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Abstract. Complex Event Processing (CEP) has been established as a
well-suited software technology for processing high-frequent data streams.
However, intelligent stream based systems must integrate stream data
with semantical background knowledge. In this work, we investigate
different approaches on integrating stream data and semantic domain
knowledge. In particular, we discuss from a software engineering per-
spective two different architectures: an approach adding an ontology ac-
cess mechanism to a common Continuous Query Language (CQL) is
compared with C-SPARQL, a streaming extension of the RDF query
language SPARQL.

1 Introduction

Nowadays, much information is provided in form of data streams: sensors, soft-
ware components and other sources are continuously producing fine-grained data
that can be considered as streams of data. Examples of application fields exploit-
ing data streams are traffic management, smart buildings, health monitoring, or
financial trading. Intelligent decision support systems analyze stream data in
real-time to diagnose the actual state of a system allowing adequate reactions
on critical situations.

In recent years, Complex Event Processing (CEP) [10] has been established as
a well-suited software technology for dealing with high frequent data streams. In
CEP each data item in a stream is considered as an event. CEP uses Continuous
Query Languages (CQL) to describe patterns in event streams, which define
meaningful situations in the application domain.

However, for understanding the business meaning of stream data, the data
items must be enriched with semantical background knowledge. For instance
in traffic management, velocity measures must be related to specific knowledge
about the road network (e.g. road topology and speed limits). In contrast to
data streams, this background or domain knowledge is usually rather static and
stable, i.e. without frequent changes.

Ontologies defined by Description Logic (DL) [8] provide a well-known for-
malism for knowledge representation, that can also be used for describing back-
ground knowledge. DL distinguishes two different aspects: (1) the TBox con-
tains terminological or domain concepts, and (2) the ABox defines assertional



knowledge or individuals of the concepts that are defined in the TBox. Com-
mon languages for describing semantic knowledge are the Resource Description
Framework (RDF) for the TBox and the Ontology Language OWL1 for the
ABox. SPARQL [11] provides a standard query language for retrieving knowl-
edge represented in form of RDF data.

Note that SPARQL was originally developed to process static data and is
therefore not suitable for the processing of data streams. Otherwise, conventional
CEP languages provide no inherent concepts for accessing ontological knowledge.

In this work, we will investigate different approaches on how to integrate
data stream processing and background knowledge bases. In particular, we will
discuss two different aspects from a software engineering perspective:

– How can CQL languages provided by standard CEP systems make use of
ontology models?

– How useful are recently proposed streaming extensions of SPARQL such as
C-SPARQL?

The remainder of the paper is organized as follows. The next section discusses
related work and other research approaches. Subsequently, section 3 introduces
briefly CEP. Then, section 4 discusses the different types of information that can
be exploited in stream based systems. The following sections 5 and 6 describe
and compare two different approaches of integrating background knowledge into
stream processing: The first approach adds an ontology access mechanism to a
common CQL-based architecture. The second one uses C-SPARQL, a streaming
extension of SPARQL. The final section 7 provides some concluding remarks and
proposes an outlook for further lines on research.

2 Related Work

In practice, nearly all stream processing systems are using a proprietary Con-
tinuous Query Language (CQL). At present, many mature implementations of
event processing engines already exist. Some well-known representatives are ES-
PER2, JBoss Drools Fusion3 or Oracle CEP4. As already discussed, none of
these engines neither target nor support a built-in way to integrate semantic
background knowledge.

Another class of approaches target the integration of RDF ontologies with
stream processing. Different SPARQL enhancements have been developed in
order to query continuous RDF streams. Basically, they all extend SPARQL by
sliding windows for RDF stream processing:

– C-SPARQL provides an execution framework using existing data manage-
ment systems and triple stores. Rules distinguish a dynamic and a static part,
which are evaluated by a CQL and a SPARQL engine, respectively [5, 4].

1 http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
2 http://esper.codehaus.org/
3 http://jboss.org/drools/drools-fusion.html
4 http://oracle.com/technetwork/middleware/complex-event-processing



– Streaming-SPARQL simply extends a SPARQL engine to support window
operators [6].

– EP-SPARQL is used with ETALIS, a Prolog based rule engine. The knowl-
edge (in form of RDF) is transformed into logic facts and the rules are
translated into Prolog rules [1, 2].

– CQELS introduces a so called white-box approach, providing native process-
ing of static data and streams by using window operators and a triple-based
data model [9].

Beside SPARQL extensions, various proprietary CEP languages have been
proposed for integrating stream processing and ontological knowledge: For in-
stance, Teymourian et. al. present ideas on integrating background knowledge
for their existing rule language Prova5 (with a corresponding event processing
engine) [13, 14].

In summary, many proposals for SPARQL dialects or even new languages
have been published, but so far not many results of practical experiments have
been proposed.

This paper examines two different approaches for integrating RDF and stream
data from a software engineering perspective. First, we extend the well-known
CQL of ESPER with mechanisms for accessing RDF ontologies. Then, this ap-
proach is compared with C-SPARQL, one of the SPARQL extensions that inte-
grates SPARQL queries and stream processing.

3 Complex Event Processing - Introduction

Complex Event Processing (CEP) is a software architectural approach for pro-
cessing continuous streams of high volumes of events in real-time [10]. Everything
that happens can be considered as an event. A corresponding event object car-
ries general metadata (event ID, timestamp) and event-specific information, e.g.
a sensor ID and some measured data. Note that single events have no special
meaning, but must be correlated with other events to derive some understanding
of what is happening in a system. CEP analyses continuous streams of incoming
events in order to identify the presence of complex sequences of events, so called
event patterns.

A pattern match signifies a meaningful state of the environment and causes
either creating a new complex event or triggering an appropriate action.

Fundamental concepts of CEP are an event processing language (EPL), to
express event processing rules consisting of event patterns and actions, as well as
an event processing engine that continuously analyses event streams and executes
the matching rules. Complex event processing and event-driven systems generally
have the following basic characteristics:

5 https://prova.ws/



– Continuous in-memory processing : CEP is designed to handle a consecutive
input stream of events and in-memory processing enables real-time opera-
tions.

– Correlating Data: It enables the combination of different event types from
heterogenous sources. Event processing rules transform fine-grained simple
events into complex (business) events that represent a significant meaning
for the application domain.

– Temporal Operators: Within event stream processing, timer functionalities as
well as sliding time windows can be used to define event patterns representing
temporal relationships.

4 Knowledge Base

In most application domains, different kinds of knowledge and information can be
distinguished. In the following, the different types of knowledge are introduced
by means of a smart building scenario:6 An energy management system that
uses simple sensors and exploits the background knowledge about the building,
environment and sensor placement.

The main concepts used in the knowledge base are rooms and equipment,
such as doors and windows of the rooms. Rooms and equipment can be attached
with certain sensors measuring the temperature, motion in a room or the state of
a door or a window, respectively. By making use of this background information,
the raw sensor data can be enriched and interpreted in a meaningful manner. For
instance, room occupancies due to rescheduled lectures or ad-hoc meetings can
be identified for achieving a situation-aware energy management. In this sample
scenario, we can identify three types of knowledge classified according to their
different change frequencies:

1. Static knowledge: We define static knowledge as the knowledge about the
static characteristics of a domain, that almost never or very infrequently
changes. A typical example in our scenario is the structure of a building and
the sensor installation.
Static knowledge can be modeled by common knowledge representation for-
malisms such as ontologies. Because this information does usually not change,
appropriate reasoners can derive implicit knowledge before the start of the
stream processing. OWL can serve as a suitable knowledge representation
language that is supported by various reasoners, for example KAON27 or
FaCT++8.

2. Semi-dynamic knowledge: We consider semi-dynamic knowledge as the
knowledge about the expected dynamic behavior of a system. It can be rep-
resented by static knowledge models, e.g. ontologies, as well. In our scenario,
a class schedule predicts the dynamic behavior of the building: though the

6 More details about the smart building scenario can be found in [12].
7 http://kaon2.semanticweb.org/
8 http://owl.man.ac.uk/factplusplus/



class schedule can be defined by static data (e.g facts in an ontology), it
causes dynamic events, e.g. each monday at 8:00 a ’lecture start’ event. Of
course, real-time data produced by sensor could outperform the predicted
behavior, e.g. if a reserved class room is not used.

3. High-dynamic knowledge: The third type of knowledge is caused by un-
forseeable incidents in the real world. It expresses the current state of the
real world and cannot be represented by a static ontology. Instead the cur-
rent state has to be derived from continuous stream of incoming data. This
type of knowledge can be described by an event model specifying the types
of valid events.9 Examples in our scenario are sensor events representing ob-
servations in the physical world, e.g. motion, temperature, or the state of a
window or door, respectively.

The three knowledge types introduced above provide only a basic classifica-
tion scheme. As already discussed in the introduction (section 1), various types
of information must be integrated and correlated in order to derive complex
events that provide insight to the current state of a system.

5 Using Semantic Knowledge in Event Processing

In this section, we will investigate how the different types of knowledge intro-
duced above can be integrated in stream processing – in particular, how onto-
logical knowledge can be exploited in stream processing.

We start our discussion with a small part of an ontology for our energy
management scenario (see Figure 1). This sample ontology is used in the follow-
ing paragraphs for discussing the different knowledge integration approaches.
The model defines the three concepts ’room’, ’sensor’ and ’equipment’ and their
relationships. It shows that each room can contain sensors and equipment. Fur-
thermore, it specifies that a certain sensor is either directly located in a certain
room or attached to an equipment located in a room.

Note that the location of a sensor can be inferred from the location of the
equipment it is attached to. The dashed line describes this implicit property,
which can be expressed as role composition in Description Logic:

isAttacedTo ○ IsEquippedIn ⊑ hasLocation. A DL role composition can be
considered as a rule: If a sensor is attached to an equipment and the equipment
is equipped in a certain room, then the sensor is assumed to be located in the
same room.

Listing 1.1 defines two individuals (Window362 and an attached contact
sensor C362W ) using the RDF turtle notation10 . Using the above presented
DL rule, it can be inferred that the contact sensor is located in room 362 and
the triple (:C362W :hasLocation :Room362) can be added to the knowledge
base.

In the same way, further role and concept characteristics of the ontology can
be used for reasoning purposes.

9 Note that such an event model can also be formally defined by an OWL ontology.
10 http://www.w3.org/TR/turtle/



Fig. 1. OWL ontology relationship

:Window362

rdf:type :Window ,

:isEquippedIn :Room362 .

:C362W

rdf:type :ContactSensor ,

:isAttachedTo :Window362 .

Listing 1.1. Some sample entries of the domain knowledge

5.1 ESPER

As a first approach of integrating stream data and background knowledge we
have chosen the established event processing engine ESPER. Since it is a regular
CQL based engine it does not natively support the access of additional knowledge
bases. Figure 2 depicts the conceptional architecture of the approach. Different
event sources send streams of events via message channels to the ESPER CEP
engine. The event sources provide all events in a format that is processable
by ESPER, for instance simple Java objects (POJOS). The cycle within the
engine should denote that the events are processed in several stages. Each stage
transforms relatively simple incoming events into more complex and meaningful
events.

Knowledge Access: As already mentioned, ESPER does not inherently sup-
port a specific access to a knowledge base such as an OWL ontology, but it
provides a very general extension mechanism that allows invoking static Java
methods within an ESPER rule. Such methods can be used for querying a Java
domain model, a database or any other data source. To make our OWL domain



Fig. 2. Architecture using ESPER as CEP component

model accessible from ESPER rules, we implemented an adapter class that uses
the Jena Framework11 to query the ontology via SPARQL.

Events: Because ESPER can only process Java objects, the adapter has to map
RDF triples to Java objects. For instance, the mapping transforms an RDF-URI
identifying a sensor to an ID in the Java object. Each Java class corresponds
with a certain concept of the ontology TBox.

Queries: ESPER provides its own event processing language that is called ES-
PER Event Query Language (EQL). EQL extends SQL with temporal operators
and sliding windows. A simple example is given in Listing 1.2 that shows how
motion in a certain room is detected by an ESPER query.

SELECT room

FROM pattern[every mse=MotionSensorEvent],

method:Adapter.getObject(mse.sensorID)

AS room

Listing 1.2. A sample ESPER query

Actions triggered by a pattern match are implemented in a listener class that
must be registered for an ESPER rule. A listener can call any event handling Java
method or create a new complex event. The example rule looks rather simple,
because the access to the knowledge base is hidden behind the method call
(here: Adapter.getObject(mse.sensorID)). In our case, the adapter executes
a SPARQL query using the Jena framework as shown in Listing 1.3.

11 http://jena.apache.org



PREFIX : <http :// eda.inform.fh-hannover.de/sesame.owl >

PREFIX rdf: <http :// www.w3.org /1999/02⤦

Ç/22-rdf -syntax -ns#>

SELECT ?room ?object

WHERE { :"+sensorID+" :isAttachedTo ?object ;

:hasLocation ?room .

}

Listing 1.3. SPARQL query in the Jena-Adapter method Adapter.getObject(sensorID)

5.2 C-SPARQL

As an alternative approach, we investigate a software architecture using C-
SPARQL12, a streaming extension of SPARQL. Figure 3 illustrates the main
building blocks of the architecture. The main difference to the previous approach
is, that all event sources produce a continuous stream of RDF data. This means
that the entire knowledge base of the system uses RDF as uniform description
formalism.

Fig. 3. Architecture using C-SPARQL as CEP component

Knowledge access: In this approach, C-SPARQL queries are used for accessing
the homogeneous RDF knowledge base. A single C-SPARQL query can combine
incoming RDF streams with static background knowledge (also represented in
RDF).

12 We used the ’ReadyToGoPack’, an experimental implementation of the concept in
[4, 5], available on http://streamreasoning.org



Events: The events themselves arrive as continuous streams of RDF triples.
To allow stream processing with RDF triples, they must be extended with a
timestamp. Thus, each event can be described by a quadruple of the following
form:

(⟨subji, predi, obji⟩, ti)
The subject is a unique event identifier, the predicate and object describe event
properties. The timestamp is added by the engine and describes the point of time
the event arrived. Listing 1.4 shows a set of RDF triples describing a simplified
temperature sensor event.

:event123 rdf:type :⤦

ÇTemperatureSensorEvent

:event123 :hasSensorId :3432

:event123 :hasValue 24.7^^ xsd:double

Listing 1.4. A sample temperature event

Queries: C-SPARQL queries are syntactically similar to SPARQL. Listing 1.5
shows a C-SPARQL query expressing the same pattern as the ESPER query in
Listing 1.2. In contrast to SPARQL, it provides language extensions for temporal
language constructs like (sliding) time and batch windows as shown at the end
of the FROM STREAM-clause. The FROM-clause selects the various data streams

SELECT ?room

FROM STREAM <http :// eda.inform.fh-hannover.de/⤦

ÇMotionSensorEvent.trdf >⤦

Ç[RANGE 10s STEP 1s]

FROM <http :// eda.inform.fh-hannover.de⤦

Ç/sesame.owl >

WHERE {

?mEvent rdf:type :MotionSensorEvent ;

:hasSensorID ?sid .

?sid :hasLocation ?room .

}

Listing 1.5. A sample C-SPARQL query

that are processed in the query. Each C-SPARQL query can either generate new
triples that can be processed by another query or call a (Java) listener class to
trigger an action.

An interesting point to mention is that the C-SPARQL engine internally
transforms the query into a dynamic part dealing with the event stream pro-
cessing and a static part accessing the background knowledge. These parts are
each individually executed by a suitable engine or query processor. This behav-



ior is transparent for the user as the entire rule is written in C-SPARQL and the
rule result contains the combined execution outcome.

6 Comparison

In this section, we will investigate the capabilities of two introduced approaches
of integrating stream processing and background knowledge. Based on our prac-
tical experiences, we discuss the two architectures from a software engineering
perspective. Table 1 summarizes the results of the comparison. The criteria will
be discussed in more details in the following paragraphs.

Table 1. Comparison of CQL (ESPER) and C-SPARQL

ESPER C-SPARQL
Maturity + –
Event Pattern Expressiveness + o
Conceptual Coherence – +
Dynamic Rules o +
Heterogeneous knowledge sources o –
Stream Reasoning Support – o

Maturity: ESPER is a widely used event processing engine, which is under
development by an active open source community for many years and, conse-
quently, has reached a stable and market-ready state. It provides a compre-
hensive documentation and several guides, as well as tutorials. In contrast, C-
SPARQL, and the ready-to-go-pack in particular, is a conceptual prototype. This
means that the implementation is not as mature and, furthermore, it is not as
good documented as ESPER. So far, there are no published experiences about
real-world projects using C-SPARQL.

Event Pattern Expressiveness: According to its maturity, ESPER provides a
rich set of operators for specifying event patterns, e.g. for defining different types
of sliding windows or various even aggregations operators. The event algebra of
C-SPARQL is less expressive compared to ESPER, but, nevertheless, it supports
all important features for general event processing tasks.

Conceptual Coherence: C-SPARQL allows the processing of stream data and
the integration of static background knowledge by using only one paradigm (or
language). Listing 1.5 shows a C-SPARQL query that combines event stream pro-
cessing and SPARQL queries. In this sense, a C-SPARQL query is self-contained
and coherent: only C-SPARQL skills are necessary for understanding it.

In contrast, ESPER does not support inherent access to knowledge bases.
Consequently, specialized Java/Jena code must be written to integrate back-
ground data. The ESPER-based architecture combines the ESPER query lan-
guage (EQL) for stream processing and Jena/SPARQL code implemented in a
Java adapter class to query knowledge bases. The ESPER rules are not self-
contained and delegate program logic to the adapter classes. Note that this can



also be viewed as an advantage: hiding a (perhaps) big part of the logic in method
calls results in simpler and easier understandable rules.

Dynamic Rules: Changing a rule at runtime is difficult in ESPER, because
modifying an ESPER rule can cause a change of the EQL pattern and of the
SPARQL query in the listener class of the corresponding rule. In this case, the
code must be recompiled. C-SPARQL makes changes much easier, because only
the C-SPARQL query must be adjusted. Such queries are usually stored as
strings in a separate file, which can be reloaded at runtime - even for rules
including completely new queries of the knowledge base.

Heterogeneous knowledge sources: C-SPARQL is limited to ontological back-
ground knowledge stored in RDF format. In contrast, ESPER can be extended
by arbitrary adapters allowing the usage of different knowledge sources. For in-
stance, beside RDF triple stores also relational databases or NoSQL data sources
can be used. However, the access methods have to be implemented and main-
tained by hand, as mentioned in the previous paragraph.

Stream Reasoning Support: Both approaches do not support stream rea-
soning, i.e. implicit knowledge is not automatically deduced when new events
arrive. Conventional reasoners can only deal with static data, but not with high-
frequent RDF streams. But, because (static) background knowledge changes
infrequently, a conventional reasoning step can be processed, if a new fact in the
static knowledge base appears.

Considering the two approaches from a conceptional point of view, C-SPARQL
is better suited for inherent reasoning. For instance, SPARQL with RDFS en-
tailment can be achieved by using materialization or query rewriting [7]. These
approaches must be extended to stream processing. First discussions about this
issue can be found in [15] and [3].

7 Conclusion

In this paper, we have discussed two different architectural approaches of inte-
grating event stream processing and background knowledge.

The first architecture uses a CQL processing engine such as ESPER with
an adapter class that performs SPARQL queries on a knowledge base. In this
approach stream processing and knowledge engineering is conceptually and phys-
ically separated.

The second architecture is based on an extension of SPARQL to process
RDF data streams. C-SPARQL allows integrated rules that process stream data
and query RDF triple stores containing static background knowledge. Thus,
C-SPARQL provides a more homogeneous approach, where query logic, event
patterns and knowledge base access are combined in one rule and is, therefore,
superior from a conceptional point of view.

Otherwise, CQL engines are well-established in real-world projects and at this
time, they offer higher maturity and better performance. Therefore, CQL-based
systems are (still) superior from a practical point of view.



Generally, the integration of semantic reasoning into stream processing is still
an open issue that is not fully supported by any approach yet. Stream reasoning
is therefore an important and promising research field to put effort in and has
several work in progress, for example the appproaches in [3].
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