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Abstract. Relational Concept Analysis (RCA) is a useful tool for clas-
si�cation and rule discovery on sets of objects with relations. Based on
FCA, it produces more results than the latter but also an increase in
complexity. Besides, in numerous applications of FCA, AOC-posets are
used rather than lattices in order to reduce combinatorial problems. An
AOC-poset is a subset of the concept lattice considering only concepts
introducing an object or an attribute. AOC-posets are much smaller and
easier to compute than concept lattices and still contain the information
needed to rebuild the initial data. This paper introduces a modi�cation
of the RCA process based on AOC-posets rather than concept lattices.
This work is motivated by a big set of relational data on river streams
to be analysed. We show that using AOC-poset on these data provides
a reasonable concept number.

1 Introduction

Relational Concept Analysis (RCA) [1] is based on iterative use of the classical
Formal Concept Analysis algorithm to handle relational data: formal objects are
described with formal attributes as in FCA, and with their relationships with
other formal objects. Because RCA groups formal objects using relationships to
formal objects at any distance, it often comes with a combinatorial explosion,
and patterns of interest are di�cult to extract from the huge set of built concepts.
Various strategies can be used to cope with this complexity, including separating
the initial formal object sets into smallest ones after a �rst analysis, or introduc-
ing queries [2]. Here we propose to adapt the RCA process in order to use only
posets of concepts introducing objects or attributes (AOC-poset) rather than to
build full concept lattices at each step of the process. Indeed AOC-posets are
smaller and easier to compute than concept lattices [3] and their sets of concepts
have interesting properties for extracting implication rules.

The context of this research is the FRESQUEAU project1 which aims at de-
veloping new methods for studying, comparing and exploiting all the parameters
available concerning streams and water areas. The data we deal with have been

1 http://engees-fresqueau.unistra.fr/
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collected during 3 years over 40 sites in the Alsace plain. Two other data sets are
available on the Rhin-Meuse district (North-east of France, 3400 sites, 10 years)
and on the Rhône-Méditerranée district (South-east of France, 18000 sites, 40
years). In a previous work, FCA has been used for classifying characteristics of
aquatic species [4]. RCA is now used for discovering relationships between those
species characteristics and the characteristics of their habitat.

To perform this analysis, we propose to adapt RCA relying on AOC-poset.
We show that this approach provides a reasonable concept number in our case.

The paper is organized as follows. Section 2 gives some useful de�nitions
for our presentation. Section 3 details the RCA process based on AOC-poset.
Section 5 presents the data set and results that can be obtained with AOC-
posets. Related work is presented in section 6 and section 7 concludes the paper
opening some perspectives of this work.

2 FCA Basics

Formal Concept Analysis (FCA) [5] aims at extracting an ordered set of concepts
from a dataset, called a Formal Context, composed of objects described by at-
tributes. We will denote by K = (G,M, I) a formal context, where I ⊆ G×M.
Table 1 is a Formal Context KAnimals = (GAnimals,MAnimals, IAnimals) which

Table 1. Formal Context of animals described by their life traits KAnimals

size (1-2cm)
(att0)

resistance to
dessication
(att1)

Micro-habi-
tat in sand
(att2)

reproduc-
tion clutches
terrestrial
(att3)

transversal
distribution
in lakes
(att4)

transversal
distribution
on banks
(att5)

Anc. × ×
Ani. × × ×
Ano. ×
Ant. × × ×
Aph. × × ×
Ase. × × ×
Ath. × × × ×

describes animals by characteristics they may own. The considered animals here
are macro-invertebrates that can be found in rivers. We took the examples
of the following kinds of animals : Ancylus (Anc.), Anisus (Ani.), Anodonta
(Ano.), Anthomyiidae (Ant.), Aphelocheirus (Aph.), Asellus (Ase.) and Atheri-
cidae (Ath.).

Given aK = (G,M, I) formal context, a formal concept is a C = (Extent(C),
Intent(C)) pair where:
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Extent(C) = {g ∈ G|∀m ∈ Intent(C), (g,m) ∈ I} is the extent of the concept,
Intent(C) = {m ∈M|∀g ∈ Extent(C), (g,m) ∈ I} is the intent of the concept.
Given two formal concepts C1 = (E1, I1) and C2 = (E2, I2) of K, the concept
specialization order ≤s is de�ned by C1 = (E1, I1) ≤s C2 = (E2, I2) if and only
if E1 ⊆ E2 (and equivalently I2 ⊆ I1).
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Fig. 1. Concept Lattice of animals (left), AOC poset AOCanimals (right)

For simplicity's sake, most lattice representations show attributes (resp. ob-
jects) solely where they are introduced. They are said to show the simpli�ed
intents and simpli�ed extents which will be denoted respectively IntentS(C)
and ExtentS(C) for a given concept C.

Let CK be the set of all concepts of a K formal context. This set of concepts
provided with the (CK, ≤s) specialization order has a lattice structure, and is
called the concept lattice associated with K.

Left-hand side of Fig. 1 shows the concept lattice associated with the formal
context of Table 1. In several FCA applications (e.g. in [3,6]; only the object
concepts (which introduce at least one object) and the attribute concepts (which
introduce at least one attribute) are used. In Fig. 1 (left-hand side), ca_5 and
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ca_8 are examples of object concepts; ca_1 and ca_2 are examples of attribute
concepts; ca_9, ca_10 and ca_11 do not introduce any object or any attribute.

The so-called AOC-poset (for Attribute-Object-Concept poset) is the sub-
order of (CK, ≤s) restricted to object-concepts and attribute-concepts. It is also
called Galois Sub-Hierarchy, a term we consider less explicit. Right-hand side of
Fig. 1 shows the AOC-poset for the context of Table 1. One may have a large
di�erence of complexity between the two structures, because the concept lattice
may have 2min(|G|,|M|) concepts, while the number of concepts in the AOC-poset
is bounded by |G|+ |M|.

3 A variant of Relational Concept Analysis with

AOC-poset

Relational Concept Analysis aims at extending Formal Concept Analysis to take
into account a dataset where objects of several categories are described by at-
tributes and by relations to objects [1,7]. The dataset is called a Relational
Context Family.

De�nition 1 (Relational Context Family (RCF)). A Relational Context
Family (denoted RCF) is a (K,R) pair where:

� K = {Ki}i=1,...,n is a set of Ki = (Gi,Mi, Ii) contexts

� R = {rj}j=1,...,m is a set of rj relations where rj ⊆ Gi1 × Gi2 for some
i1, i2 ∈ {1, . . . , n}.

An example of a RCF is composed of an Animal context, denoted KAnimals
(Table 1), a Site context, denoted KSites (Table at the left-hand side of Fig. 2),
and a contains relation, denoted rcontains (Table 2). Sites are determined by
locations on a river where samples are done; two kinds of samples are here con-
sidered: physico-chemical samples that measure physical and chemical properties
of the water (e.g. temperature or presence of a chemical compound) and biolog-
ical samples that measure the level of life.

Table 2. Relation rcontains

contains ↗ Anc. Ani. Ano. Ant. Aph. Ase. Ath.

Site0 × × ×
Site1 × × × ×
Site2 × × × ×
Site3 × × ×

When objects of a category (e.g. Sites) are connected to objects of another
category (e.g. Animals) via a relation (e.g. contains), concepts formed on top
of objects of the latter category can be used to form concepts on top of objects
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Fig. 2. Formal Context of Sites KSites (left), AOC-poset of Sites (right)

of the former category. Let us for example consider the AOC-poset of the right-
hand side of Fig. 1 and the ca_8 concept which groups animals with a transversal
distribution on banks (Att5), namely Ancylus (Anc.), Anisus (Ani.) and Asellus
(Ase.). Now Site1, Site2 and Site3 can be grouped because they contain at least
one animal with Att5, that is at least one animal in Extent(ca_8), e.g. Ancylus
(Anc.) for Site 1 (Table 2). In RCA, this relationship between objects of a
category and concepts formed on objects of another category is implemented
thanks to scaling operators. This results in the creation of special attributes
called relational attributes. The most used scaling operators are:

� the existential scaling operator which encodes the fact that an object o is in
relation by ∃r with a concept C if r(o) has a non-empty intersection with
Extent(C)

� and the strict universal scaling operator which encodes the fact that an
object o is in relation by ∀r with a concept C if r(o) is non-empty and
included in the extent of C.

For a given r relation in a given analysis, its associated scaling operator is de-
noted by ρ(r). Now, since we rely on AOC-posets, the existential scaling operator
is de�ned slightly di�erently from [7]. Nevertheless the reference [7] can be read
to have more details on the RCA process which is simpli�ed below for space
reasons.

De�nition 2 (Existential scaling operator). Let K = (G,M, I) be a context,
and r a relation, where G is the domain of r, Gir is the range of r, and Kir =
(Gir ,Mir , Iir ) is another context. Let also Cir be a set of concepts2 built on
Kir . The S∃ existential scaling operator is applied to the context K, denoted by
S∃(K, r, Cir) = K+ = (G+,M+, I+), with:

� G+ = G
� M+ = {∃r(C) | C ∈ Cir}, where each ∃r(C) is a relational attribute

2 rather than a concept lattice built on Kir in [7].
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� I+ = {(o,∃r(C)) | o ∈ G,C ∈ Cir , r(o) ∩ Extent(C) 6= ∅}
Table 3 shows S∃(KSites, contains, CAnimals) where CAnimals is the set of

concepts of the AOC-poset of right-hand side of Fig. 1. In this case I+ contains
(Site3, ∃ contains(ca_5)) and (Site3,∃ contains(ca_7)) because Site3 contains
one animal from the extent of these two concepts.

Table 3. Existential Scaling of Formal Context of sites S∃(KSites, contains, CAnimals).
ca_i is a short expression for ∃ contains(ca_i).

∃contains ca_0 ca_1 ca_2 ca_3 ca_4 ca_5 ca_6 ca_7 ca_8
Site0 × × × × × ×
Site1 × × × × × × ×
Site2 × × × × × × × ×
Site3 × × × × ×

Then, for each K context of K, the apposition of K (denoted by symbol '|')
with the respective results of the scaling upon each rj of R with G as domain
(1 ≤ j ≤ k) and the chosen ρ(rj), is used to build a new set of concepts (notations
are taken from Def. 2). This apposition is the relational extension of the K
context considering ρ and a set of concepts C which is a union of concept sets
including Cirj , 1 ≤ j ≤ k:

Eρ,C(K) = K | Sρ(r1)(K, r1, Cir1 ) | . . . | Sρ(rk)(K, rk, Cirk )

By extension, E∗ρ,C(K) denotes the relational extension of K, which is com-
posed of all the relational extensions of all Ki in K (and C is a union of concept
sets associated with all ranges of all relations).

E∗ρ,C(K) = {Eρ,C(K1), . . . ,Eρ,C(Kn)}.
For example a relational extension of our K example is composed of Table 1
(no outgoing relation), and the left table of Fig. 2 apposed to Table 3. The
AOC-poset built from this extended context is shown on �gure 3.

Now a whole construction process consists in building a (possibly in�nite)
sequence of contexts and AOC-posets associated with (K,R) and ρ. The �rst
set of contexts (step 0) is K0 = K. The contexts of step p are used to build
the associated AOC-posets. The Cp set composed of the sets of the concepts of
AOC-posets at step p is used to calculate the relational extension. The set of
contexts at step p+1 is de�ned using the relational extension:Kp+1 = E∗ρ,Cp

(K).

Considering independently the contexts: for some i ∈ {1, . . . , |K|} the i-th
context at the step p + 1 is the relational extension of the context of the same
rank with the concepts from step p: K0

i = Ki, Kp+1
i = Eρ,Cp(Ki). The di�erence

here with classical RCA is that we rely on Ki and concepts of the AOC-posets
of step p to build Kp+1

i , rather than on Kpi and lattices of step p.
In our example, K0 = (KAnimals,KSites) and R = {contains} (see Table 2).

If ρ(contains) = ∃, then
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Fig. 3. AOC-posets for the KSites formal context and the CAnimals set of concepts,
existential scaling

� At step 0, we obtain the AOC-posets of Fig. 1 (right) and Fig. 2 (right);
K1 = {KAnimals,KSites | S∃(KSites, contains, CAnimals)}.

� At step 1, we obtain the AOC-posets of Fig. 1 (right) and Fig. 3 (left).

In this simple example, the following steps do not produce any new concept (a
�x-point is reached). This process will be denoted by RCA-AOC in the following.

4 Extracting Implication Rules

Implication rules are implications that are veri�ed by the whole data set consid-
ered. Some implication rules can be extracted from the AOC-poset concepts by
considering their simpli�ed intent.

An attribute a from the simpli�ed intent of a concept C is an attribute that
is not contained in the intent of any concept more general than C i.e. the set of
all the objects sharing a is the extent of C. The objects from the extent also all
share the attributes of the full intent of C, but they may not be the only ones.
By consequence, for every object o in the data set the presence of a for a given
object o implies the presence of all the attributes from the intent of C.

For instance in Fig. 1 we can consider the concept ca_7. Intent(ca_7) =
{Att1 ,Att0 ,Att5} and IntentS (ca_7) = {Att1} which means that in all the
dataset the rule Att1 → Att0 ∧Att5 is veri�ed.
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All the concepts with no empty simpli�ed intent can be found in the AOC-
poset meaning that all the rules having one element at the left hand side can be
found with an AOC-poset.

Extracting rules from an existing AOC-poset is straightforward as it consists
in reading the simpli�ed intent and the full intent of each concept. The concept
order permits to extract rules ordered by support, the rules extracted from the
most general concepts having a larger support than more speci�c rules. The use
of RCA permits to use relational attributes in implication rules.

5 A case study

We rely on a large database collecting data on Alsatian streams and water ar-
eas (North-east of France) [8], but more data are available through the current
FRESQUEAU project, concerning larger areas and periods. The data are either
issued from samples (e.g. physical, chemical and biological data collected on
stream sites), synthetic data (e.g. biological indices, land cover) or general in-
formation issued from the literature (e.g. information about the aquatic species
living in the streams). More precisely in this paper we work with three tables.
The �rst one gives values of 27 physico-chemical parameters (e.g. temperature,
pH, SO4, NH4, organic matters) collected on 49 stream sites. The second table
gives the level of population for 197 macro-invertebrates (e.g. Ancylus, Anisus,
Anodonta) collected on the same 49 sites. The third one describes the macro-
invertebrates with 22 di�erent life traits, i.e. their characteristics and function-
ing, e.g life cycle, reproduction mode, etc. each life trait being represented by
several modalities (e.g. for the life trait life cycle there are two possible modal-
ities : less than a year or more than a year). The sum of the modalities for
all life traits is 116. We look for rules combining life traits and physico-chemical
parameters, e.g. �the M modality of the T life trait is associated with a high value
of the C physico-chemical parameter�.

We modeled our data within 4 formal contexts: stream sites, physico-chemical
parameters, life traits and macro-invertebrates and we considered the three rela-
tions between them that are described by our tables: level of physico-chemical pa-
rameter, population of macro-invertebrates and life trait of macro-invertebrates.
The relations being originally numerical ones we applied a preprocessing to sepa-
rate values into a few classes. So the level of physico-chemical parameter relation
has been split into 5 binary relations describing 5 di�erent levels, the popula-
tion of macro-invertebrates relation has also been split into 5 di�erent binary
relations and the life trait of macro-invertebrates relation has been split into
6 binary relations. This binarisation process has been accomplished under the
guidance of a domain expert.

Applying RCA on this data led to a combinatorial explosion that forced us to
try other methods of classi�cation as our implementation could not sustain the
number of concepts created reaching the limits of time and size. On this same
data RCA-AOC gives a result in a few seconds, and can then be used on much
bigger data sets. The implementation of RCA-AOC relies on the same algorithm
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as RCA except for the use of the Hermes algorithm [9] for building AOC-posets
instead of an FCA algorithm.

From the obtained AOC-posets we extracted two sets of rules: the rules with
a physico-chemical character on the left hand side and the rules with animal
traits on the left hand side.

We obtained 49179 rules for the �rst set and 56 for the second one. The dif-
ference is coming from the granularity of data which is di�erent for the physico-
chemical characters and the biological characters. It comes directly from the
choices of the binarization guided by domain experts in order to support the
extraction of rules in one direction. Here the goal is to infer biological characters
from physico-chemical characters, the former being more expensive to measure
than the latter.

The rule presented below is one rule extracted from the experimental data
with a support of 67% of the considered sites.

Site u ∃lvl1 .Lig v ∃lvl2 .(Animal u ∃aff0 .(Trait u FR4 )

u ∃aff3 .(Trait u SA1 ))

For any site of the data set the presence of the component Lig at a concen-
tration of level 1 implies the presence of animals at a concentration of level 2
that have the trait identi�ed by the code FR4 (modality diapause or dormancy
of trait resistance kind) with an a�nity of 0 and the trait identi�ed by the code
SA1 (modality fresh water of the trait salinity) with an a�nity of 3.

The levels that are referred here are de�ned speci�cally to each physico-
chemical character, each animal species, and each biological character. For the
physico-chemical characters they are usually attached to a level of concentration.
The same goes for the animals presence. For the biological characters it refers to
an a�nity of the species to the modality of a particular biological trait (e.g. for
its habitat, an animal may have a stronger a�nity with sand than gravel, but
may be found in both of them).

Although the modeling can be considered as naive and several approaches
could be used to limit the number of concepts, we saw here that RCA has a
scale issue as we are only working on a small part of the data. Using AOC-poset
allows to handle big data without exploding the number of concepts. Besides,
reducing the number of concepts means that the extracted information is also
reduced. For the stream site concepts, from which we extract the rules, the
AOC-poset keeps the interesting data as we still have the concepts where each
attribute is introduced and their order. For the macro-invertebrates however,
several concepts are lost that represent combinations of shared life traits. We
still have to measure the impact of the missing concepts on the results but
it would seem appropriate to combine the RCA-AOC approach with a more
traditional lattice building approach that would compute the relevant concepts
for the macro-invertebrates while keeping the number of stream site concepts
low with AOC-poset.
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6 Related Work

Other approaches to integrate relations in FCA have been proposed, including
power context family [10], and Logical Concept Analysis [11]. The originality of
RCA is to compute in iterative manner (with a possible stop at each step) several
concept lattices from data represented in relational format. The concept lattices
are connected by links that abstract the relations between objects. Several op-
erators, borrowed to Description Logics, build the links between concepts.

The original RCA framework, using whole concept lattices, has been used to
the analysis and modernization of UML elements [12,13], namely in class dia-
grams and in use case diagrams. In [14], concept lattices exploit relations between
methods and between methods and attributes to detect and �x design defects.
Model transformations are learned from transformation examples thanks to sev-
eral kinds of relations between model elements (e.g. between elements inside a
model, transformation links between source elements and target elements) [15].
In [16], relations between abstract tasks in an abstract orchestration are used to
classify relevant Web services to instantiate the tasks. Other applications can be
found in ontology engineering [17,18,19]. In these applications, the datasets are
medium-size guarantying the feasibility of the approach. In the FRESQUEAU
project, we have larger sets of data where AOC-posets are more suitable than
concept lattices. Furthermore, for some issues we want to deal with in the project,
like extracting part of the implication rules, AOC-posets are relevant because
they contain all the concepts that introduce attributes.

To our best knowledge, the AOC-posets have been introduced by Godin
et al [3] in the domain of software engineering (object-oriented programming).
The AOC-poset has also been used in applications of FCA to non-monotonic
reasoning and domain theory [20] and to produce classi�cations from linguistic
data [21,22]. Speci�c parts of the AOC-poset (mainly the attribute-concepts
part) are used in several works. They include approaches for rebuilding class
hierarchy [23] and a recent study for extracting feature tree (in the domain of
software product lines) from a set of products [24].

Many approaches exist to extract logical rules from data either in a supervised
context for building decision tree [25] or classi�cation rules [26] or in an unsu-
pervised context for association rules learning. Our approach is unsupervised,
but AOC-posets only allows the extraction of association rules of con�dence 1.

However, the scaling operation permits to consider di�erent kinds of granular-
ity for the relations between the concepts. The relational aspect of the approach
permits the extraction of rules from complex relational data which would require
to be transformed by propositionalization approaches [27] for many learning ap-
proaches. It also could be compared to Inductive Logic Programming [28] in
some ways as it will result in �rst order logic formulas. ILP being a supervised
approach, its goal di�ers as it will try to �nd the right premise for a given con-
clusion. The expressivity of the results of our approach are far more restricted
than with ILP, even with all the scaling operators that can be imagined, leading
to better performances but with a restricted output language.
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7 Conclusion

This paper has introduced a RCA process based on AOC-poset in order to deal
with computational complexity over big datasets. AOC-posets reduce the num-
ber of concepts, with no information lost as the context can still be retrieved from
an AOC-poset. In the future we will work on specifying the convergence con-
ditions of AOC-poset based RCA. Indeed, more complex datasets may include
cycles between objects. Convergence is ensured with the RCA speci�cation from
[7] where the set of concepts used at each step is the set of concepts of the whole
lattice. With AOC-poset the convergence is not guaranteed when there are cycles
between objects. We also will develop a tool for vizualising the results and assist-
ing their exploration. Finally the approach will be tested on the various datasets
of the FRESQUEAU project, and compared with other approaches for relational
data mining such as statistical approaches [29] or propositionalization [27].
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