Enhancing Root Cause Analysis with Runtime
Models and Interactive Visualizations

Michael Szvetits! and Uwe Zdun?

! Software Engineering Group
Information Technology Institute, University of Applied Sciences Wiener Neustadt
michael.szvetits@fhwn.ac.at
2 Software Architecture Group
Faculty of Computer Science, University of Vienna
uwe.zdun@univie.ac.at

Abstract. Recent research shows that runtime models can be used to
build dynamic systems coping with changing requirements and execution
environments. As software systems are getting bigger and more complex,
locating malfunctioning software parts is no trivial task because of the
vast amount of possible error sources and produced logging information.
This information has to be traced back to faulty components, which of-
ten leads to editing of code scattered over different software artefacts.
With such a fragmented view, challenges arise in finding out the root
cause of the unwanted software behaviour. In this paper we propose the
usage of runtime models in combination with model-driven techniques
and interactive visualizations to ease tracing between log file entries and
corresponding software artefacts. The contribution of this paper is a
repository-based approach to augment root cause analysis with interac-
tive tracing views while maximizing reusability of models created during
the software development process.

Keywords: root cause analysis, models, runtime, visualization

1 Introduction

Recent research proposes models used at runtime to realize adaptable and man-
ageable systems. Runtime models provide software with additional capabilities to
reflect on its own structure and adapt itself according to changing requirements
and execution environments. This is different to traditional software engineering
where models are artefacts created during the software development phase, mod-
els have no connection to the resulting executable software, and the software is
usually modified by re-deployment of changed software components. In addition
to this extra deployment phase, such changes are often performed on artefacts
residing on a low abstraction level. To overcome these limitations, the running
system can use a model-based self-representation which is causally connected to
it [1]. A causal connection enables feedback from runtime information to soft-
ware models and thus reasoning on a higher abstraction level. The type of model

used for information feedback depends on the type of reasoning: for instance, ar-
chitecture models are suited for system-wide adaptation, whereas state machine
models are useful for validations of execution flows. The reuse of model artefacts
at runtime not only supports adaptation, but also platform independence [2],
monitoring/simulation [2], rule enforcement [3] and error handling [4].

The amount of runtime data produced by many applications tends to be huge
and is recorded in different forms. Relevant information has to be extracted and
put into context with corresponding artefacts produced in the development phase
to reveal the root cause of unexpected software behaviour. The purpose of such
an analysis is to find out the root effect within a chain of undesirable effects
occurred during software execution [5]. Since implementation details are usually
scattered over different development artefacts, further challenges arise to offer an
effective navigation from logging messages to affected software parts. Techniques
are needed to filter runtime information for particular criteria of interest.

In this paper we propose a novel approach to combine visualization tech-
niques with models used at runtime (and usually created in the design phase) to
their mutual benefit during root cause analysis: Model artefacts are utilized as
additional information during root cause analysis while visualization techniques
allow to focus on particular sections of logging output of the running application.
We accomplish this by using model-driven techniques in combination with inter-
active visualizations to enable tracing between log file entries and corresponding
software artefacts. A customized code generator produces annotated code which
handles logging without the need of human intervention. Furthermore, model
artefacts are stored in a repository to be accessible by a log file tracer, although
our approach is not limited to such data access. That is, model data is also
accessible to external applications to open the system for future extensions. At
runtime, recorded logging data is fed back to interactive analysis views and as-
sociated model elements to support root cause analysis on a higher abstraction
level, thus closing the loop between the development and runtime phases.

This paper is organized as follows: In the next section we give an overview
of our approach to combine reusable models with interactive visualizations to
gain aforementioned benefits. In Section 3 we describe the model-driven part of
our work which prepares runtime access of model information. Furthermore, we
introduce interactive visualizations to analyze runtime information and present
a prototype demonstrating our idea by using a model repository to trace log file
entries to corresponding software artefacts. In Section 4 we give an exemplary
scenario for the usage of our approach. In Section 5 we discuss our results and
lessons learned. In Section 6 we take a look at related work in terms of model
feedback and interactive visualization. We conclude in Section 7.

2 Approach Overview

Our approach proposes semi-automated, interactive techniques to provide feed-
back from runtime information back to the relevant software artefacts. More
precisely, the tool proposed in our approach listens to log file changes produced

by the running system, extracts the information and puts it into context with
corresponding model artefacts and their elements. As a result, models created
in the development phase are utilized at runtime and act as a representation
of system parts affected by specific log messages. We use a model-driven ap-
proach to generate the logging and tracing environment for the software where
the amount of produced runtime information can be adjusted by the developer
at design time (see Section 3.1). Furthermore, we use interactive visualizations to
reveal the root cause of unexpected software behaviour by making dependencies
between software parts explicit and providing improved navigation capabilities
to model artefacts used at runtime (see Section 3.2). A summary of the devel-
opment steps is depicted in Figure 1.

® Iterative root cause search

(repeat until root cause candidate is found)

bé"
o
é\

DyoN
-,
'~.°)‘@

vt T

7 1
7 Runtime

i
| _. i g 1
| 1 |
I |
I Code Code I Executlon Root cause !
i [Modelling generatlon refinement L log creation anaIyS|s] !
1 | !
1 | !

Repository

(IDs for model elements)

== =

Fig. 1. User view of the development steps when using our approach

The first step of our approach is concerned with modelling of the system. In
our approach, the modelling step can concern any model artefact that is com-
pliant with a specific meta-model, although the current version of our prototype
focuses on UML models only (see Section 4). These created model artefacts are
utilized at runtime where runtime information is fed back to the models to find
locations of errors and unexpected software behaviour. The next step deals with
the development or adaptation of a code generator to produce model and logger
code for the system. Furthermore, the code generator is responsible for storing
models and their related elements in a repository which is accessible at runtime.
This step requires no additional interaction of the developer and enables the
resulting software to query its own structure and produce log file entries with a
reference to the model that has created the software artefact producing the log

entry. This part of the development process leaves room for future extensions to
augment the logger, e.g. to generate reports of software failures.

During code generation model-related code as well as logger code is created
which emits log file entries in a format specified by the code generator. In the
phase of code refinement, the actual software product is developed and the gen-
erated model code is integrated or extended by the custom implementation.
Within custom code, log file entries can be emitted in the correct format by
making calls to the previously generated logger code.

The combination of custom and generated code is then compiled to an exe-
cutable application which acts as system under observation for subsequent anal-
ysis. Implemented logger calls obtain model information from the repository and
produce log file entries traceable to the related model elements. The last step
of the development is concerned with the analysis of the produced log files and
the interactive visualization of the recorded data to enable efficient tracing be-
tween log file entries and corresponding model artefacts. In this phase, root cause
analysis is an iterative action by narrowing down problems step-by-step with the
help of multiple interactive visualizations. These visualizations highlight affected
model elements and clarify their interrelationships.

As a summary, the key idea of realizing root cause analysis with interactive
visualizations is a loop which is responsible for the feedback of runtime data to
model artefacts created in design phase. We divide the steps into model-driven
application development and feedback of runtime information with the help of
interactive visualizations. Section 3.1 and 3.2 describe the details for these parts.

3 Approach Details

Based on the overview depicted in Figure 1, we give a more detailed view on the
development process to provide insight into our model-driven development and
interactive visualization parts.

3.1 Model-driven Runtime Preparation

We use model-driven techniques to prepare the resulting software product for
runtime access of model-related logging data. Interactive visualizations are then
used to process this data and provide root cause analysis capabilities. The first
step is the creation of model artefacts to act as a base for code generation and
information feedback. These model artefacts are then fed into a code generator
which is responsible for two tasks: On the one hand, it has to store the models and
its associated elements in a repository to be accessible at runtime. On the other
hand, it must generate code out of the input models which is then refined by the
developer. The generated code depends on the customized code generator and
usually covers model-relevant code and additional components to enable logging.
The generated logger code is responsible for writing log files in a format to be
processable by a log file tracer or other external applications.

Within the repository, the model and all of its traceable model elements (e.g.,
packages, classes and methods) are stored and get a unique ID. In principle,
our approach is independent of algorithms which generate such unique IDs —
for our prototype, we used the hash code of the full qualified name of a model
element (see Section 4). The assigned IDs are used by the code generator to create
annotations for corresponding elements in the generated code. These annotations
can be accessed by the logger component at runtime to produce traceable log
files entries. Such entries usually consist of the related IDs and a generic message,
but can be adapted by modifying the code generator itself.

In the next step, custom code is implemented which extends or calls the gen-
erated model code and realizes the actual business logic. Logging is controlled by
annotating elements of interest or by calling the generated logger directly. Ex-
tending generated code is usually achieved by inheritance relationships between
custom and generated classes in combination with overriding of generated oper-
ations. Depending on the code generator, a logger can evaluate such inheritance
hierarchies at runtime through reflection to locate IDs of annotated elements and
produce log entries containing references to associated operations and classes.
This is an important step to close the loop between produced runtime informa-
tion and the static structure modelled at design time since it enables interactive
analysis views to provide navigation between log files and design artefacts.

For the dynamic aspects of the system, the logger component alone is not
adequate since the logger class can only trace the caller of the logger itself, but
not calls between different components (e.g., a statement in an annotated method
calls another annotated method). We achieve tracing of such calls through aspect-
oriented programming techniques: The code generator generates pointcuts (hooks
to method invocations) for methods to be traced and advices (the actual hooking
code) which call the logger with information about caller and callee.

After compilation and execution, calls to the generated logging code will pro-
duce log file entries in a format which can be interpreted and fed back to model
elements which have been created in the first step. For feedback of runtime infor-
mation, a tracer component has to read produced log files and query associated
model elements from the repository. To obtain live data from the application, the
tracer must listen regularly to changes in these log files. In addition, it is also
possible that the application itself queries the repository to obtain additional
information about its own structure. The repository can also be queried from
arbitrary clients which makes the architecture extensible for external tools.

3.2 Interactive Visualization of Runtime Information

After log entries have been read, interactive analysis views have to be populated
so the user can select relevant data from the collection of runtime information.
With visual support available, the amount of irrelevant messages can be mini-
mized and affected components and their dependencies can quickly be found.
Van Ham [6] describes the use of Call Matrices as technique to visualize calls
between components. A call matrix has the visualized components placed in its

row and column headers whereas matrix cells represent calls between the respec-
tive components (see Figure 2a). We use this kind of interactive visualization
to display calls captured by our pointcut expressions to enable quick naviga-
tion to error locations and gain quick overview of connected components. More
precisely, we put packages and their classes into row and column headers while
matrix cells represent the methods of each class. A call can then be displayed
by highlighting the associated matrix cell where the row stands for the calling
and the column for the called method. In Figure 2a a call matrix consisting of
three different components reveals that several errors occurred in calls between
components (A-B, B-C and C-A) as well as within components (A-A, B-B and
C-C). Different colors can be used to highlight priorities of call events, e.g. yellow
for warnings and red for errors. Root cause analysis is thus supported in a way
that the call of a faulty method can be traced back to the exact code location
(file name and line number are provided by the cell data) while the caller can act
as new starting point of further analysis. This backtracking can be done until
no further logging data exists.

A EB C <|m|o|afma|m
=t R=th={R=th=1h=!
9 Ol 0| O QO
A EEEEEE
QOO QOO
! | 2| 3| B3|
— ells=lls=lla=llgolise)
O O| Ol O| O] ©
Lﬁ === ==
B Entry 1 X
| | Entry 2|| X X
Entry 3 X
Entry 4 X
C Entry 5(|X
L Entry 6 XX
(a) Call Matrix [6] (b) Table Lens [7] (c) Log entry matrix

Fig. 2. Interactive visualization techniques, our approach utilizes (a) and (c)

Another form of interactive visualization is named Table Lens and is used by
Rao and Card [7] to focus on particular ranges of tabular data. Table rows and
columns can be adjusted by the user with the help of zooming and sliding to
control the amount of displayed data. Rao and Card [7] define three operations
to manipulate the currently focussed area: Zoom (change space allocated to the
focus area), Adjust (change amount of content within the focus area) and Slide
(change location of the focus area). Figure 2b shows a tabular data sheet where
a range of 3 by 2 cells is currently focussed (cell content has been removed for
the sake of simplicity). Our current prototype does not include this visualization
technique, but is extensible to do so in the future (see Section 4).

Beside the call matrix, we implemented a matrix view where a simple list
of all recorded log entries is set in relation to all corresponding model elements
(see Figure 2¢). Within this matrix view, sortable columns enable grouping of log

entries for particular model elements. Such grouping improves root cause analysis
because hot spots with a high error density can easily be detected. Furthermore,
if a faulty component has been detected with the call matrix approach, similar
errors for the same component can quickly be revealed. Since the matrix grows
rapidly with the number of log entries and model elements, this technique is
only recommended for small projects. For a great number of data, one should
fall back to Table Lens or a combination of Table Lens and log entry matrix.
To provide more insight into the structure and dependencies of a system,
Linking and Brushing combines multiple visualizations by introducing synchro-
nization mechanisms between them [8]. Changes performed on one visualization
are communicated to all other visualizations to understand interrelationships
between these artefacts, e.g. to find classes of an UML class diagram in other
sequence diagrams. In our approach, when the user selects log entries of interest,
encoded model-related information is extracted from the selection and displayed
in corresponding model artefacts. This helps to quickly understand the impact of
warnings/errors and to provide an efficient navigation between affected models.

4 Prototype and Exemplary Scenario

We implemented an Eclipse-based! prototype of our idea by using Papyrus as
modelling toolkit, Acceleo as code generator and AspectJ for aspect-oriented
capturing of dynamic calls. For log files, we included the file name, line number,
a generic message and related IDs (packages, classes and methods) for all log file
entries. The model repository is a relational database which stores the model file
of UML models and holds references to each model element by their assigned
unique identifier. In our prototype, we use the hash code of the full qualified name
of the respective model element as unique identifier, although our approach is
not limited to this technique as long as there is a unique identifier available. We
implemented four different visualizations for more efficient root cause analysis
which utilize the repository to trace selections back to the UML models:

— List view, a live view which lists all log entries in chronological order.

— Matriz view, a sortable view which relates log entries with model elements
(see Figure 2c). Model element grouping enables hot spot identification.
Outline view, a list of expandable log entries to view related model elements.
Enables quick navigation from log entries to model elements.

Call Matrix view, a view to trace dynamic calls between components

(see Figure 2a). Reveals dependency chains of faulty components.

Figure 3 demonstrates our exemplary scenario which utilizes the matrix view
and call matrix view to enhance root cause analysis. We consider a simplified
class diagram of a linked list implementation to demonstrate the structure of
our interactive visualizations. The scenario starts with the user recognizing un-
expected software behaviour and starting the tracer component to constantly
read the log file of the application and refresh the visualizations.

! http://projects.eclipse.org/list-of-projects

| 1 e S T T T T T T TT T T T T T T T | P T ST T T T 1
| Tracing | :Interactlve visualizations | 1Models |
1 [1! |
I 1! Il I
I gl [& g [€
: : f s 8@ s 5|% | : ©ngram :
| 1 o, |E|3l ol E|2|g| ! list |
start |)1 SI1212IE|5| crouing NENEE : ! ma !
-------------- & Tracer i = (find hot spots) = 1 nittist) |
| 1! [Entry 1 n —> [Entry 1 -] 1! |
H |

: H : | [Entry 2 m (m Entry 3 -I : : :
i {1 [Entry3] [m Entry5| |® b |
: | : | : Entry 4 [m [] Entry 2 (m| [m]] 1
i observes ! loadfle || [Entry5| [m | Entry4(m| | [m] |!] !

: I : I I
* unexpected : | 1 |
* “behaviour I H Select entres Il I
: : [(Linking and Brushing) | : |
5 | | |
! :: PLJ]E PLJE ! ! !

| 5] | L=l
Vet Write IL] h N o -l ! : :
stem eeeeenn.n Search refinement
Y h Log file | :] (select caller) m ! ©pgrement 1
-
o : : o= 4 | : nextElement :
| value
| 1! P ... Program 1! tvalue() !
| | : w Lol w 1! Bt |
1 |I L feme u | : |
| 1

Fig. 3. Exemplary scenario of a step-by-step root cause analysis

Once the logging data has been read, the matrix view and call matrix view
are populated with the data (other views are neglected in this scenario). Such
views are not available in traditional logging approaches and contribute to a more
efficient root cause analysis: Assuming an anomaly has occurred, the developer is
able to take a first look into the matrix view to get an overview of all traceable
model elements which were involved in log entries. Irrelevant model elements
are not rendered as columns at all, providing a compact overview which is not
available when analyzing log files by hand. For our example, the columns of the
matrix view consist of three classes (Program, List, Element) and two methods
(initList, print). The matrix view allows to group logging entries for suspicious
model elements. If this grouping results in a large list of entries for an element,
it is very likely that the error occurs within a frequently called method of that
element. Element List depicted in Figure 3 is a candidate for such an element.

To inspect this element, the call matrix view is consulted to find out more
information about called methods of this element (columns) as well as their
respective callers (rows). This is directly achieved by selecting the entries in the
matrix view since our implementation of Linking and Brushing [8] highlights all
occurrences in other related views. The call matrix view enables direct navigation
to model and code artefacts which contain calls of selected cells. Together with
the generic log messages of entries, the user can identify possible error sources
around these calls. If no suspicious spot can be found, the search is continued
upwards the call hierarchy to the next caller which acts as new base for analysis.
In case of our scenario, the next caller is the second method of class Program
(that is, method initList, see left call matrix in Figure 3). For this simple example
this could indicate that the list was filled with wrong values during initialization
(e.g., null values) while unexpected behaviour was observed in the method insert
in the first place. In general, this step is repeatable for subsequent callers in the
call hierarchy until a root cause candidate is found (it is not repeatable for our
exemplary scenario, since Program is the application entry point).

While navigating through log file entries with the help of interactive visu-
alizations, our implementation of Linking and Brushing [8] is also responsible
for highlighting model elements in existing UML models created at design time
(see right side of Figure 3). On the other hand, we implemented an extension to
the Papyrus model editor to realize Linking and Brushing the other way round,
that is, the selection of elements in UML models highlights all associated log
entries in the interactive visualizations. As a result, models created at design
time are utilized at runtime, integrated into our approach and contribute to the
overall understanding of the architecture while searching for anomalies. This syn-
chronization mechanism between visualizations and models is used to monitor a
running system if the tracer guarantees a live view on the logged data.

Regarding architecture, it is also possible that the tracer component receives
the logging information remotely via network and interprets the information
without further interventions of the user. Such connection between the system
and the monitoring environment cannot be automated if logging messages follow
an informal format, which is often the case in traditional logging. As a summary,
the usage of interactive visualizations with runtime models exceeds manual root
cause analysis in terms of logging effort, navigability, traceability and reusability.

5 Discussion

Our approach aims to combine the advantages of model-driven development with
reusable software artefacts. Once the code generator is implemented, the system
is extensible through the model repository and is fully transparent for the devel-
oper since manual actions are limited to logger calls where traceability is desired.
All supporting artefacts (e.g. logger, database entries, annotations, aspects with
join points and advices) are generated and integrated into the resulting sys-
tem without further intervention. At runtime, interactive visualizations enable
efficient tracing between log file entries and corresponding model artefacts.

If logging output is constantly observed, the models created at design time
turn into runtime models which contribute to the overall understanding of the
architecture while searching for anomalies. Changes to these models can be prop-
agated to the running system to gain instant feedback if anomalies have been re-
solved. Our current prototype allows feedback to both structural and behavioural
models, but is not yet able to propagate changes back to the running system.
We plan to add this feature in the future, but we also see more potential in the
idea of Linking and Brushing to reveal interrelationships between generic data
sources and runtime models. For example, a time series interval of performance
data could be selected which highlights model elements responsible for the se-
lected data, ideally sorted by relative distribution (e.g., method sort produced
65% of the selected load) and accessible by selectable granularity (e.g., packages,
classes and methods). Bottlenecks could be identified, repaired and changes be
propagated to the running system. Interactive visualizations thus can be seen as
abstraction/aggregation layer between running systems and their causally con-
nected runtime models. They augment conventional runtime model, debugging

and tracing approaches and help developers to understand the system, reproduce
errors and find the root cause of problems in models created at design time.
Nevertheless, the initial effort must not be underestimated since the code
generator must be implemented and produce proper output to see first results.
Furthermore, the overall performance of the system has yet to be tested since a
large number of model elements and log file entries may result in increased effort
regarding code generation, log file analysis, repository lookup and interactive
data presentation. This is especially the case when using techniques like Linking
and Brushing where multiple models and analysis views must be traversed to
highlight particular model elements. Further work is required to see if these
concerns are reasonable and if so, to find out how these problems can be solved.

6 Related Work

Maoz [9] introduces a similar approach which uses model-based traces to record
the runtime of a system through abstractions provided by models used in its
design. The traces include information about the systems from which they were
generated, the models that induced them and the relationships between them
at runtime. The approach focusses on metrics and operators for such traces to
understand the structure and behaviour of a running system while our approach
focusses on interactive visualizations which serve as abstraction and aggregation
layer between the running system and its runtime models. An overview of trace
exploration tools and techniques is given by Hamou-Lhadj and Lethbridge [10].
Graf and Miiller-Glaser [4] tackle the problem of identifying error occurrences
by defining various debugging-perspectives independent of the actual execution-
platform. They extract runtime information out of the executed binary from
the target platform and transport this information back to the model level.
Obtained runtime information can then be used to visualize the internal state of
the executable. In contrast to our approach, they extend the UML meta-model
with meta-classes that allow storage of data acquired by the model mapping.
Like in our approach, Fuentes and Sanchez [11] also use aspect-oriented tech-
niques to cope with error occurrences. They implemented a dynamic model
weaver to run aspect-oriented models where aspects are woven and unwoven
during model execution, leading to reconfiguration of the system by well-defined
adaptation points. Interactive model simulation is achieved by loading and un-
loading pointcuts that manipulate aspects. Compared with our approach, their
weaver focusses on testing and debugging a model itself before moving into an
implementation while we concentrate on root cause analysis of running systems.
An approach which also uses log files to coordinate model operations is in-
troduced by Bodenstaff et al. [12]. In their approach, the event log is assumed
to be consistent with the running system and with a model if no contradictions
with the model exist. The challenge lies in identifying relevant parts of the log
and abstracting them to enable further processing. They suggest to either adapt
the system to produce log files in a proper format or to reconstruct data from
raw event logs. Compared to our approach, the output format of the log files can

directly be manipulated within the code generator. Furthermore, their goal is to
perform consistency checks whereas in our work locating errors and unwanted
behaviour through interactive visualizations is of particular interest.

Regarding model access, Holmes et al. [3] also use a model-aware repository in
combination with unique identifiers. The repository can be queried through web
services and is able to store multiple versions of models. These models describe
a service-based system and its requirements and are used at runtime to trace
back violations. Their goal is to check compliance to regulations whereas our
work focusses on improving root cause analysis with interactive visualizations.

Dettmer [5] defines root cause with the help of Current Reality Trees (CRT).
Such trees contain chains of undesirable effects where a root cause is a special
undesirable effect without a predecessor (that is, a leaf of the CRT). Such trees
ease the analysis of problems since they enable explicit modelling of dependen-
cies between undesirable effects. It can be considered as visualization technique
without interactive aspects, but the idea could be adapted in a way so that call
hierarchies are navigable to the last occurred exception or undesired software
behaviour. Elgammal et. al. [13] also make use of CRTs for root cause analysis
to resolve compliance violations in service-oriented environments. In contrast to
our work, their approach focusses on resolving design time violations.

Root cause analysis with the presence of huge amount of data during process
execution is also discussed by Rodriguez et al. [14]. Their approach addresses
conformance to rules and the understanding of non-compliance in service-based
business processes. In contrast to our approach, their solution lies in reporting
dashboards and decision trees to encounter the huge amount of data while our
work focusses on the usage of runtime models with highest possible reusability.

7 Conclusions and Future Work

In this paper we combined model-driven techniques with runtime models to
augment root cause analysis of executing systems. We gave an overview of our
approach to illustrate the development steps which cover software models created
at design time and their runtime utilization when analyzing file output produced
by the system under observation. We described our model-driven strategy which
uses a repository to provide runtime access to model-relevant data for the system
or other external applications. We introduced interactive visualizations of which
we implemented a list view, a matrix view, an outline view and a call matrix view
in our prototype. We analyzed advantages of our approach as well as potential
performance drawbacks if models tend to increase in complexity.

We plan to perform an empirical evaluation of our approach to analyse its
applicability. Furthermore, we aim to generalize our prototype to accept more
meta-models than UML by adapting the code generator and to include additional
runtime information sources like network traffic or workload of individual soft-
ware parts. We especially see potential in improving the code generator to pro-
duce additional output, e.g. automated reports in case of unexpected behaviour.
We will compare our work with existing transformation frameworks which pro-

vide basic tracing features and consider including code-to-model transformations
to support existing implementations. Future versions will include better control-
ling of the log file output and propagation of changes to the running system.

References

1.

10.

11.

12.

13.

14.

Bencomo, N.: On the use of software models during software execution. In: Pro-
ceedings of the 2009 ICSE Workshop on Modeling in Software Engineering. MISE
’09, Washington, DC, USA, IEEE Computer Society (2009) 62-67

Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Model-driven
architectural monitoring and adaptation for autonomic systems. In: Proceedings
of the 6th international conference on Autonomic computing. ICAC ’09, New York,
NY, USA, ACM (2009) 6768

Holmes, T., Zdun, U., Daniel, F., Dustdar, S.: Monitoring and analyzing service-
based internet systems through a model-aware service environment. In: Proceed-
ings of the 22nd international conference on Advanced information systems engi-
neering. CAiSE’10, Berlin, Heidelberg, Springer-Verlag (2010) 98-112

Graf, P., Miiller-Glaser, K.D.: Dynamic mapping of runtime information models
for debugging embedded software. In: Proceedings of the Seventeenth IEEE In-
ternational Workshop on Rapid System Prototyping. RSP ’06, Washington, DC,
USA, IEEE Computer Society (2006) 3-9

Dettmer, H-W.: Goldratt’s theory of constraints: a systems approach to continuous
improvement. ASQ Press (1997)

Van Ham, F.: Using multilevel call matrices in large software projects. In: Pro-
ceedings of the Ninth annual IEEE conference on Information visualization. IN-
FOVIS’03, Washington, DC, USA, IEEE Computer Society (2003) 227-232

Rao, R., Card, S.K.: The table lens: merging graphical and symbolic represen-
tations in an interactive focus+context visualization for tabular information. In:
Conference Companion on Human Factors in Computing Systems. CHI '94, New
York, NY, USA, ACM (1994) 222

Keim, D.A.: Information visualization and visual data mining. IEEE Transactions
on Visualization and Computer Graphics 8(1) (January 2002) 1-8

Maoz, S.: Using model-based traces as runtime models. Computer 42(10) (October
2009) 28-36

Hamou-Lhadj, A., Lethbridge, T.C.: A survey of trace exploration tools and tech-
niques. In: Proceedings of the 2004 conference of the Centre for Advanced Studies
on Collaborative research. CASCON ’04, IBM Press (2004) 42-55

Fuentes, L., Sdnchez, P.: Transactions on aspect-oriented software development vi.
Springer-Verlag, Berlin, Heidelberg (2009) 1-38

Bodenstaff, L., Wombacher, A., Reichert, M., Wieringa, R.: Maded4ic: an abstract
method for managing model dependencies in inter-organizational cooperations.
Serv. Oriented Comput. Appl. 4(3) (September 2010) 203-228

Elgammal, A., Tiretken, O., van den Heuvel, W.J., Papazoglou, M.P.: Root-cause
analysis of design-time compliance violations on the basis of property patterns. In
Maglio, P.P., Weske, M., Yang, J., Fantinato, M., eds.: ICSOC. Volume 6470 of
Lecture Notes in Computer Science. (2010) 17-31

Rodriguez, C., Silveira, P., Daniel, F., Casati, F.: Analyzing compliance of service-
based business processes for root-cause analysis and prediction. In: Proceedings of
the 10th international conference on Current trends in web engineering. ICWE’10,
Berlin, Heidelberg, Springer-Verlag (2010) 277-288

	Enhancing Root Cause Analysis with Runtime Models and Interactive Visualizations

