. The main structure of FastScale is 

not changed and this gives us reason to anticipate lower 

redistribution time and higher performance in RAID-5 volumes, 

as happens in RAID-0. 

Categories and Subject Descriptors 

D.4.3 [Operating Systems]: File System Management – 

maintenance; D.4.3 [Operating Systems]: Performance – 

modeling and prediction. 

General Terms 

Algorithms, Performance. 

Keywords 

RAID-5, data redistribution time, parity block. 

1. INTRODUCTION 
RAID systems give higher performance, more capacity and data 

reliability to the existing system. RAID volumes can be managed 

as a single device and they are useful for the support of every kind 

of user application [1]. They are very often used in nowadays 

systems to support data storage. As part of the different 

components that are present in systems, the performance of the 

entire system depends on RAID performance also. Efforts to 

increase even more the performance of RAID 5 led us to the 

weakness of this device. One situation that we are always faced 

with is a continuous increase of user data and thus the continuous 

requirement for larger storage capacity. To supply this necessity 

we perform a disk addition. This disk addition is termed “RAID 

scaling”. The problem that is to be solved after scaling is the 

redistribution of data onto all the disks of the volume. 

As hardware and software of systems have changed and improved, 

also different techniques have developed for redistribution of data 

in different types of systems [6], [7], [8], [9]. We will make a 

general summary of some of the data redistributing approaches. 

Especially, we will discuss the features of every technique used by 

them. Initially we will take a look on SCADDAR approach. It is 

an efficient, online method to scale disks in a continuous media 

server and it is based on using a series of REMAP functions 

which derive the location of a new block using only its original 

location as a basis [5]. SCADDAR ensures load balancing of 

blocks and in general low complexity computation to the system. 

The development of scaling approaches has advanced achieving 

other levels of performance and efficiency.  

We will review also another approach that is based on the fact that 

during the data redistribution process and there is always a 

reordering window where no valid data chunk will be overwritten 

while changing the order of data movements [3], [22], [23]. The 

reordering window is a window where data consistency can be 

maintained while changing the order of chunk movements and its 

characteristic provides a theoretical basis for solving the problem 

of scaling RR-striped volumes. SLAS approach utilizes the 

features of the reordering window and guarantees data consistency 

and does not enlarge the impact on the response time of 

foreground I/Os. Experiments have shown that SLAS has a good 

performance, but during redistribution it moves all the blocks of 

data into all the disks and this have been proved that is a 

weakness for SLAS that decreases the performance. We are 

interested in finding an approach that performs the redistribution 

of data, but it also minimizes system loading and redistribution 

time. Further, there is ALV approach that increases the efficiency 

of a scaling process based on the reordering window and applies it 

on RAID-5 storage volume [4], [16], [17], [18]. It takes 

advantage of the qualities of the reordering window and uses three 

added techniques to make it appropriate for RAID-5. From the 

experiments result it was concluded that ALV had a noticeable 

improvement over earlier approaches in two metrics: the 

redistribution time and the user response time. Based on the fact 

that we are interested in the redistribution of data in RAID-5, 

ALV is an interesting case, but the development of techniques has 

progressed even more. FastScale is an algorithm that best fulfills 

our requirements for a performing and efficient approach [2], 

[15], [20], [21]. It is implemented and proven in RAID-0 and the 

experiments values are the reason why we decided to treat this 

algorithm and to make it adaptable for RAID-5. The significant 

results of this approach derive by its addressing function. 

FastScale has a very small redistribution time against SLAS, 

because its addressing function minimizes data movement.. In 

Figure 1 is showed the movement of data blocks on RAID-0 with 

FastScale. FastScale is not implemented in RAID-5 because it has 

not included parity bit in its addressing function During the 

review of FastScale we noticed that the blocks change move from 
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old disks to the added ones, but they do not change the physical 

address. Our contribution in this paper is exactly the modification 

of FastScale. We add some lines to include the parity bits on 

FastScale. The position of the parity block is important in RAID-5 

volumes and we take account of them in our algorithm. 

 
Figure 1. The moving of blocks in RAID-0 after adding two 

new disks using FastScale. 

We rely on the fact that the main strengths of FastScale that 

improve the performance of RAID-0 are not changed, and thus we 

anticipate that even in RAID-5 will have short redistribution time 

and high performance.  

2. SCALING TECHNIQUES  

2.1 Data migration techniques on different 

systems 

2.1.1 SCADDAR 
The first requirement that the approach must fulfill is making 

redistribution of data without interruptions of the activity. 

SCADDAR [5] is an approach that was developed according to 

this requirement for the continuous media server. This is the 

example of one of the approaches that performs an efficient, 

online scaling process when we add disks in a continuous media 

server.   

The redistribution is oriented by pseudo-random placement 

without moving all the blocks after each scaling operation. 

SCADDAR requires a storage structure for recording scaling 

operations, rather than a directory for storing block locations, as it 

happens in other cases. The storage structure for the scaling 

operations in SCADDAR is significantly less than the number of 

all block locations. One of the particularities of SCADDAR is the 

computation of the new locations of blocks on-the-fly for each 

block access by using a series of inexpensive mod and div 

functions. In practice, it uses a series of REMAP functions which 

derive the location of a new block using only its original location 

as a basis. The redistribution_funciton() and access_function(), 

that are the main components of the SCADDAR approach, 

satisfies all the objectives that were presented. It makes the 

movement only over those blocks that have the necessity to move, 

and thus blocks either move onto an added disk or off of a 

removed disk. REMAP always uses a new source of randomness 

to compute the remapped number of the block. Also, block 

accesses only require one disk access per block. 

After several experiments that was performed with SCADDAR, it 

resulted that it provides load balancing. In other words, 

SCADDAR maintains load balancing of blocks across disks after 

several scaling operations. After eight scaling operations 

performed on 20 different objects, the percentage of load 

fluctuation reaches the threshold level in which redistribution of 

all blocks is recommended. The uniform distribution, the balanced 

load after redistribution, the retrieved redistributed blocks at the 

normal mode of operation and the low complexity computation 

are the restrictions that SCADDAR satisfies. 

2.1.2 CRUSH 
CRUSH (Controlled Replication Under Scalable Hashing) is a 

scaling approach that supports different hierarchy levels that 

provide the administrator finer control over the data placement in 

the storage environment. It works like a pseudo-random, 

deterministic function that maps an input value, and in practice 

this value is an object or object group identifier, to a list of 

devices on which to store object replicas. The difference from 

conventional approaches in that data placement is that it does not 

rely on any sort of per-file or per-object directory. The only 

condition that should met from CRUSH before it performs the 

data movement is the need to have a compact, hierarchical 

description of the devices comprising the storage cluster and 

knowledge of the replica placement policy. Its main advantages 

are: first, it is completely distributed such that any party in a large 

system can independently calculate the location of any object; and 

second, what little metadata is required is mostly static, changing 

only when devices are added or removed. CRUSH is designed to 

optimally distribute data to utilize available resources, efficiently 

reorganize data when storage devices are added or removed, and 

enforce flexible constraints on the object replica placement that 

maximize data safety in the presence of coincident or correlated 

hardware failures. CRUSH supports different  data safety 

mechanisms, including n-way replication (mirroring), RAID 

parity schemes or other forms of erasure coding, and hybrid 

approaches (e. g., RAID-10). These are the real features that make 

CRUSH suited for managing object distribution in extremely large 

(multi-petabyte) storage systems where scalability, performance, 

and reliability are critically important. 

 
Figure 2. The computation time of CRUSH compared to 

RUSH. 

Fig.2 illustrates the result of one of the experiments that were 

performed in comparison with RUSH [9]. In general, all 

experiments, demonstrated that CRUSH’s performance—both the 

execution time and the quality of the results are better. In its 

present form, approximately 45% of the time spent in the CRUSH 

mapping function is spent hashing values, making the hash key to 

both overall speed and distribution quality and a ripe target for 

optimization. 

2.1.3 Other techniques 
The development of the scaling and data redistributing techniques 

includes a variety of situations according to the system where we 

want to make the distribution. For example, DRP is a technique 

that was focused on the mathematical modelling of the problem of 

disk replacement, when one disk fails and it was proved that the 

best solution is a variation of the single-source shortest path 

problem [6]. The upper bound on the complexity of finding the 
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optimal sequence is polynomial. DRP guarantees that after every 

atomic operation the data is balanced across the devices involved; 

and also after every atomic operation all the block locations are 

well randomized, i.e., The workload imposed on every device is 

approximately equal. Migrating the data and respecting a 

constraint on the total number of available disk slots was a 

condition to be ensured when a sequence of disk additions and 

removals of a storage system is found. There are two term the 

operation: if the system has enough empty disk slots to add all 

new disks the operation is termed unbounded; otherwise, it will be 

bounded. The DRP’s limitation was that the authors have not 

addressed the limited storage of each disk. It is possible in some 

cases that algorithms may exceed the physically available storage 

on some devices temporarily.  

Another approach that was thought to scale to exascale 

environments, as either their memory consumption, their load 

deviation, or their processing overhead is too high, is Random 

Slicing. In general, the other approaches are able to easily adapt to 

changing environments, a property which cannot be delivered by 

table- or rule-based approaches, but the Random Slicing strategy 

combines the advantages of different approaches by keeping a 

small table and thereby reducing the amount of necessary random 

experiments. The evaluations and comparisons with well known 

strategies studied by the authors [7], [10], [24] shows that 

Random Slicing is able to deliver the best fairness in all the cases 

studied and to scale up to exascale data centers. During the 

comparison of different hashing-based data distribution strategies 

that are able to replicate data in a heterogeneous and dynamic 

environment, there were shown the strengths and drawbacks of 

the different strategies as well as their constraints. Random 

Slicing overcomes the drawbacks of randomized data distribution 

strategies by incorporating lessons learned from table-based, rule-

based and pseudo-randomized hashing strategies [25], [26]. It 

keeps a small table with information about previous storage 

system insertions and removals. This table helps the most to 

reduce the required amount of randomness in the system and thus 

reduces the amount of necessary main memory by orders of 

magnitude. One important note is that all randomized strategy 

map (virtual) addresses to a set of disks, but do not define the 

placement of the corresponding block on the disk surface. This 

placement of the block devices has to be resolved by additional 

software running on the disk itself. This way to manage the 

addition is different from the conventional block-based hard 

drives, object based storage devices that manage disk block 

allocation internally, exposing an interface that allows others to 

read and write to variably-sized, arbitrarily-named objects. 
 

2.2 Scaling approaches on RAID systems 
Our attention was focused on RAID systems, and especially on 

level 5 RAID. As we mentioned before, the redistributing 

techniques have developed time after time, improving 

performance of different systems where they are applied. In this 

subsection we have brought a short summary of two scaling 

approached that are developed for RAID systems. 

2.2.1 SLAS 
When we make a division of the striping policies, we can 

mention: round-robin policy and random policy. This 

classification is based on one of the most important problems in 

current systems, the increasing demand of applications for higher 

I/O performance and larger storage capacity. Random striping 

appears to be more flexible when adding new disks or deleting 

existing disks. But random striping is not as much a satisfactory 

solution as expected because its poor performance and lack of 

qualified randomized hash function. Round-robin striping, 

instead, gives to the system uniform distribution and low-

complexity computation and this makes usable it the most of 

applications that demand high bandwidth and massive storage. 

The storage systems where round-robin striping is applied in are: 

disk arrays, logical volume managers, and file systems. We add 

disks to the round-robin striped volumes when storage capacity 

and I/O bandwidth of many systems need increasing.  

The basis of the SLAS approach starts when the concept of the 

reordering window was defined. The need to have another data 

redistribution approach generated the researches on the reordering 

window. During the data redistribution process, there is always a 

reordering window where no valid data chunk will be overwritten 

while changing the order of data movements. The reordering 

window is a window where data consistency can be maintained 

while changing the order of chunk movements and its 

characteristic provides a theoretical basis for solving the problem 

of scaling RR-striped volumes.  

 

Figure 3. Mapping management based on a sliding window for 

the data redistribution 

Fig. 3 illustrates the concept of the sliding window during the 

process of redistribution. The sliding window is similar to a small 

mapping table, and it describes the mapping information on a 

continuous segment of the striped volume. Before the data 

redistribution, the original mapping function is used, and 2 disks 

are used to serve requests. During the data redistribution, only 

data within the range of the sliding window are redistributed. The 

foreground I/O requests, sent to the logical address in front of the 

sliding window, are mapped through the original function; those 

sent to the address behind the sliding window are mapped through 

the new function; and those sent to the address in the range of the 

sliding window are mapped through the sliding window. 

After all of the data in the sliding window are moved, the window 

slides ahead by one window size. Thus, the newly added disk is 

gradually available to serve foreground I/O requests. The data 

redistribution of the whole volume is completed when the sliding 

window reaches the end of the original striped volume. SLAS 

guarantees data consistency and does not enlarge the impact on 

the response time of foreground I/Os. SLAS changes the 

movement order of data chunks in a sliding window in order to 

aggregate reads/writes of multiple data chunks and SLAS serves 

foreground I/O requests between aggregate chunk reads/writes in 

a disk-scaling operation. The data redistribution causes the 

increase of the number of metadata writes. SLAS uses an 

additional technique to decrease this number: lazy updates of 

metadata mapping.  

Among the SLAS features we have to mention that it can not only 

be used to add new disks to a RAID-0 volume; it can also be 

extended to remove existing disks from a RAID-0 volume and to 

add/remove disks to/from a RAID-4 or RAID-5 volume [3]. The 

experiments made with SLAS demonstrated that it shortens the 

redistribution duration and the maximum response time. We are 

interested also on another SLAS feature: during redistribution it 

moves all the blocks of data into all the disks and moving all data 
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blocks is not necessary because this reduces system performance. 

Later we will discuss another approach that changed in exactly 

this feature of the technique and its results a performing solution.  

2.2.2 ALV 
ALV is another approach [2] that increases the efficiency of a 

scaling process based on the reordering window applying it on 

RAID-5 storage volume. The main achievement of the authors 

was to take advantage of the qualities of the reordering window 

and then they used different techniques to make it appropriate for 

RAID-5. In general, every approach coordinates with other 

techniques that increase performance level.  The three techniques 

that ALV uses to improve RAID-5 performance are the following: 

first, ALV changes the order of data movements to access 

multiple successive chunks via a single I/O. Second, ALV updates 

mapping metadata lazily to minimize the number of metadata 

writes. Data movement is not check pointed, until a threat to data 

consistency occurs. And third, depending on application 

workload, ALV adjust the redistribution rate using an on/off 

logical valve. The operation mode of ALV approach is similar to 

SLAS approach because of their common basic technique: the 

reordering window. Using the new techniques, ALV achieves 

higher efficiency. It was concluded from the experimental results 

that ALV had a noticeable improvement over earlier approaches 

in two metrics: the redistribution time and the user response time. 

 

 
Figure 4.A series of states in data redistribution for RAID-5 

scaling from 3 disks to 4. The reordering window is 

represented by “R”.  

The difference between RAID-5 and RAID-0 is precisely the 

presence of the parity bits, and in one way or another, these bits 

will influence the scaling process. In the Fig. 4 are illustrated the 

initial states of the redistribution process in RAID-5 volume using 

ALV. The presence of parity blocks orients all the blocks 

movement. This example of the process proves that the reordering 

window solves properly the influence of the parity blocks. In the 

figure, “P” represents the parity before scaling and with “Q” is 

noted the parity that will be calculated after the redistribution 

process. ALV changes the order of the block movement and this 

gives the possibility to avoid unnecessary parity blocks, and to 

recalculate the new parity blocks. 

ALV is derived from SLAS and we found an approach that has a 

better performance compared to SLAS. Our focus is precisely on 

RAID-5 volumes and this is why we will propose an algorithm 

that can be applied to it. 

2.3 FastScale 
Before proposing our approach we will summarize the main 

features of FastScale. It is an approach that tolerates multiple disk 

addition moving the minimum amount of data. The basic idea of 

the FastScale approach is shown in Fig. 5.  

 

 

Figure 5. Data migration using FastScale. No data is migrated 

among old disks. 

FastScale moves only data blocks from old disks to new disk 

enough for preserving the uniformity of data distribution, while 

not migrating data among old disks. The main strength of 

FastScale is its elastic addressing function. This addressing 

function computes easily the location of one block, without any 

lookup operation. FastScale changes only a part of the data layout 

while preserving the uniformity of data distribution. So, FastScale 

minimizes data migration for RAID scaling during the 

redistribution process.  

 
Figure 6. The stages of the scaling process in RAID-0 using 

FastScale. 
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One RAID scaling process can be divided into two logical stages: 

data migration and data filling. In Fig. 6 are shown both of the 

stages, a fraction of existing data blocks is migrated to new disks 

and then filled in. For the RAID scaling, we group into one 

segment each 5 sequential locations in one disk. For the 5 disks, 5 

segments with the same physical address are grouped into one 

region. In the figure, different regions are separated by a wavy 

line. The data migration and data filling process is the same for 

every different region. In a region, all of the data blocks within a 

parallelogram will be moved. The base of the parallelogram is 2, 

and the height is 3. In other words, 2 data blocks are selected from 

each old disk and migrated to the new disks. The example in Fig. 

6 shows the general operation that FastScale makes to the data 

blocks during the migration process in RAID-0. 

FastScale satisfies all the requirements of a scaling algorithm. 

FastScale maintains a uniform data distribution after RAID 

scaling; minimizes the amount of data to be migrated entirely; 

preserves a simple management of data due to deterministic 

placement; can sustain the above three features after multiple disk 

additions.  The success of FastScale depends also on other special 

physical optimization made to the process of data migration. It 

uses aggregate accesses to improve the efficiency of data 

migration. It records data migration lazily to minimize the number 

of metadata updates. However, data consistency is ensured, even 

metadata updates are minimized.  

 
Figure 7. Performance comparison between FastScale and 

SLAS under the same workload. 

Fig.7 shows graphically the results of a comparison made between 

FastScale and SLAS under the same workload. All the results of 

the experiments done [2] show that FastScale has a high 

performance even in different workload. FastScale is implemented 

and proved on RAID-0 volumes when we add disks, but it is not 

implemented when we remove disks. Otherwise for RAID-5 it is 

not implemented yet, because the factor of the parity bits is not 

taken into account in the addressing function of the approach.  

3. THE PROPOSED ALGORITHM FOR 

RAID-5 
Our goal is to give to RAID-5 scaling a higher performance using 

the techniques that FastScale owns. The restriction of FastScale to 

RAID-5 is that it does not include parity bits in the algorithm. We 

worked exactly on including the parity bits in the scaling process. 

Looking carefully the structure of RAID-5, we notice that the 

position of every parity block is defined by a certain rule. In 

RAID-5, as it happens in RAID-0, we group blocks in regions. As 

it is shown in Fig.8, in every region of a RAID-5 volume we have 

a parity block in every disk and these blocks correspond to 

different physical addresses. In other words, there is only a parity 

block for every physical address of the system. After the addition 

of new disks the parity blocks change their position and their 

value. Our algorithm gives a solution how FastScale can include 

the parity blocks in the redistribution process.  

 

Figure 8. The structure of RAID-5 and the blocks with the 

same physical number. 

The other fact that we will use in our algorithm is: during the 

redistribution, FastScale does not change the physical number 

inside of blocks, but they only move from old disks to the new 

ones with the same physical address. Basically our approach does 

not change anything to FastScale approach. The redistribution 

process after scaling RAID-5 is conducted form FastScale and the 

blocks move regardless of the content of the block.  

Our proposal must be implemented exactly after the migration of 

data blocks and before the computation of the new parity value. 

At first, our algorithm controls if the position of the parity block 

is right, then it calls the parity computation procedure. The 

control if the position of parity is right includes three situations: 

 The new position of parity block is empty 

 The new position of parity block has the “old” parity 

block 

 The new position of parity block has data written in  it 

The first and the second situation are less problematic, because we 

can write and overwrite the “new” parity safely, without losing 

data. The third situation requires more attention. If there is written 

data in the block, the new parity cannot be written there. Given to 

the facts that parity blocks have specific positions, and that there 

must be an “old” parity block, that is not more needed anymore, 

with the same physical number b and we can make an exchange 

between them. This way, we save the data and write the parity bits 

where it is required.  

Our algorithm works in addition to the function that calculates 

parity. We have not defined a specific function for the calculation 

of the parity. 

 

Figure 9. The redistribution process in RAID-5 using the 

proposed algorithm. 
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In Fig.9 is illustrated schematically the process of data 

redistribution on RAID-5 using our algorithm. Initially, this 

algorithm makes a control of the content of every position that 

should be a parity block. If the block is empty, the function of the 

parity calculation is called. Otherwise, if the block is not empty, 

we must distinguish if the content is parity or data bits. In the case 

of parity bits, we do the same as it was empty: we write over it 

because the old parity is not needed, the new one is written. If the 

content is data, we cannot write over it, because we lose the data. 

In this case, we find the old parity block that has the same 

physical number and perform an exchange of blocks. On one side, 

we protect data and save them, and on the other side we write the 

new parity bits in the proper position.  

It is explained by W. Zheng and G. Zhang [2], that FastScale 

gives high performance by minimizing the data movement. The 

phase of the calculation of parity is unavoidable in RAID-5 

volumes and it adds latency to the process of redistribution. But, 

due to the fact that we do not change any part of the addressing 

function of FastScale, we predict that the performance of RAID-5 

with FastScale will be at high levels too.  

The proposed Algorithm: 

 

ParityBitPositionControl (m, n, d, b) 

d: the disk holding block x 

b: physical block number 

m: the number of old disks 

n: the number of new disks 

if R[ (m+n) – bmod ( m+n-1) - 1][b] == null          

// we control if the physical block is written 

       d0  R[ (m+n) – bmod ( m+n-1) - 1], b0  b  

// we define d0 and b0 like the coordinates of the position of the new 

parity 

       ParityComputationProcedure (d0, b0)          

// we call the procedure that calculates the new parity 

exit; 

else if R[ (m+n) – bmod ( m+n-1) - 1] [b] == parity bit 

       d0  R[ (m+n) – bmod ( m+n-1) - 1], b0  b 

       R[d0][ b0]  null    

// the old parity is not necessary anymore, so we delete the 

information in it, and then we write the new parity in it 

       ParityComputationProcedure (d0, b0) 

exit; 

else if R[ (m+n) – bmod ( m+n-1) - 1] [b] == info bit 

      d0  R[ (m+n) – bmod ( m+n-1) - 1], b0  b 

// it is necessary to save logical block of the striped information, so 

when we have information in the position where the new parity 

should be, we move it to the physical block of the old parity 

       R[ m – bmod ( m - 1) – 1][b]  R[d0][ b0]   

       R[d0][ b0]  null    

// after moving info bits, the old parity is not necessary, so we can 

delete it 

       ParityComputationProcedure (d0, b0) 

exit; 

 

R[x][y] – is noted the position of the block in the whole system. 

ParityComputationProcedure – this instruction calls the 

procedure that is used in the system to calculate parity. 

4. CONCLUSIONS 
Data storing devices are an important component of nowadays 

systems and their performance affect to the entire system 

performance. RAID volumes are storing devices that provide 

more data security, availability and performance to the existing 

system. Our attention was concentrated on RAID-5 and especially 

in finding a way how RAID-5 could be even more efficient and to 

improve the performance of the system. Due to the fact that there 

is a continuous need to add disks to the volume, then we face with 

the problem of data redistribution. After reviewing some 

algorithms that perform the redistribution, further we discussed 

FastScale that is an approach with high levels of performance. 

The contribution of this paper is an algorithm that interacts with 

FastScale and includes the parity blocks in the redistribution 

process of data blocks. This algorithm makes possible the 

application of the FastScale algorithm and its techniques to 

RAID-5 also. We rely on the fact that the main strengths of 

FastScale which enhance performance on RAID-0 are not 

changed, and therefore we anticipate that even in RAID-5 will 

have short redistribution time and high performance. However, 

the focus during our future work will be on proving our prediction 

through experimental values and numerical analysis.  
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