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Abstract. As an increasing number of new journal articles being added
to the MEDLINE database each year, it becomes imperative to build ef-
fective systems that can automatically suggest Medical Subject Headings
(MeSH) to reduce effort from human annotators. In this paper, we pro-
pose three approaches, one building upon another in an incremental way,
to automatic MeSH term suggestion: 1) MetaMap-based labeling, which
relies on the MetaMap tool to detect MeSH-related concepts for index-
ing; 2) Search-based labeling, which builds on MetaMap-based approach
and further leverages information retrieval techniques for finding simi-
lar articles whose existing annotations are used for MeSH suggestion; 3)
LLDA-based labeling, which further trains a multi-label classifier based
on MeSH ontology for MeSH candidate list pruning. The evaluation on
the BioASQ challenge data shows promising results.
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1 Introduction

MEDLINE3 is the U.S. National Library of Medicine’s (NLM) premier biblio-
graphic database that contains over 19 million references to journal articles in
life sciences with a concentration on biomedicine. MEDLINE records are indexed
with Medical Subject Headings (MeSH) and by highly qualified domain experts.

Currently, there are about 0.7 million new journal articles being added to the
MEDLINE databsese each year, which makes manual indexing extremely dif-
ficult and costly. Besides, the indexing consistency among domain experts is
unpredictable and hard to control. Funk and Reid [1] reported a consistency
of only 48.2% for MeSH-based indexing. Moreover, the relatively slow speed of
indexing new articles and making them available in the search database hinders
technology transfer and advancement more or less.

3 http://www.nlm.nih.gov/pubs/factsheets/medline.html
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In order to alleviate those problems, the NLM has developed a tool called Medical
Text Indexer (MTI) to assist human annotators with MEDLINE article index-
ing [2]. Recently, the BioASQ challenge [3, 4] has initiated a series of shared tasks,
among which Task 1a (Large-scale Biomedical Indexing) specifically targets on
the MEDLINE indexing problem and encourages participants to contribute to
the development of tools and systems to automatically suggest MeSH terms to
MEDLINE literature.

In this paper, we propose three approaches, one building upon another in an
incremental way, to automatic MeSH term suggestion: 1) MetaMap-based la-
beling, which relies on the MetaMap tool to detect MeSH-related concepts for
indexing; 2) Search-based labeling, which builds on MetaMap-based approach
and further leverages information retrieval techniques for finding similar arti-
cles whose existing annotations are used for MeSH suggestion; 3) LLDA-based
labeling, which further trains a multi-label classifier based on MeSH ontology
for MeSH candidate list pruning. The evaluation on the BioASQ challenge data
presents promising results and produces interesting findings that may benefit
future exploration.

The rest of the paper proceeds as follows: Section 2 highlights the related work.
Section 3 describes the data and the task. Then, Section 4 elaborates our methods
and Section 5 presents and discusses the evaluation results. Finally, Section 6
summarizes our work and points out future research directions.

2 Related Work

There are many existing works related to MeSH-based MEDLINE indexing. We
will only highlight a few that are most relevant to our approaches in this section.

The most well-known system for MeSH indexing is the Medical Text Indexer
(MTI) developed at NLM [5, 2]. The latest version of MTI consists of three ma-
jor components: MetaMap [6], Trigram Phrase Matching, and Trigram PubMed
Related Citations (Trigram PRC) [7]. MetaMap is a tool that can map text
into UMLS concepts, represented by Concept Unique Identifiers (CUI). Trigram
Phrase Matching4 is a method of identifying phrases that have a high probabil-
ity of being synonyms. It is based on the idea of representing each phrase by
a set of character trigrams that are extracted from that phrase. The character
trigrams are used as key terms in a representation of the phrase much as words
are used as key terms to represent a document. The similarity of phrases is then
computed using the vector cosine similarity measure. Trigram PRC is a prob-
abilistic topic-based model for retrieving and ranking related documents with
respect to the target document. These three components work independently
and in parallel to suggest separate lists of MeSH candidates which are merged

4 http://ii.nlm.nih.gov/MTI/trigram.shtml
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in the final stage. Our search-based systems differ from MTI in that we used
MetaMap and information retrieval techniques in a sequential way.

Jimeno-Yepes et al. [8] analyzed the MeSH recommended by MTI and studied
a few issues of using machine learning approaches for MeSH suggestion. Their
work gives useful insights for improving our LLDA-based system.

Huang et al. [9] formulated the indexing task as a ranking problem. In particular,
they used a learning-to-rank algorithm to rank MeSH main headings that were
extracted from 20 neighbor documents of the target document. Our search-based
approach differs from theirs in that we proposed different query formulation
strategies and MeSH candidate ranking methods. We also explored the impact
of system parameters on the performance.

3 Data and Task

The training set provided by BioASQ challenge contains over 10 million journal
articles, each of which consists of the title, abstract, PubMed identifier (PMID),
and gold standard MeSH labels that are manually annotated by experts. BioASQ
releases 18 test sets of different sizes (ranging from hundreds to tens of thou-
sands documents) over 18 week. Each set consists of new journal articles (<title,
abstract, PMID> triples) that have not been annotated or indexed into the
PubMed database. The task is to develop systems that can automatically sug-
gest MeSH terms to the unlabeled articles.

We remove duplicated articles that have same PMID in the training set and ob-
tain a pool of 10,699,707 articles with unique PMID5. Furthermore, we randomly
sample 4,000 articles from this pool for system training and testing respectively,
as shown in Table 1. The reason for creating our own test set instead of using
the official ones are two-fold: 1) the gold standard annotations for the BioASQ
official test sets are not available to the participants by the time of writing this
paper, however, we want to give detailed analysis of our system and present com-
parable results on both training and testing sets in this paper; 2) we keep adding
new features into our system over the whole competition time span, and the of-
ficial evaluation results do not always reflect the latest development progress of
our systems.

5 Note that we will not distinguish between the singular and plural forms of acronyms
(such as CUI and DUI) in this paper, i.e., PMID can either stands for PubMed
identifier or identifiers depending on the context.
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Table 1. Data

Data # of articles Purpose
TRN-0 10,691,707 Training data from BioASQ
TRN-1 10,687,707 Subset of TN-0 used for finding similar articles to the target article
TRN-2 2,000 Subset of TN-0 used for optimizing system parameters
TET 2,000 Subset of TN-0 used for evaluation

4 Systems

4.1 MetaMap-based Labeling

Concept Detection We run MetaMap against an article while restricting its
resource to MeSH (i.e., MeSH ontology). We obtain and store the following
information: 1) Concepts (denoted as K) which are phrases or terms that map
to UMLS CUI; 2) The list L of MetaMap generated CUI candidates c with
confidence scores Sc for each K; 3) The negation information for each K.

Figure 1 gives a concrete example in which “cervical cancer” is a detected, non-
negated phrase concept (i.e., K) with a MeSH-related CUI candidates list L
(C0007847, C0302592, C0006826, C0998265, and etc.). Each c in L has its in-
dividual confidence scores Sc, e.g., “C0006826” has a confidence score of 861.

{ "candidates": [

{ "cui": "C0007847",

"name": "cervical cancer",

"preferredname": "Malignant tumor of cervix",

"score": 1000 },

{ "cui": "C0302592",

"name": "CERVICAL CANCER",

"preferredname": "Cervix carcinoma",

"score": 1000 },

... },

{ "cui": "C0998265",

"name": "Cancer",

"preferredname": "Cancer Genus",

"score": 861 },

...

],

"neg": false,

"phrase": "cervical cancer" }

Fig. 1. CUI candidates for a detected concept by MetaMap, shown as a JSON object.

Concept Weighting We first select non-negated CUI whose confidence scores
are above the threshold h. Then, we merge and rank these selected c by ag-
gregating their weighted confidence scores. Here we use superscripts T and A
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to denote title and abstract respectively. The final ranking score of a specific c
looks like:

score(c) = α
∑

L∈T

SL
c + β

∑

L∈A

SL
c , (1)

where α and β are the weights assigned to c in abstract and title respectively, L
is the candidate list for each detected concept K, SL

c is the confidence score of
c in list L. If L does not contain c, SL

c will be zero.

In particular, we fix β to 1.0. However, we vary α (i.e., the weights of cT ) to
explore the optimal value of α. We use Equation 1 to rank c and select the top-
ranked m ones. Finally, we convert the selected c to MeSH Descriptor Unique
Identifiers (DUI).

The above method has three free parameters, i.e., h, α, and m. We set their
values by exploring the parameter space as will be described in Section 5.1.

4.2 Search-based Labeling

In this section, we describe another approach for MeSH suggestion which is based
on information retrieval techniques. As aforementioned, our approach starts by
finding related articles to the target article, and then leverages their existing
annotations to suggest MeSH candidates for the target article.

We use the open-source search engine Indri6 [10] to build an index for the training
set 1. In particular, we remove stop words in the title and abstract by using a
medical stoplist [11] and use the Porter stemmer for stemming words.

There are three components in our retrieval system: 1) the retrieval model for
ranking documents; 2) the query generation module which formulates a query
based on the target article; and 3) MeSH aggregation module that aggregates
and scores the existing annotations for labeling the target article. Next, we will
describe each component in detail.

Retrieval Model

Our retrieval model computes the relevance score of a document based on the
following function:

score(Q,D) =
∑

qi∈Q

wif(qi, D), (2)

where wi is the weight associated with a matched query term qi, and f(qi, D) is
the query term matching function defined as:

f(qi, D) = log
tfqi,D + μ

tfqi,C
|C|

|D|+ μ
, (3)

6 http://www.lemurproject.org/indri/
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where qi is the ith query term used for text matching. Note that qi can be
either a single word or a phrase. |D| and |C| are the document and collection
lengths in words respectively, tfqi,D and tfqi,C are the document and collection
term frequencies of qi respectively, and μ is the Dirichlet smoothing parameter.
Smoothing is a common technique for estimating the probability of unseen words
in the documents [12, 13].

The above matching function assigns a score to each match of a query term q,
and Equation 2 aggregates the scores based on weight w to obtain the final docu-
ment relevance score. We implement this retrieval model in Indri by formulating
queries that look like: #weight(w0 q0 w1 q1 ...wi qi...).

Query Formulation

Our next step is to formulate a query Q that can be representative of the content
of the article. In this section, we will describe how we effectively generate query
terms q as well as their weights w for our ranking function shown by Equation 2.

Term Query (TQ) The first type of queries is based on single words/terms
in the article, i.e., terms in a term query are all single-word expressions. In
particular, we formulate Q based on words occurring in the concepts detected
by MetaMap from both title and abstract, i.e., query terms q come from words
in KT and KA. Similar to what we have described in Section 4.1, we assign
equal weight 1.0 to all qA (i.e., query terms from KA), but use a varying weight
γ for all qT . A term query in Indri looks like:

#weight(2.0 examination 2.0 cow 2.0 ultrasonographic 3.0 navel

3.0 urachal 3.0 extra-abdominal 2.0 pathologic 2.0 abscess)

Phrase Query (PQ) The second type of queries are from KT and KA directly,
i.e., we use concepts (usually phrases) as query terms qi. Again, we assign equal
weight 1.0 to all qA (i.e., KA), but use a varying weight γ for all qT (i.e., KT ).
The following shows an Indri phrase query example:

#weight(3.5 #uw2(hiv-1 infection) 4.5 #uw2(differential

susceptibility) 2.0 #uw2(actin dynamics) 2.0 actin

4.5 #uw2(cortical actin) 4.5 #uw3(naive t cells)

2.5 dichotomy 3.5 #uw2(human memory)

3.5 #uw3(chemotactic actin activity) 2.0 cd45ro)

“#uwN(t1 t2)” means words t1 and t2 can be in any order within a text window
of N words, and thus it takes possible variants of a phrase into consideration.

Long Query (LQ) The term query considers single words only and ignores the
term proximity information in concepts. Thus, it may hurt retrieval precision.
On the other hand, the phrase query poses “stricter” matching criteria, i.e., if a
relevant document does not have an exact match for a concept phrase K (e.g.,
for “#uw2(hearing loss)” to match “loss of hearing”), it will not get any credit
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by Equation 3. Therefore, we formulate a long query that consists of qi from
both TQ and PQ, i.e., both single word query terms and phrase query terms.

For the above three types of queries (i.e., TQ, PQ, and LQ), to prevent Q
from being too long (computationally expensive when retrieving against a large
database) we remove q that occur only once in the the abstract and title com-
bined unless all the terms occur only once (which is a very rare case).

Result Aggregation

For each target article, we formulate query Q and rank documents based on
Equations 2 and 3. Then, we take the top-ranked k documents, weight their
existing MeSH annotations (i.e., DUI) by their individual relevance scores shown
in Equation 2, and aggregate the wegiths for each DUI. Finally, we select the
top-ranked m DUI as MeSH annotations for the target article.

In our Search-based Labeling method, we will also allow three free parameters: μ
(the Dirichlet parameter in Equation 3), k (the number of top-ranked documents
used for DUI aggregation) and m (the number of DUI). We will discuss how to
set these parameter in Section 5.1.

4.3 LLDA-based Labeling

The MeSH indexing can also be cast as a multi-labeled classification task. There-
fore, the labeled latent Dirichlet allocation (LLDA) [14], a supervised variation
of the unsupervised LDA used for credit attribution in multi-labeled corpora,
fits well to this MeSH indexing task.

In LDA, each document may be viewed as a mixture of various topics, and
the topic distribution has a Dirichlet prior. As an extension of LDA, LLDA
further incorporates observed label information, and thus can generate topics
that predict labels. Therefore, we train an LLDA model with a subset (∼15%)
of set of TRN-0 (see Table1) and use the existing MeSH annotations as labels.

However, the MeSH ontology contains too many labels (over 25,000 descriptors)
for our LLDA to handle. Therefore, we only use MeSH terms at the category level
(i.e., children of the root) to form our label set. MeSH annotations of articles
are all converted to their corresponding ancestors in this category-level set.

Given a target article, our LLDA will predict its category level labels which will
be further used to filter irrelevant labels assigned by previous MetaMap-based or
search-based systems. Our goal is to remove false positives and improve precision.

5 Evaluation

BioASQ evaluates the MeSH annotations by two different groups of metrics, i.e.,
flat measures and hierarchical measures, among which Micro F-measure (MiF)
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and Lowest Common Ancestor F-measure (LCA-F) are the primary evaluation
metrics respectively. Thus, we will report Precision, Recall, F-measure for both
Microaveraging and LCA measures, i.e., (MiP, MiR, MiF) and (LCA-P, LCA-R,
LCA-F).

We have five systems, namely the MetaMap-based system (MM), Search-based
systems (TQ, PQ, and LQ), and the LLDA-based system (LLDA). Note that
for convenience in the rest of paper we will refer to each system by their short
names given in parentheses.

5.1 Parameter Exploration

As mentioned in Section 3, we use set TRN-2 to train system parameters. In
this section, we show how each free parameter affects performance.

MetaMap-based Labeling

SystemMM has three free parameters, i.e., h (title concept weight), α (confidence
score threshold for CUI candidates), andm (number of DUI in the final suggested
list). To get the best setting for MM, we explore the range (400, 1000, 100) for h,
(0, 5.0, 0.5) for α, and (8, 41, 4) for m, and try all different value combinations.
Note that the third element is the range is the step size.

Table 2(a) shows that MM achieves the best MiF score (0.2697) when w = 4.5,
h = 600, and m = 12 (the best setting). To explore the impact of each free
parameter on the performance, we fix two of them based on the best setting,
vary the left one, and obtain the performance curves as shown in the left column
of Figure 2.

In particular, the performance curve in Figure 2(a), where we vary the weight of
title concepts, shows that we should assign higher weights to the title concepts.

Table 2. Evaluation

(a) Training

System MiP MiR MiF LCA-P LCA-R LCA-F

MM (w = 4.5, h = 600, m = 12) 0.2617 0.2781 0.2697 0.3303 0.2831 0.2931
TQ (μ = 125, k = 20, m = 12) 0.5766 0.5058 0.5389 0.4143 0.4655 0.3978

(b) Testing

System MiP MiR MiF LCA-P LCA-R LCA-F

MM (w = 4.5, h = 600, m = 12) 0.2660 0.2780 0.2719 0.3322 0.2862 0.2963
TQ (μ = 125, k = 20, m = 12) 0.5842 0.5044 0.5413 0.4697 0.3979 0.4168
PQ (same setting as TQ) 0.5141 0.4389 0.4735 0.4257 0.3496 0.3710
LQ (same setting as TQ) 0.5748 0.4953 0.5321 0.4638 0.3918 0.4110
LLDA (μ = 125, k = 20, m = 20) 0.5843 0.4400 0.5017 0.3322 0.2842 0.2950
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This is expected because the title of an article usually contains the most repre-
sentative information and the concepts in title are very likely to associate with
MeSH annotations.

In Figure 2(b), as we lower the confidence score threshold for MetaMap CUI
candidates from 1000 to 700, the precision declines while the recall improves.
However, the precision bounces back when h is below 700, and the best perfor-
mance for MiF, MiP, and MiR all appears at 600.

In Figure 2(c), the precision decreases and the recall increases, both monotoni-
cally, as we increase m, the number of DUI for annotating an article. This is also
expected because DUI ranked lower down the list are less likely to be correct
annotations, and consequently hurt the precision but improve the recall.

Search-based Labeling

Now we explore the parameter setting for search-based systems, which also have
three free parameters: μ (the Dirichlet parameter in Equation 3), k (the number
of top-ranked documents used for DUI aggregation) and m (the number of DUI).
In particular, we will train system TQ and use it as a reference for setting
corresponding parameters in PQ and LQ.

Table 2(a) shows that TQ achieves the best MiF score (0.5389) when μ = 125,
k = 20, and m = 12 (the best setting). Again, to explore the impact of each free
parameter on the performance, we fix two of them based on the best setting, vary
the left one, and obtain the performance curves as shown in the right column of
Figure 2.

In Figure 2(d), the performance degrades as we increase μ (i.e., more smoothing
with the collection-level statistic). This may be because our search-based labeling
uses the top-ranked documents for MeSH suggestion and it desires a document
set that has a high precision, and on the other hand, less smoothing makes sure
that the relevant information remain highly concentrated in these documents
which consequently appear among the top of the rank list.

In Figure 2(e), as we increase the number of top-ranked documents the perfor-
mance peaks early at k = 20 and declines after that point, which is expected
because our search-based labeling desires only a few highly relevant documents
that can provide a more reliable set of MeSH candidates.

Figure 2(f) looks very similar to Figure 2(c) in which the system tries to strike
a balance between precision and recall by varying m. However, method TQ
only needs top 10 candidates to achieve the best MiF, as opposed to top 12
in MetaMap-based labeling, indicating that our search-based method is more
precision-focused.

Due to the high similarity among search-based systems, we will simply use the
best parameter setting of TQ (μ = 125, k = 20, and m = 12) for systems PQ
and LQ in our testing stage which is presented next.
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(c) Meta: Cutoff of MeSH candidate list
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(d) Search: Dirichlet parameter

MiP
MiR
MiF

10 20 30 40 50 60 70 80 90

0.50

0.52

0.54

0.56

0.58

k (μ=125, m=10)

sc
or

e

(e) Search: Top documents
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(f) Search: Cutoff of MeSH candidate list

Fig. 2. Parameter setting for MetaMap-based and Search-based labeling methods

5.2 Test and Comparison

Table 2(b) shows the evaluation results on the test set (i.e., set TET in Table 1).
System MM and TQ both obtain comparable results to those on the training set,
indicating that our parameter setting process results in consistent performance.
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System TQ, as the simplest among search-based systems, achieves the best per-
formance. Though a direct comparison between TQ and the top-performing
BioASQ challenge systems7 is impossible at this stage (since the gold standards
have not been released and we have have not submitted runs from this best
system), TQ presents quite promising results. However, systems PQ and LQ
are doing worse than TQ. The reason might be that the simple term frequency
based phrase weighting strategy could not well distinguish important concepts
from unimportant ones, and consequently hurts the precision.

In System LLDA, we use the predicted category labels to prune the annotation
list from system TQ. We start with a long candidate list by setting m to 20, and
then prune this list with LLDA. Table 2(b) shows that LLDA does not produce
positive results. This might be because the category level MeSH terms are broad
concepts that are not discriminative enough to distinguish one from another.

6 Conclusion and Future Work

In this paper, we proposed three approaches for automatic MeSH term sugges-
tion: 1) MetaMap-based labeling, which relies on the MetaMap tool to detect
MeSH-related concepts for indexing; 2) Search-based labeling, which builds upon
MetaMap-based approach and further leverages information retrieval techniques
for finding similar articles with existing annotations and uses them for MeSH
suggestion; 3) LLDA-based labeling, which further builds on Search-based la-
beling and trains a multi-label classifier based on MeSH ontology for MeSH
candidate list pruning.

Our evaluation on the BioASQ challenge data showed promising results for the
Search-based labeling. In addition, we explored the impact of different system
parameters (e.g., the weight for title concepts, CUI confidence scores, Dirichlet
prior, number of top-ranked documents, etc.) on the system performance. We
also proposed a new multi-label classification system based on LLDA for MeSH
candidate list pruning. We believe the research findings presented in this paper
would be useful for designing similar systems for biomedical semantic indexing.

For future work, we plan to explore better concept weighting strategies (e.g., by
incorporating corpus-level statistics or using information from external sources)
for systems PQ and LQ. As for the LLDA-based labeling, we will extend LLDA
model by leveraging hierarchical information in MeSH ontology. In addition, we
plan to compare our approaches with existing methodologies and carry out a
thorough error analysis to look for aspects that we can further improve.

7 http://bioasq.lip6.fr/results/
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