
Towards Explanation Generation using Feature
Models in Software Product Lines

Dean Kramer, Christian Sauer, and Thomas Roth-Berghofer

School of Computing and Technology, University of West London,
St Mary’s Road, London W5 5RF, United Kingdom

{first.lastname}@uwl.ac.uk

Abstract. Dynamic Software Product Line (DSPL) Engineering has
gained interest through its promise of being able to unify software adap-
tation whereby software can be configured at compile time and runtime.
Just like conventional adaptive software, software dynamism can con-
fuse the user, and lower user trust. Variability knowledge expressed in a
feature model though may not be understandable to the end user. Expla-
nations have been shown to improve intelligibility of the software, and
improve user trust. In this work, we consider how explanations can be
used in DSPLs, by adding explanatory knowledge to feature models that
can be used to generate explanations at runtime.

Keywords: Explanation Generation, Dynamic Software Product Lines,
Feature Models

1 Introduction

Smart phones in recent years have seen high proliferation, allowing more users
to stay productive while away from the desktop. It has become common for
these devices to have an array of sensors including GPS, accelerometers, digital
compass, proximity sensors, sound etc. Using these sensors with other equipment
already found in phones, a wide set of contextual information can be acquired.

This contextual information can be used in Context-Aware Self Adaptive
(CASA) software. This software can monitor different contextual parameters
and dynamically adapt at runtime to satisfy the user’s current needs [8]. These
behavioural variations can be seen to share similarities with features in Software
Product Lines (SPL), where product commonality and variability is handled,
providing higher asset reuse. Within SPLs, Feature Oriented Software Devel-
opment (FOSD) has emerged as a method for modularising the features of a
system [3]. The one fundamental difference between these two concepts is that
while SPLs conventionally manage static variability which is handled at compile
time, adaptive software requires dynamic variability to be handled at runtime.

Dynamic Software Product Lines (DSPL) enables the SPL to be reconfig-
urable at runtime [9]. By using DSPLs, variability can be static, adapted at
compile time, or dynamic and adapted at runtime. This allows for greater reuse



as variability can be implemented for both static and dynamic adaptation, as dif-
ferent products may require the adaptation to be applied at different times [14].

Feature Modelling has become the de facto method of variability represen-
tation, used in software product lines. In feature models, the adaptation of the
product, be it static, or dynamic, are modelled, enabling a wide variety of prod-
ucts and product behaviours. While feature modelling is of great use in the
development, the dynamics within feature modelling can be confusing to end-
users. To amend the seemingly unpredictable and thus confusing nature of the
behaviour of a dynamic system and the results it produces, it is desirable to
enable the system to explain its behaviour as well as the results it produces to
the end-user. As we will detail further on in this paper explanations are very
useful to justify results a system produces and thus help to rebuild the trust an
end-user has in the systems behaviour and results. So explanations are useful
to the end-user as they can counter the mentioned non-transparency of DSPL
end-products and their dynamic behaviours.

In our previous work [18], on enabling a system we developed to gener-
ate explanations, we investigated the integration of explanations into a con-
text acquisition engine, used for developing context-aware applications. We did
this with regard to mobile applications were one has to adhere to many con-
straints. We developed a ContextEngine to easier deal with such limitations and
situation-specific information across applications [12], thus easing the creation of
context-aware, mobile systems. We noticed that with the increased adaptability
and dynamics of context-aware applications came an increase in complexity of
the application, which in turn made it harder to understand the behaviour of
such applications. In our initial research on this topic we then described how
we enhanced the ContextEngine platform with explanation capabilities. As we
describe in this paper and as it was proven in a variety of other work on ex-
planations, explaining can be seen as complex reasoning task on its own. In our
initial work we focused on the use of canned explanations. Canned explanations
are information artefacts, pre-formulated by the software engineer, that serve as
explanatory artefacts stored in the system and delivered to the user on demand.
We integrated storage facilities for such information artefacts, or explanatory
knowledge artefacts within the code structure of the ContextEngine and thus
were able to provide these stored canned explanations on demand to a software
engineer working with the ContextEngine. After this early steps and relatively
simple approach, based also on a further study into the matter of explanation
provision in the feature model and especially in the automated analysis feature
models (AAFM) domain, we decided to elaborate on our initial work.

The rest of the paper is structured as follows: We introduce the feature
modelling background of our work in the following section and based on the
technological possibilities described there motivate our approach to use an ex-
tended feature model for explanation generation in Section 3. We then interlink
our approach with related work on feature modelling, explanation generation
and the use of explanations itself in the following section. We then introduce our
approach to explanation generation from explanatory knowledge stored in an



extended feature model and demonstrate our concept of explanation generation
in Section 5 . After discussing the advantages and possible disadvantages of our
approach in Section 6 a summary and outlook on future aspects of our work
concludes the paper.

2 Feature Models

The purpose of a feature model is to represent all possible products from a SPL
in terms of features, and the relationships between them. An example feature
model for a content store application is shown in Figure 1. A feature of a system

Fig. 1. Feature Model of a content store

has been described in a number of variations [2]. For this paper, we use the
definition by Kang et al. [10] in that a feature is “a prominent or distinctive
user-visible aspect, quality, or characteristic of a software system or systems”.
Feature models are modelled using hierarchical trees of features, with each node
representing commonality and variability of its parent node. Relationships be-
tween each feature can be modelled using:

– Tree feature relationships between parent (compound) features and their
child features (subfeatures) .

– Cross-tree constraints which typically apply feature inclusion or exclusion
statements, normally using propositional formula. An example of this in-
cludes “if ABC is included, then feature XYZ must also be included.”

Within feature models, different feature relationships can be applied includ-
ing:

– Mandatory. A child feature is defined as mandatory in all products where
its parent is also contained.



– Optional. A child feature is defined as optional when it optionally can be
included or excluded when its parent is contained in a product.

– Or. A set of child features exhibit an or-relationship when one or more
children are selected along with the parent of that set.

– Alternative (XOR). A set of child features exhibit an xor-relationship
when only a single child can be selected when the parent is included.

Feature models have been applied not only to modelling system features, but
also context [1]. As DSPLs can be driven by context, modelling both contexts
and the features that they affect in feature models allows for a single modelling
language. The feature models introduced above represent what is known as ba-
sic feature models. There have been different additions to feature modelling,
including cardinality feature models [7], and extended feature models [6].

Extended feature models extend basic feature models by the ability to attach
additional information about features to the model. This additional informa-
tion is included by the use of feature attributes, which are attached to features
within the feature model. Feature attributes normally consist of a name, do-
main, and value. Feature attributes have been used in previous work for specify-
ing extra-functional information [4]. We intend to also use feature attributes in
our approach. We will employ additional feature attributes to store explanatory
knowledge artefacts, see section 5.1 for details.

3 Motivation of our work

The GUI of an application, or even more intriguing, the behaviour of an ap-
plication generated by the use of SPL can be rather dynamic. This dynamic
behaviour can be confusing if not daunting to the end-user of the application.
The end-user might not be aware of why the GUI has adapted and the factors
influencing how it changes. Furthermore, the dynamic behaviour of the appli-
cation, producing different results while receiving identical inputs just under
different circumstances (for example a network being available or not), is a chal-
lenge to the trust the user develops towards the applications results. As the
feature model, being the component responsible for the dynamic behaviour of
the application, is a black box system to the end-user the need for explanations
of this black box systems behaviour arises.

The benefits of being able to explain the behaviour of an application and
subsequently its GUI are plenty. According to [17] there are a number of benefits
explanations can provide to the end-user. The main benefits of interest with
regard to our problem at hand are the generation of trust into the results the
application generates and justification of and guidance on the changes in the
GUI of the application.

As [6] have shown it can be a complicated process to apply abductive reason-
ing to generate minimal explanations from the logical representation of a feature
model within an AAFM. To circumvent the effort involved in using abductive
reasoning to generate a minimal explanations from the logical representation of
the feature model our approach aims at integrating canned ’micro’ or ’atomic’



explanations within the logical representation of the feature model. By doing so
we aim to re-use the feature model itself in the same way it is used in the product
configuration to also ‘configure’ or synthesise more complex explanations of the
actual product generated from the ‘atomic’ building blocks given by the canned
‘micro’ explanations embedded in the feature descriptions themselves as well as
in the representation of the relationships between these features described in the
feature models logical representation.

3.1 Scenario Application

To illustrate our motivation, consider a DSPL example of a content store ap-
plication for a mobile device. This application may provide different content for
the user including applications, movies, music etc. Different content is organised
into different categories. A simplified feature model of the DSPL can be seen in
Figure 1. This application provides content for different age groups, and also the
application can be tailored to suit these different groups.

In the feature model, we can see that the features Payment, ContentTypes,
History, and Retrieval are required in every configuration of this DSPL. The
Payment feature handles all payment transactions when content is bought or
rented. The ContentTypes feature contains the different components for brows-
ing, and buying different types of content. Because different regions in the world
may require different content distribution licenses, it may not be possible to
sell content in every region, so depending on the location of the user, different
content type features including Video, Music, and Applications will be bound
or unbound. In the History feature, all bought content is found, which can be
retrieved in Retrieval. There are two primary methods in which content can
be retrieved, downloaded or streamed. Certain content including video maybe
downloaded or streamed. Depending on how much storage is available on the
device, it may be not be possible to download the movie, so only the Streaming
feature is bound. In Figure 2, we can see the variability of the screen according
to content type features. If you consider the video feature, there is a button that
takes the user to a set of screens for video content, and also a containership of
widgets for advertising popular movies.

4 Related Work

Explanations and feature models have been used before, but more to aid the anal-
ysis process and error analysis of feature models [20] as well as in automated
feature model analysis in general as Benavides et al. describe in [5]. As we al-
ready mentioned there are a number of goals that can be reached by providing
explanations to the user of a, then, explanation aware system. An explanation
aware system is a system that is able to provide explanations of the results it
produces as well as of the means it employs to produce these results [11,13].

The goals pursued by enabling a system to provide explanations [19] are the
following: Increase the transparency of a systems reasoning process to increase



Fig. 2. Variability of the main screen

the users trust into the system. Justifying results the system produces. This goal
aims at explaining the quality and applicability of results the system produced
to the end-user. Another goal of explanation provision is to provide relevance
explanations of either question asked by the system or on information provided
by the system. Conceptualisation, thus explanations of the concepts the system
is working on, directly aids the last goal of providing explanations, learning.
By explaining the concepts the system works on to the end-user the end-user is
enabled to learn about the domain in which the system works.

Our approach to providing applications needs, next to the knowledge used
by the feature model system, additional explanatory knowledge to create the ex-
planations we want the system to be able to provide to the end-user. It is always
necessary to provide explanatory knowledge in any system that is intended to
provide explanations on its reasoning [16]. This additional explanatory knowl-
edge is provided to and used by the explainer component of an explanation aware
system, enabling it to provide explanations of its reasoning and results. The need
for additional explanatory knowledge is also shown in [20] as the abduction pro-
cess described there is relying also on additional explanatory knowledge.

In our approach the explanatory knowledge needed to generate explanations
in our system will be broken down into ‘atomic’ canned explanatory knowledge
artefacts that will be paired with each feature of the feature model as well as ad-
ditional ‘atomic’ canned explanatory knowledge artefacts that will be attached
to the relationship descriptors within our feature model. The aim of this ‘en-
richment’ or ‘dotation’ of the feature model with ‘micro’ or ‘atomic’ explanatory



knowledge artefacts is it to reuse the artefacts ‘bound’ to the features and their
relationship descriptors in the final product to synthesise complex explanations
based on the available ‘bound’ atomic explanatory knowledge artefacts. We fo-
cus our approach especially on the issue of explaining a dynamic GUI to the
end-user. As for example [15] described in their work the problems that can re-
sult from a dynamic and automatically assembled GUI, we aim to amend these
problems by providing the end-user of an application with an insight into the
GUI’s changes by explaining them to her.

5 Our Approach

In our approach, we attempt to enable explanations in DSPLs. By adding ex-
planations to DSPLs, we see two benefits. Firstly, explanations have been shown
in other work to improve user understanding of a system which can be ap-
plied to DSPL systems [13]. Secondly, because a SPL enables many products to
be produced using reusable common assets, we can then easily produce many
explanation-ware applications, because we can leverage the reuse properties of
the SPL with the explanations. The first part of our approach regards the mod-
elling of the system.

5.1 Modelling

Just as the rest of the system is modelled using feature models, so too are the
explanations. To add explanations to the feature model, we use extended feature
models. As introduced earlier in the paper, with extended feature models, extra
explanatory information can be attached to features using feature attributes.
These feature attributes can be used for storing the specific explanation snippets
for each feature. For each feature attribute there is a name, domain, and value.
The domain of the attribute holds what type of explanation it is, with the value
holding the explanation fragment.

Mapping explanatory knowledge fragments to features is not just enough; we
also need to map explanatory knowledge fragments to feature model relation-
ships. Examples of explanatory knowledge fragments mapped to relationships
include:

– Mandatory - “in all configurations”.
– Optional - “which is optional”.
– Or - “which can be”.
– Alternative - “which is either”.

5.2 Composing Explanations

Once we have the explanations added to the feature model, we can compose com-
plex explanations. These complex explanations are made up of the concatenation
of explanations added to the features and the relationship explanations.



Fig. 3. Composing Explanation of why streaming is active

Lets take the example of considering a configuration where content is streamed
to the user instead of downloaded as shown in Figure 3. If the user wanted to
know why streaming is active, to generate an explanation we firstly follow the
tree from the streaming feature to the root. We then get the conceptual expla-
nation of the root, in this case “The content store”. Next we add the conceptual
explanation for the “History” feature, in this case “Stores historical content pur-
chases”, and because it is a mandatory feature, we add “in all configurations”.
Following this, we add the conceptual explanation for the “Retrieval” feature, in
this case “of which can be retrieved”, and add “in all configurations” because the
feature is mandatory. Then because the sub features of “Retrieval” are alterna-
tives, we add “either”, and the two conceptual explanations joined with an “or”.
Lastly, because in the configuration, the “Stream” feature is active, we add “in
this case, streamed”. We therefore can ‘reuse’ the structural information encoded
in the feature model representation directly for the composition of complex ex-
planations by simply ‘re-tracing’ the explanatory knowledge artefacts, stored in
feature and relationship nodes, along a path in the feature model.

6 Discussion

The implementation effort is expected to be minor, given the fact that our ap-
proach just adds three additional feature attributes to the feature and relation-
ship descriptions. The intention of ‘piggyback’ riding the inherent logical struc-
ture encoded in the feature model graph to also derive complex explanations
from it is still open to be tested for its actual quality of generated explanations
as well as for its scalability. With regard to the scalability of our approach we
intend it to be limited. Once a feature model exceeds a certain complexity the



coherent concatenation of explanatory knowledge artefacts described in the fea-
ture and relation nodes along a path in such a model will fail or become too much
of a computational effort. However we assume that for small to medium scale
feature models our relatively ‘practical’ approach of concatenating explanatory
knowledge artefacts stored in the models nodes is relatively efficient compared
to existing more complex approaches of explanation generation explained, for
example, in [6].

7 Summary and Outlook

In this paper we presented how the variability of SPL based products and their
behaviours could be explained to their end-users using explanations composed
from explanatory knowledge added to enhanced feature model nodes. Based on
the feature modelling background of our work we motivated our approach to use
an extended feature model for swift explanation generation. We reviewed and
compared our approach with related work on feature modelling, explanation
generation and the use of explanations itself, especially inspecting approaches
employing relatively complex abductive reasoning. We then introduced our ap-
proach to explanation generation from explanatory knowledge stored in extended
feature model nodes explaining features themselves and their relationships. By
tracing an example graph in a feature model we showed the working of our ap-
proach. Given the fact that we are in the early stage of further examining our
approach we then discussed its possible limitations but also its possible advan-
tages given by the fact that our approach promises to be easily implemented
base on existing work on enhanced feature models and is very easy to use for
explanation composition in small to medium sized feature models, compared to
more complex approaches like abductive reasoning.

As we cannot yet predict the effectiveness of our seemingly ‘pragmatic’ ap-
proach, we have to implement the enhanced node generation in our existing
enhanced feature model and then perform a series of experiments on this en-
hanced feature model. The aim of these experiments will be to establish our
approaches boundaries with regard to parameters such as quality and usability
of generated explanations as well as the scalability of our approach. We also
have to measure the computational effort necessary for explanation composition
and then measure it against the gain in usability to establish the worthiness of
further researching our approach of reusing extended feature model structures
for explanation generation from explanatory knowledge artefacts stored in the
nodes of the feature model.

An additional feature of the reuse of an enhanced feature models structure
for explanation generation not yet investigated further is the reuse of proposi-
tional logic formulae derived from the feature model. We plan to investigate the
possibilities of this reuse in our immediate follow up research.



References

1. Acher, M., Collet, P., Fleurey, F., Lahire, P., Moisan, S., Rigault, J.P.: Modeling
Context and Dynamic Adaptations with Feature Models. In: 4th International
Workshop Models@run.time at Models 2009 (MRT’09). p. 10 (Oct 2009)

2. Apel, S., Kästner, C.: An overview of feature-oriented software development. Jour-
nal of Object Technology 8(5), 49–84 (2009)

3. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling step-wise refinement. IEEE
Trans. Softw. Eng. 30, 355–371 (June 2004)

4. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: A literature review. Inf. Syst. 35(6), 615–636 (Sep 2010)

5. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: A literature review. Information Systems 35(6), 615–636 (2010)

6. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature mod-
els. In: Proceedings of the 17th international conference on Advanced Information
Systems Engineering. pp. 491–503. CAiSE’05, Springer-Verlag, Berlin, Heidelberg
(2005)

7. Czarnecki, K., Helsen, S., Ulrich, E.: Formalizing cardinality-based feature models
and their specialization. Software Process: Improvement and Practice 10, 7 – 29
(01/2005 2005)

8. Daniele, L.M., Silva, E., Pires, L.F., Sinderen, M.: A soa-based platform-specific
framework for context-aware mobile applications. In: Aalst, W., Mylopoulos, J.,
Rosemann, M., Shaw, M.J., Szyperski, C., Poler, R., Sinderen, M., Sanchis, R.
(eds.) Enterprise Interoperability, Lecture Notes in Business Information Process-
ing, vol. 38, pp. 25–37. Springer Berlin Heidelberg (2009)

9. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic software product
lines. Computer 41, 93–95 (April 2008)

10. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21 (1990)

11. Kofod-Petersen, A., Cassens, J.: Explanations and context in ambient intelligent
systems. In: Modeling and Using Context, pp. 303–316. Springer (2007)

12. Kramer, D., Kocurova, A., Oussena, S., Clark, T., Komisarczuk, P.: An extensi-
ble, self contained, layered approach to context acquisition. In: Proceedings of the
Third International Workshop on Middleware for Pervasive Mobile and Embed-
ded Computing. pp. 6:1–6:7. M-MPAC ’11, ACM, New York, NY, USA (2011),
http://doi.acm.org/10.1145/2090316.2090322

13. Lim, B.Y., Dey, A.K., Avrahami, D.: Why and why not explanations improve the
intelligibility of context-aware intelligent systems. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. pp. 2119–2128. ACM (2009)

14. Parra, C.: Towards Dynamic Software Product Lines: Unifying Design and Runtime
Adaptations. Ph.D. thesis, INRIA Lille Nord Europe Laboratory (March 2011)

15. Pleuss, A., Hauptmann, B., Dhungana, D., Botterweck, G.: User interface engi-
neering for software product lines: the dilemma between automation and usability.
In: Proceedings of the 4th ACM SIGCHI symposium on Engineering interactive
computing systems. pp. 25–34. ACM (2012)

16. Roth-Berghofer, T.R.: Explanations and case-based reasoning: Foundational issues.
In: Funk, P., Calero, P.A.G. (eds.) Advances in Case-Based Reasoning. pp. 389–
403. Springer-Verlag, Berlin, Heidelberg, Paris (September 2004)

17. Roth-Berghofer, T.R., Cassens, J.: Mapping goals and kinds of explanations to the
knowledge containers of case-based reasoning systems. In: Case-Based Reasoning
Research and Development, pp. 451–464. Springer (2005)

http://doi.acm.org/10.1145/2090316.2090322


18. Sauer, C., Kocurova, A., Kramer, D., Roth-Berghofer, T.: Using canned explana-
tions within a mobile context engine. Explanation-aware Computing ExaCt 2012
p. 26 (2012)

19. Sørmo, F., Cassens, J., Aamodt, A.: Explanation in case-based reasoning–
perspectives and goals. Artificial Intelligence Review 24(2), 109–143 (2005)

20. Trinidad, P., Benavides, D., Durán, A., Ruiz-Cortés, A., Toro, M.: Automated error
analysis for the agilization of feature modeling. J. Syst. Softw. 81(6), 883–896 (Jun
2008)


	Towards Explanation Generation using Feature Models in Software Product Lines
	Introduction
	Feature Models
	Motivation of our work
	Scenario Application

	Related Work
	Our Approach
	Modelling
	Composing Explanations

	Discussion
	Summary and Outlook


