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Abstract. Modern software systems evolve in a highly dynamic and
open environment, where their supporting platforms and infrastructures
can change on demand. Designing and operating holistic controllers able
to leverage the adaptation capabilities of the complete software stack is
a complex task, as it is no longer possible to foresee all possible environ-
ment states and system configurations that would properly compensate
for them. This paper presents our experience in using models@runtime
to foster the systematic design and evaluation of self-adaptive systems,
by enabling the coevolution of the reasoning engine and its environment.
This research was carried out in the context of the Diversify project,
which explores how bio-diversity can be used to enhanced the design of
self-adaptive mechanisms.
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1 Introduction

Modern software systems are increasingly complex and distributed as they mate-
rialize into large scale assemblies of technologies, such as databases, middleware,
business logics or graphical front-ends. Typically, cloud-based systems push this
complexity even further as their platform and infrastructure, traditionally fixed
once and for all, can now be dynamically adjusted [17].

This complexity exceeds by far the capabilities of IT teams, who need to
rely on software solutions to automate as much as possible the related main-
tenance operations [15]. Load-balancing is a typical example easily automated
by cloud providers using basic rules. This need for automation is addressed by
self-adaptive systems [7], which adjust their behavior to their changing environ-
ment. However, the design of self-adaptive systems, especially of their reasoning
engine, remains an open challenge which often results in ad hoc solutions [7,21]
tailored to specific environments.
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A key issue, while designing such systems, is the uncertainty pertaining to
their open, dynamic and heterogeneous environment [10]. Designers and even
tools are no longer able to statically foresee all possible environment states as
well as all the system configurations that would properly handle them. In the
cloud settings for instance, the virtually infinite set of resources combined with
the ever changing requirements, prevent to anticipate all the possible underlying
platforms and infrastructures. Unfortunately, unforeseen environments are likely
to produce an outage and in turn, to generate undesirable overpriced mainte-
nance operations.

To minimize this risk of not being able to manage unforeseen environments,
our contribution is twofold. We first propose an iterative process to proactively
explore possible evolutions of the environment, and allow designers to incre-
mentally adjust the reasoning engines accordingly. We then describe how the
models@runtime paradigm [3] can foster the evolution of the reasoning engine
together with the system’s environment.

In the context of the Diversify project 1, we combined existing self-reparation
techniques with a mechanism for exploring environment evolutions driven by an
analogy with the concept of bio-diversity. The loose coupling between the rea-
soning engine and the environment provided by the model@runtime paradigm
facilitates their interdependent evolution. On one hand, by replacing the run-
ning system with simulated environments, one can evaluate the effectiveness of
a given reasoning engine. On the other hand, by plugging alternative reasoning
engines, one can evaluate their robustness to unforeseen environments.

The remainder of this paper is organized as follows. Section 2 uses a cloud-
based multi-tenant system as an example of a self-adaptive system facing unfore-
seen environments. Section 3 presents our design process and its realization on
a models@runtime platform. Section 4 details how this approach was applied to
our example in the context of the Diversify project. Section 5 discusses related
work before Section 6 concludes and discusses possible future work.

2 Motivating Example: Unforeseen Multi-tenancy

SensApp [19] is an open-source platform2 fostering the seamless integration of
the Internet of Things (IoT) with the cloud. SensApp users can register sensors
into the platform, which will push data available to other users or services from
a REST interface. SensApp users and third-party services can subscribe to
notifications: for instance, when the temperature of a given building is exceeding
a given threshold.

SensApp is implemented as four REST services to: i) register sensors, ii)
store their data, iii) notify third-party services, and iv) to orchestrate these
services from a unified facade service (dispatcher). As these services are loosely
coupled (they only use their public REST APIs to communicate between them),
SensApp can thus be distributed in various ways. Each service indeed only

1 http://diversify-project.eu/
2 https://github.com/SINTEF-9012/sensapp
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requires a servlet container, such as Apache Tomcat or Jetty, and a set of open
ports to communicate over HTTP.

In order to reduce the management overhead related to operating SensApp
in the cloud, we need to develop a self-adaptive version of SensApp, which
shall recover as much as possible from failures of its own components (i.e., its
four services) and from failures occurring in its environment (i.e., any failures of
the underlying software stack including software, platform and hardware infras-
tructure). In a cloud setting, software failures are recovered by reinstalling the
erroneous component, whereas hardware failures require in addition the provi-
sioning of a new virtual machine. Our first solution to self-adaptation relies on a
set of event-condition-action rules (ECA) binding some anticipated failures with
imperative repair procedures. These procedures are sequences of atomic actions
such as provisioning a virtual machine or deploying a service, which apply on
a CloudML model (cf. Section 4) describing the system and its environment
[11].

As cloud-based systems operate in an open environment, it is very difficult
(and even not tractable) to get insight on the impact that unforeseen environ-
ments may have. In a real cloud setting, nothing guarantees for instance that
the SensApp application will run in complete isolation: other applications or
services may be added into the same war container, or simply be hosted on the
same virtual machines. From the SensApp perspective, this kind of environ-
ment with multi-tenancy might alter its performances (e.g., response time) or
the associated reasoning engine (e.g., decision relevance).

Existing approaches to manage such uncertainty (cf. Section 5) either let
the system learn from its errors using machine learning techniques or directly
leverage a model of the uncertainty itself. Machine learning techniques are robust
but require to let the system’s performance drop for a moment, until the system
has learned. Modeling uncertainty to make better decisions implies the existence
of partial knowledge, which is not always available.

Designing a self-adaptation mechanism, robust to unforeseen environments,
thus remains a challenge. In the following, we explore how an alternative ap-
proach, inspired by agile practices, can be used to enhance the reasoning engine
of our autonomic SensApp in terms of effectiveness and performances.

3 Approach Overview

We present in this section the design process, inspired by agile practices, and its
underlying models@runtime architecture.

3.1 An Iterative Design Process

Our overall approach relies on an iterative process that successively refines the
design of the reasoning engine, and the environments in which it operates, until
enough confidence is gained regarding the robustness of the system. The inter-
dependent evolutions of the reasoning engine and its environment (see the two
cycles in Fig. 1), referred to as coevolution, is organized as follows:



1. Check robustness to unforeseen environment: assess whether design-
ers have gained enough confidence regarding the robustness of the system
under unforeseen environments. Depending on the concern of interest, this
process can be automated. Once this evaluation is successful, the overall
design process is terminated. Otherwise, a new environment simulator is
designed.

2. Design a new environment simulator: First, the designer identifies an
uncertainty axis along which she suspects that the robustness could be an
issue. Based on this, the simulated environments (potentially including some
randomness) will evolve along this axis.

3. Evaluate the reasoning engine: Evaluates how the reasoner behaves with
respect to the simulated environment. Depending on the concern of interest,
this process can be automated. If the reasoning engine passes the evaluation
then the design process restarts from Step 1, otherwise the reasoning engine
is updated (Step 4).

4. Update the reasoning engine: Adapts the reasoning engine to the simu-
lated environment. It may lead to a change of reasoning engine as well as in
its configuration. Once updated, the new engine is evaluated again (Step 3).

3. Reasoning
engine

evaluation

4. Reasoning
engine update

1. Check
robustness

to unforseen

2. Environment
Simulator Design

[pass]

[fail] [fail]

[pass]

Evolution of the 
Reasoning Engine

Evolution of the 
Environment

Fig. 1. Proposed iterative design process, depicted as a UML activity diagram

Appying coevolution to address unforeseen environment assumes that the
Pareto Principle [4] (also known as the 80/20 rule) applies to self-adaptive sys-
tems design. This principle states that 80 % of the effects are due to 20 % of the
possible causes. This means that 80 % of issues due to unforeseen environments
will be reproduced by only 20 % of them. Our approach aims at exploring unfore-
seen environments using random generation techniques, while targeting the key
20 % using a proper control of diversity, as done in evolutionary algorithms [22]
for instance.



3.2 A Models@Runtime Architecture to Support the Process

The proposed architecture is depicted in Fig. 2 and is inspired by our previous
work [18]. The models@runtime engine acts as an intermediary layer between
the reasoner and the runtime system with its environment.
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Fig. 2. The overall Diversify architecture, leveraging the models@runtime paradigm
to coevolve (see the two cycles) the reasoning engine and its environment

The models@runtime idea is reused as such in Fig. 2, where a synchroniza-
tion engine maintains the causal link between the system and the model. Any
change in the environment is reflected on the model, and similarly, any change
in the system model is enacted on the system. The interactions between the
models@runtime engine and both interfaces consist in exchanging models or
manipulating the models through an API. A reasoner can retrieve the current
model of the running system and push a new target model to the engine, while
the runtime environment can push a new model of the current running system
to the engine.

In our approach, the configuration or replacement of a reasoning engine or
of the environment is enacted by a designer. In order to help the designer in this
task, an evaluator is used to assess whether the reasoner behaves correctly with
respect to the simulated environment and its variations.

The Role of Models@Runtime: In this context, the separation of concerns
offered by models@runtime brings three main benefits: (i) easier integration of
the reasoning engine,(ii) easier integration of environment simulators, and (iii)
coevolution of the reasoning engine and the simulator.

From the reasoning engine’s point of view, models@runtime provides both
abstraction and anticipation capabilities. The abstraction provided by the model
let reasoning engine to analyze a simplified version of the running system, while



the anticipation allows the reasoning engine to conduct what-if scenarios in a
safe modeling space, with no impact on the running system. If and only if a
valid model is identified, it will be automatically enacted via the causal link and
the running system will consequently be dynamically adapted. If the reasoning
engine at some point yields an invalid model, it is simply discarded, with no
need to perform expensive roll-back since the system has not been adapted yet.
The reasoning engine can be applied to any environment including simulators
as far as it can be modelled by the models@runtime engine (i.e., it respects the
interface).

From the environment point of view, the models@runtime architecture facili-
tates the simulation of alternative environments, by replacing the actual runtime
environment by simulated ones. The ability to easily switch between environ-
ments and the loose coupling between the reasoning engine and the environment,
avoid the recurrent design of ad hoc simulators tightly-coupled to a specific rea-
soning engine. Moreover, once the design process is completed, integrating the
resulting reasoning engine with the running system does not require any further
change on the self-adaptation loop.

The overall architecture relies on models@runtime, as it provides a clear in-
terface and a loose coupling between both the environment and the reasoning
engine sides, which facilitates their coevolution. This in turn facilitates the con-
tinuous design of complex adaptive systems.

The next section reports on how we used this process and the related archi-
tecture in the context of the Diversify project.

4 The Diversify Experiment

The Diversify project aims at creating a synergy between ecology (a disci-
pline of biology), and software engineering. We aim at understanding the key
mechanisms underlying bio-diversity and how they enhance the robustness and
resilience of biological systems, and thus porting them to software systems. We
in particular focus on cloud systems, which offers a large scale, distributed and
complex software ecosystem, approaching the complexity of natural ecosystems.

4.1 Modeling Deployment and Provisioning of Cloud-based Systems

We model the deployment and provisioning of cloud systems with CloudML,
a DSML developed as a joint effort between the REMICS, MODAClouds and
PaaSage projects. As shown on Fig. 3, a CloudML model captures the de-
ployment of a cloud-based system, including the platform and infrastructure
level. In this example, SensApp is deployed on three virtual machines host-
ing: the “admin” application, the SensApp application, and the underlying
database, respectively. The semantics of such a description is embedded in the
models@runtime platform, which maintains a causal link between the model and
the running cloud system.



ap1:JSensApp
(RUNNING)

vm2:JSmall-Linux
(RUNNING)

db1:JMongoDB
(RUNNING)

vm3:JMedium-Linux
(RUNNING)

tc1:JTomcat
(RUNNING)

java2:JJre1.6
(RUNNING)

WarContainer

JRE
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(RUNNING)
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WarContainer
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Fig. 3. A possible distributed deployment of SensApp, modeled using CloudML

In order to observe how software diversity helps self-repair mechanisms in
recovering failures, the notion of failure is reflected on the model by the state of
the entity being switched from running to error. Failures are also propagated in
the model along mandatory dependencies, as a software artifact cannot operate
without them.

Our first self-repair algorithm is specified as a set of ECA rules, which bind
potential failures to some predefined repair procedures. We identified eleven
atomic modifications on CloudML models, (e.g., provision of new node, de-
ployment of a given application, starting a given application), which are com-
bined into repair procedures. Fig. 4 depicts the repair procedure, which, given
an application, generates the following repair plan: if the application is in an
erroneous state, it first resets the application, then it resolves all missing depen-
dencies, and finally starts the application. It is worth to note that the resolution
of a dependency is a separate procedure (called resolve), which is itself resolved
to generate the final plan. In Fig. 4, the dotted arrows depict the refinements
of repair procedure according to the CloudML model introduced in Fig. 3,
where the vm2 failed. Four procedures are initially defined: resolve, install
locally, provision and install, and repair. This planning technique is re-
ferred in the literature as hierarchical tasks networks (HTN) [12], whose tasks
(in our case) are strictly ordered.

4.2 Applying our Iterative Process on SensApp

The following paragraphs summarize how we executed the iterative process pre-
sented in Fig 1, on SensApp. In our experiment, the random generation of
alternative environments is automated, whereas their integration in the mod-
els@runtime architecture is still done manually, as is the evaluation of key per-
formance indicators.

Check Robustness to Unforeseen Environments The first step of the pro-
cess evaluates the confidence the designer has in the system to operate properly
under unforeseen circumstances.



repair ap1

reset ap1
resolve ap1.sensapp
start ap1

provision vm2
install ap2:sensapp on vm2
resolve ap2.noSqlDb
resolve ap2.wc
start ap2

install tc1:Tomcat on vm2
resolve tc1.jre
start tc1

provision vm4
install ap3:MongoDB on vm4
start ap3

pJ<- provisionAndInstall(Sensapp)
bind ap1.sensapp to p

pJ<- provisionAndInstall(MongoDB)
bind p to ap2.noSqlDb

pJ<- installLocally(Tomcat)
bind p to ap2.wc

pJ<-JinstallLocally(Jdk1.7)
bind p to tc1.jre

install jre1:JRE
start jre1

repair
a: Application

reset

resolve

<< iterative >>

[a.status = error]

[a.status = stopped]

d: Dependency[*]

start

Fig. 4. An example of repair procedure template, depicted as UML activity diagram,
and the sequence of refinement steps needed to extract the related concrete repair plan

1. Having a clear definition of the objectives of the self-adaptive system is the
sine qua non condition to any assessment of its effectiveness or its perfor-
mance. Some self-adaptation techniques such as control theory, optimization
methods, or planning techniques require a formal definition of those objec-
tives, but others, such as ECA rule sets, do not. In SensApp for instance,
these objectives are not explicit, but the effectiveness and the performance
of the reparation process have implicitly driven the selection of the rules.

2. Once the objectives of the system are defined, the designer must identify the
key axes of uncertainty in the system’s environment. SensApp may be sub-
ject to failures and may be deployed on a multi-tenant environment, where
other applications that cannot be controlled may evolve and impact Sens-
App’s behavior. Multi-tenancy and failures are thus the axes of uncertainty
investigated hereafter.

3. Finally, designers have to prioritize the different axes of uncertainty accord-
ing to their impact on the requirements and the system’s objectives: the
multi-tenancy hypothesis in the case of SensApp.



Since the multi-tenancy hypothesis is critical, the designer should then sim-
ulate failures in environments including applications evolving out of SensApp’s
control.

Design a “Diversified” Environment Simulator The multi-tenancy hy-
pothesis can be reproduced by breaking down the isolation in which the system
is running, which can be done by artificially controlling the level of software
diversity in the environment. Indeed, isolation can be seen as a lack of software
diversity in the system’s environment. Interested reader may consult [14] for
further details on biodiversity.

ap1:JSensApp
(RUNNING)

vm2:JSmall-Linux
(RUNNING)

db1:JMongoDB
(RUNNING)

vm3:JSmall-Linux
(RUNNING)

tc1:JTomcat
(RUNNING)

java2:JJre1.6
(RUNNING)
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Fig. 5. A “diversified” distributed deployment of SensApp, modeled with CloudML

Fig. 5 depicts an example of a simulated environment where diversity was
injected into SensApp (see crosshatched virtual machines and applications).
Three extra virtual machines are provisioned (i.e., vm4, vm5, and vm6) where
additional applications are randomly deployed. In addition, applications are also
randomly injected into existing virtual machines (i.e., ap3 is deployed on vm1

and is bound to the existing JRE as well as to the new remote applications). Our
simulation introduces all possible failures of the SensApp system (e.g., failure
of vm2).

Evaluation of the Reasoning Engine This step evaluates SensApp against
randomly generated diversified environments, to check how well its self-adaptation
mechanisms behave under multi-tenancy. This evaluation covers two dimensions:
the effectiveness of the reparation and its performance.

The effectiveness of the self-repair strategies of SensApp are measured by
its ability to restore itself into a running state. A repair is successful if and only
if its execution results in a valid deployment of SensApp. Then, the manual
inspection of simulation results showed that the effectiveness is not impacted by
multi-tenancy.

In addition, the performance of the repair procedure is also measured and
is defined as the cost of executing the resulting repair plan. In a cloud setting,



different repair actions may have different costs: expensive actions are typically
the provisioning of a new node and the deployment of applications on existing
virtual machines (as it may require heavy network traffic). In this respect, sim-
ulation results revealed that the generated plans are suboptimal, as the planner
provisions new virtual machines for each failure, without leveraging available
opportunities in its environment.

Update of the Reasoning Engine Several alternative designs may help mit-
igating the performance drop under multi-tenancy, namely the modification of
ECA rules or the replacement of the reasoning engine.

The first update consisted in modifying the set of ECA rules and evaluating
their effectiveness and performance (Step 3). This updated reasoning engine
preserved the scalability of the reasoning engine, but may still miss optimal
plan.

A second update led to the use of automated planning techniques able to
reach the optimal solution. Manual investigations of planning traces showed that
generic automated planning techniques do not scale to large systems (about 30
entities in the models).

5 Related Work

Uncertainty has been identified has one of the key obstacles to the design and
development of self-adaptive systems [10]. We discuss below a selection of re-
lated approaches, namely specific theoretical frameworks, machine learning tech-
niques, agile practices and risk analysis methods.

From a theoretical standpoint, several frameworks have emerged to capture
different types of uncertainty [20]: probability theory focusing on eventuality,
fuzzy sets theory focusing on cognitive imprecision, or grey systems theory to
handle incompleteness. Existing approaches such as RELAX [23], FLAGS [1] or
POISED [9] integrate some of those theories to build reasoning engines making
the most of the partial knowledge available. Our approach is complementary and
can be used to evaluate the robustness of these systems, when they operate in
environments which were not initially taken into account at design time.

An alternative approach to uncertainty is to rely on online machine learn-
ing. Approaches such as FUSION [8] or RESIST [5] result in systems able to
learn from their inability to handle unforeseen environments. Whereas these ap-
proaches accept to let the system effectiveness drop for a short time (until it has
learned), our approach aims at searching, a priori , for possible challenging envi-
ronments and adjusting the reasoning engine accordingly. These two approaches
are not conflicting either and could be combined to minimize for instance the
need for online learning.

In contrast to the above approaches, our iterative process (cf. Fig. 1) shares
more with the ideas of agile practices [16] such as test-driven development
(TDD) [2]. Agile practices advocate the continuous feedback from the end-users
(using more frequent and shorter development iterations). They aim at breaking



down the complexity, by using incremental development, where at each step, de-
velopers augment the system with a small number of features, and then validate
it with the end-users. Similarly, our process also breaks down the complexity of
self-adaptation mechanisms, by gradually addressing the various axes of uncer-
tainty existing in the environment. To the best of our knowledge, this research
is a first attempt to apply agile practices to self-adaptive system design.

Our iterative process is also inspired by existing risk analysis methods such
as CORAS [13]. Risk analysis traditionally implies to identify key assets, major
threats on these assets, and possible mitigations which could minimize the asso-
ciated risks. In our process, assets are the effectiveness and performance whilst
threats are the sources of uncertainty and mitigations are update of the reason-
ing engine. To the best of our knowledge, this is also a first attempt to combine
risk analysis and self-adaptive system design.

6 Conclusion

This paper presented how models@runtime enables an iterative process to foster
the design of reasoning engines for self-adaptive systems operating under cer-
tainty. This process is broken down into four steps: selection of uncertainty axis,
exploration of unforeseen environments through simulation, evaluation of rea-
soning engine, followed by its potential refinement. Models@runtime appeared
to be the architectural pattern which facilitates such a coevolution of the rea-
soning engine and its environments. We reported how this process is used in the
Diversify project to develop a self-repair mechanism for large scale cloud-based
systems, inspired by principles defined in ecology about biological diversity.

This research effort is a first step toward an automated refinement process
for self-adaptive systems. Our future work will consider the continuous design of
distributed and collaborative reasoning engines.
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