
A GUI for MLN

Estêvão F. Aguiar1, Marcelo Ladeira1, Rommel N. Carvalho1, and Shou
Matsumoto1

Department of Computer Science
University of Braśılia

Campus Universitario Darcy Ribeiro
Braśılia, Distrito Federal, Brazil

estevaofaguiar@gmail.com, mladeira@unb.br,
{rommel.carvalho,cardialfly}@gmail.com

http://www.cic.unb.br

Abstract. This paper focuses on the incorporation of the Markov Logic
Network (MLN) formalism as a plug-in for UnBBayes, a Java framework
for probabilistic reasoning based on graphical models. MLN is a formal-
ism for probabilistic reasoning which combines the capacity of dealing
with uncertainty tolerating imperfections and contradictory knowledge
based a Markov Network (MN) with the expressiveness of First Order
Logic. A MLN provides a compact language for specifying very large MNs
and the ability to incorporate, in modular form, large domain of knowl-
edge (expressed in First Order Logic sentences) inside itself. A Graphical
User Interface for the software Tuffy was implemented into UnBBayes
to facilitate the creation, and inference of MLN models. Tuffy is a Java
open source MLN engine.

Keywords: Markov Logic Network, MLN, Tuffy, UnBBayes, Markov
Network, probabilistic reasoning, probabilistic graphical models

1 Introduction

In the past decade, several languages have been proposed to deal with complex
knowledge representation problems that also need to deal with uncertainty. A
frequent approach is to combine both logic and probabilistic formalisms resulting
in a powerful model for knowledge representation and treatment of uncertainty.
Some examples of these approaches were build and have been improved ev-
ery day as Markov Logic Networks (MLN) [1], Multi-Entity Bayesian Networks
(MEBN) [3], Probabilistic Relational Models (PRM) [2], Relational Markov Net-
works (RMN) [10], and Structural Logistic Regression (SLR) [7].

Markov Logic Network (MLN) is a principled formalism which combines
First-Order Logic (FOL) with Markov network (MN). An MLN, basically, is
a first-order knowledge base where a weight is assigned to each formula. The
weight of a formula indicates how strong the formula is as a constraint. Together
with a finite set of constants, an MLN can be grounded as a Markov network.
This way, a MLN can be seen as a template for building Markov networks [1].



There are a few implementations for MLN like Alchemy [1] in C++, Tuffy
[6] in Java, ProbCog [11] in both Python and Java, and Markov TheBeast [9] in
Java. In some of them there is no graphical user interface (GUI). The one that
does, the interface is quite simple providing no real ease-of-use. In general, as
these software are not very friendly, they become hard to use for users without
previous experience with their programming tasks and command lines.

This paper presents an implementation of a Java tool that consists of a GUI to
facilitate the task of making inferences, creating, and editing MLN models. This
tool was developed at the University of Brasilia (UnB) and uses the software
Tuffy as a library. Its current features include GUIs for modeling terms of a
knowledge base into a tree structure and for searching them in order to help the
user find terms easily in large models. Moreover, it is also possible to edit and to
persist these structures as a standard MLN file (compatible with both Tuffy and
Alchemy). Besides that, every parameter that can be set on Tuffy can be easily
set in the GUI. It even supports the addition in the GUI of new parameters that
might be present in future versions of Tuffy using only a configuration file. This
tool was implemented as a plug-in for UnBBayes, a Java open source software
developed at UnB that is capable of modeling, making inferences and learning
probabilistic networks [4].

This paper is structured as follows. Section 2 presents the MLN. Section 3
overviews some implementations of MLN and presents the major reasons for
choosing Tuffy as the application programming interface (API) behind this plug-
in. Section 4 introduces the GUI developed as a plug-in for UnBBayes.

2 Markov Logic Networks

A knowledge base of First-Order Logic (FOL) can be viewed as a set of con-
straints on possible worlds. Each formula has an associated weight that reflects
how strong this formula is as a constraint [1]. An MLN is a set with formulas of
FOL assigned to a real-valued weight for each formula. Together with a finite set
of constants, it defines a Markov Network (MN). Each state of the MN generated
represents a possible world of the generic MLN representation. A possible world
determines the truth value of each ground (i.e. instantiated) predicate. Thus,
it is said that an MLN is like a template for constructing MNs. Given different
set of constants, it will produce different MNs with different values and sizes.
However they have the same parameters and regularities in structure. Different
instantiated formulas still have the same weights. So, in MLN it is possible to use
inference methods generally used for MNs, since the used network is a grounded
one. However, due to the fact that most of time the grounded network is large
and complex, to use this method could be infeasible. Therefore, approximate
and lifted inference algorithms have been proposed [1].

Maximum a Posteriori (MAP) inference (i.e. finding the most likely state of
the world consistent with some evidence) and marginal inference (i.e. computing
arbitrary conditional probabilities) are common approaches to making inferences
in MLN. Learning algorithms are used to build, from historic data, models that



represent a problem to be treated. For this formalism, learning methods are used
to construct or refine a MLN. Two types of learning are specified: weight learning
(i.e. which tries to find the weights of the specified formulas that maximize
the likelihood or conditional likelihood of a relational database) and the harder
technique of structure learning (i.e. which tries to learn the formulas themselves).

More details on MLN can be found in [1] and will not be covered in this
paper.

3 The choice of an implementation

With the intent of building a GUI for MLN, the first step is to implement or
find an existing implementation of the formalism. So, pros and cons of some im-
plementations have to be analyzed. If no implementation had compatibility with
UnBBayes, it would be necessary to create a new one. Fortunately it was not
the case. The pros and cons of the more common implementations are presented
below. As our goal was to build a plug-in for UnBBayes, the programming lan-
guage had a larger weight than the features available on the tool. UnBBayes [4]
is an open source application developed in Java that provides a framework for
building and reasoning with probabilistic graphical models. Since version 1.5.1,
it works with Java Plugin Framework (JPF). JPF allows the construction of
scalable projects, loading plug-ins at runtime. The MLN GUI has been built as
a plug-in for UnBBayes.The software analyzed were Alchemy [1], ProbCog [11],
TheBeast [9] and Tuffy [6].

3.1 Alchemy

Alchemy is the reference for other implementations of MLN and is the most
complete of them. It covers MAP Inference, marginal inference, weight learning,
structure learning and other features from each of the mentioned topics. Alchemy
is an open source software developed in C/C++. It does not have a GUI and
it works only in Linux or Linux shell emulator. Alchemy was the first option to
extend, but its programing language is not easily integrated with Java.

3.2 TheBeast

TheBeast [8] is an open source and is a Statistical Relational Learning software
based on MLN. Although it is developed in Java, it does not have much docu-
mentation and it does not work similarly to Alchemy. This fact impacts on that
it would be harder to work with it. TheBeast has no GUI implemented either.

3.3 ProbCog

ProbCog is an open source software for Statistical Relational Learning that
supports learning and inference for relational domains. Merged to ProbCog, is
PyMLN, a toolbox and a software library for learning and reasoning in MLN.



It has a GUI for MLN but it, seemingly, shows the necessary files for inference
and the main parameters to be more easily selected, but nothing beyond the
basic. Most of the code of ProgCog is developed in Java, although its MLN tool
is developed in Python.

3.4 Tuffy

Tuffy is an open source Markov Logic Network engine. It is developed in Java
and makes use of a PostgreSQL database. Tuffy is in version 0.3 and is capable
of MRF partitioning, MAP inference, marginal inference and weight learning.
Since Tuffy has many similar features to Alchemy, as weel as the same structure
for input files, it has no GUI, and it is implemented in the same programming
language as UnBBayes, it ended up being the most suitable MLN implementation
to be used in the MLN GUI plug-in.

4 The GUI for MLN

There are several helpful easy to use GUI tools for Bayesian networks. However,
this is not true to MLN yet. For most of them, the only way to make it work is
to set command line parameters and then enter commands through a console.
Sometimes you must memorize a bunch of commands if you want to realize a
task fast, while you could just press buttons and choose options with some clicks
in a more easy to use GUI interface. Creating a GUI to simplify this process
of designing and using MLNs was the main motivation of this research. The
following paragraphs describe the main features of a proposed GUI for MLN.

This project of a GUI for MLN into UnBBayes was built as a JPF plug-in.
The plug-in structure provides a way to run a new project inside the running
environment of UnBBayes. The bind between the new plug-in and the core of
UnBBayes happens in a way that no changes are needed in the core structure.

Basically, building new plug-in implementations for UnBBayes is really sim-
ple, since a stub implementation is available in [5].

Figure 1 presents the GUI divided in numbered parts. Each part is described
bellow.

The Tuffy input files are: a MLN file (.mln), an evidence file (.db) and a query
file (.db). The last one can be replaced passing its content through command line.
Figure 1 Part 1 shows the possibility to load this three files and the possibility
to send the query predicates through a text field.

When the MLN file and the evidence file are loaded, their terms (i.e. pred-
icates, weighted formulas and evidences) are separated and organized in a tree
structure as shown in Figure 1 Part 5. This tree structure gives a great gain of
visualization and differences between structures into the MLN.

Figure 1 Part 2 presents a very useful search tool. It searches dynamically
predicates, formulas, and evidence that match the inputted string. This feature
is useful when working with very large MLNs.



Fig. 1. GUI for MLN implemented as plugin into UnBBayes

The GUI also presents a way to add and remove predicates, formulas and
evidence. This feature is shown in Figure 1 Part 3. Lots of terms can be directly
inputted into the correct classification. The deletion is made from a drop down
list which brings to the user all the existing terms. Every change made through
this feature is persisted in the original file. This feature makes it easier for the
user to include or remove terms in a MLN model.

Figure 1 Part 4 allows the user to choose what inference method to use and
the button to trigger the inference process, which will be executed by Tuffy in
the background. Tuffy is embedded into UnBBayes and used as a library through
its API.

Figure 1 Part 7 is displayed when the ”inference” tab is chosen. It presents
the output in a text area, the same way that it is presented in the output file in
Tuffy.

Figure 1 Part 6 presents the parameters of Tuffy in an easy way to set and
save. The parameters of Tuffy were parameterized by type that they represent
(e.g. integer, float, boolean and string). This allows the parameters to be loaded
to the interface from a configuration file and new parameters added in new
versions of Tuffy can be easily incorporated to UnBBayes without the need to
change any programming code. The dynamic values of the parameters are defined
in another configuration file.

5 Conclusion

This paper presents a GUI for Tuffy, a Java Markov Logic Network inference
engine. As shown, this GUI facilitates the task of creating MLNs models and
reasoning with them. This GUI was implemented as a JFP plug-in for the



UnBBayes software. UnBBayes and this plug-in1 is available from http://

unbbayes.sourceforge.net/ under GPL license.

References

1. P. Domingos and D. Lowd. Markov Logic: An Interface Layer for AI. Morgan and
Claypool, 2009.

2. Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic
relational models. In International Joint Conference on Artificial Intelligence,
volume 16, pages 1300–1309. LAWRENCE ERLBAUM ASSOCIATES LTD, 1999.

3. K.B. Laskey. MEBN: A Language for First-Order Bayesian Knowledge Bases.
Artificial Intelligence, 172(2-3): 140-178, 2008.

4. M. Vieira M. Onishi R.N. Carvalho M. Ladeira, D. da Silva and W. da Silva.
Platform independent and open tool for probabilistic networks. Proceedings of the
IV Artificial Intelligence National Meeting (ENIA 2003) on the XXIII Congress of
the Brazilian Computer Society (SBC 2003), Unicamp, Campinas, Brazil, 2003.

5. Shou Matsumoto, Rommel Novaes Carvalho, Marcelo Ladeira, Paulo Cesar G.
da Costa, Laecio Lima Santos, Danilo Silva, Michael Onishi, Emerson Machado,
and Ke Cai. UnBBayes: a Java Framework for Probabilistic Models in AI. In Java
in Academia and Research. iConcept Press, 2011.

6. R C. Doan A. Shavlik J. Niu, F. Tuffy: Scaling up statistical inference in markov
logic networks using an RDBMS. Proceedings of the VLDB Endowment, 4(6),
373-384, 2011.

7. Alexandrin Popescul and Lyle H Ungar. Structural logistic regression for link
analysis. Departmental Papers (CIS), page 133, 2003.

8. Sebastian Riedel. Improving the accuracy and efficiency of MAP inference for
Markov Logic. In Proceedings of the 24th Annual Conference on Uncertainty in AI
(UAI ’08), pages 468–475, 2008.

9. Sebastian Riedel. Markov thebeast user manual. 2008.
10. Ben Taskar, Pieter Abbeel, and Daphne Koller. Discriminative probabilistic models

for relational data. In Proceedings of the Eighteenth conference on Uncertainty in
artificial intelligence, pages 485–492. Morgan Kaufmann Publishers Inc., 2002.

11. Jain D. Beetz M. Tenorth, M. Knowledge representation for cognitive robots.
Knstliche Intelligenz, Springer, volume 24, 2010.

1 This plug-in can only be downloaded from the SVN repository. Soon a distribution
will be released for simple download and installation.


