
Ontology Design with Formal Concept Analysis

Marek Obitko1, Václav Snášel2, and Jan Smid3

1Department of Cybernetics, Czech Technical University in Prague, Czech Republic
2Department of Computer Science, VŠB–TU Ostrava, Czech Republic

3Computer Science Department, Morgan State University, Baltimore MD, USA
1obitko@labe.felk.cvut.cz, 2vaclav.snasel@vsb.cz, 3jsmid@jewel.morgan.edu

Ontology Design with Formal Concept Analysis 

Marek Obitko1, Václav Snášel2, Jan Smid3

1Department of Cybernetics, Czech Technical University in Prague, Czech Republic 
2Department of Computer Science, VŠB-Technical University Ostrava, Czech Republic 

3Computer Science Department, Morgan State University, Baltimore MD, USA 
1obitko@labe.felk.cvut.cz, 2vaclav.snasel@vsb.cz, 3jsmid@jewel.morgan.edu 

Abstract. Ontologies, often defined as an explicit specification of 
conceptualization, are necessary for knowledge representation and knowledge 
exchange. Usually this means that ontology describes concepts and relations 
that exist in a domain. To enable knowledge exchange, it is necessary to 
describe these concepts and relations in a better way than just ordering them in 
taxonomy. However, ontology design usually starts and stops with designing 
taxonomies. We present a method that is based on formal concept analysis, 
which is a theory of data analysis which identifies conceptual structures among 
data sets. This method allows for discovering necessity for new concepts and 
relations in an ontology, which leads to an ontology that has these entities 
described in a way suitable for knowledge exchange. 

1  Introduction 

Ontologies, often defined as an explicit specification of conceptualization [4], are 
necessary for knowledge representation and knowledge exchange [6]. Usually this 
means that ontology describes concepts and relations that exist in a domain [5]. To 
enable knowledge exchange, it is necessary to describe these concepts and relations in 
a better way than just ordering them in taxonomy. For example the concept should be 
described not only by its position in the taxonomical (is-a) hierarchy, but also e.g. by 
relations that can be applied to the concept. Similarly, the relation can be described by 
concepts that can be related together by this relation. However, ontology design 
usually starts and stops with designing taxonomies. Taxonomies are important, since 
they form “backbone” of an ontology, but are not enough for knowledge sharing.  

We present a method for designing ontologies that is based on formal concept 
analysis [3]. Formal concept analysis (FCA) is a theory of data analysis which 
identifies conceptual structures among data sets. This ontology design method allows 
for discovering necessity for new concepts and relations in an ontology, which leads 
to an ontology that has these entities described in a way suitable for knowledge 
exchange or for information retrieval [7]. 

The rest of this paper is organized as follows: In the next section, we describe 
ontologies in general, and then we describe the formal concept analysis. In the 
following section, we describe our proposed method for ontology design, which is 

c© V. Snášel, R. Bělohlávek (Eds.): CLA 2004, pp. 111–119, ISBN 80-248-0597-9.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.



112 Marek Obitko, Václav Snášel, Jan Smid2      Marek Obitko, Václav Snášel, Jan Smid  

illustrated in detail in the next section. After that, we show how to map the result to 
ontology languages used today. We wrap up the paper with conclusion. 

2 Ontologies 

As we already mentioned, ontologies are usually defined as an explicit specification 
of conceptualization [4]. Explicit specification of conceptualization means that 
ontology is a description of the concepts and relationships that exist in a domain. 

Other similar definitions are available (see [6] for comparison and discussion). 
Although they are not exactly identical, they in principle say that any ontology 
consists of the conceptualization of a domain, i.e. a way how to view or model a 
domain, and of the specification of this conceptualization, e.g. a formal description. 

In addition, both of the conceptualization and specification are influenced by a 
modeling method (e.g. frames and slots or some description logic). This can be also 
considered as a part of ontology (it is sometimes called meta-ontology). At the 
conceptualization level, we decide which objects and relations among them will be 
included in the ontology and also to which level of details. 

At the specification level, we formally specify the conceptualization, usually in 
some formal language. The formalisms used can range from a simple glossary of 
simple terms, through an informal definition in a natural language, a formal is-a 
relation, a formal description of frames and properties, value restrictions, to general 
logical constraints. It is clear that a less formal ontology is much simpler to be 
developed and that a more formal ontology usually enables an easier reuse and 
sharing, particularly in an automatic way. 

The ontology defines how to model the state of affairs in a domain together with 
restrictions to be considered. Ontology should capture knowledge that is not 
changing, while the particular state of affairs is captured in a knowledge base. 

Ontologies are developed and used because they enable among others: 
 

• to share knowledge – by sharing the understanding of the structure of information 
shared among software agents and people 

• to reuse knowledge – ontology can be reused for other systems operating in a 
similar domain 

• to make assumptions about a domain explicit – e.g. for easier communication 
 
Ontologies should be well designed and also well defined. By a good design we 

mean that they should adequately capture the modeled domain, be understandable for 
a human user and provide good support for machine processing. By a good definition 
we mean not only the syntax, but also the semantics. The formal semantics is 
important if we want to introduce an automated reasoning over ontologies. Such 
reasoning enables to support the ontology design (such as consistency checking or 
supporting more authors developing one ontology), integrating and sharing ontologies 
automatically, determining and establishing relationships among ontologies etc. 



Ontology Design with Formal Concept Analysis 113Ontology Design with Formal Concept Analysis      3 

3 Formal Concept Analysis 

Formal Concept Analysis (FCA) is a theory of data analysis which identifies 
conceptual structures among data sets [3][1]. These structures are graphically 
represented as conceptual lattices, allowing the analysis of complex structures and the 
discovery of dependencies within the data. Formal Concept Analysis is a conceptual 
clustering technique with well developed mathematical foundations and was 
successfully used to a wide range of application in medicine, psychology, libraries, 
software engineering and ecology, and to a variety of methods for data analysis, 
information retrieval, and knowledge discovery in databases. 

FCA arose twenty years ago as a theory for the formalization of the concept of 
“concept”. It is based on the philosophical understanding that a concept is constituted 
by two parts: its extension which consists of all objects belonging to the concept, and 
its intension which comprises all attributes shared by those objects. This 
understanding allows to derive all concepts from a given context (data table) and to 
introduce a subsumption hierarchy. 

4 Designing Ontologies using Formal Concept Analysis 

Currently the ontology design is usually started with designing the hierarchy of 
relevant concepts. The taxonomical relationship, called is-a relation or subsumption 
relation between concepts, is perceived as the base of any ontology. This view is in 
our opinion influenced mainly by the procedure of designing object oriented or frame-
based systems. 

As a typical frame-based system we can mention Open Knowledge Base 
Connectivity [2], which is an API for accessing and modifying knowledge bases that 
are expressed in a frame-based manner. OKBC can be mapped to the object oriented 
languages, so that classes in programming languages can be built on the underlying 
ontology and be used for exchanging information. A typical design approach for 
modeling of the object oriented systems is the Universal Modeling Language (UML). 
While object oriented systems are not primarily intended for knowledge 
representation, the approaches are similar to the frame-based systems and the same 
problems are occurring here. 

In these systems, the design typically starts with designing the hierarchy of classes 
or frames. To the existing hierarchy of classes or frames one adds attributes or 
properties. These attributes or properties are then inherited along the subsumption (is-
a) relation. This procedure leads to several problems: 

 
• tendency to create hierarchies of objects with no clear distinctions – for modeling 

of the domain, many objects are introduced, that are organized in the taxonomical 
ordering, but that have no other differentiating attributes; this leads to problems in 
knowledge sharing  

• it is not easy to change frames and their slots (or classes and their attributes) once 
they are defined (however, so called refactoring is currently offered in the object-
oriented languages as a possible solution to this problem) 



114 Marek Obitko, Václav Snášel, Jan Smid4      Marek Obitko, Václav Snášel, Jan Smid  

To avoid these problems, and also to bring other advantages, we propose another 
method for constructing ontologies. The main characteristics of this method are: 

 
• concepts are described by properties 
• the properties determine the hierarchy of concepts; in other words the hierarchy is 

not being defined explicitly by designer 
• when the properties of different concepts are the same, then the concepts are the 

same as well 
 
The procedure of designing an ontology supported by a tool that uses FCA can be 

then described as outlined in the Figure 1. An important advantage of this process is 
that it can be used in a collaborative environment, with more ontology designers 
working on one ontology. Anyone can suggest changes to the ontology as described 
above, and the administrator of the ontology decides what changes to include. 

 
1. Start with empty set of concepts and properties 
2. Add concepts and properties as needed to the concept table 
3. The lattice of the concepts with their properties is visualized using FCA – 

this enables designer(s) to see the ontology or its parts in a visual way 
4. Based on the visualization, a designer can modify the ontology as follows: 

a. “Direct” editing (as directly required by ontology usage) 
i. Add or remove concept 

ii. Add or remove property 
iii. Assign a property to concept or remove a property from concept 

b. Editing as suggested by the ontology design tool 
i. When two concepts fall into one place when visualized using 

FCA, they should be either merged to one, or a distinction 
should be added (in a form of property that one concept has and 
the other one does not have) 

ii. The FCA can generate concepts that are formed by properties 
and are super-concepts of defined concepts, but are not explicitly 
mentioned in the concept table; this suggests that this concept 
can be created (ontology designer can just add a concept name 
upon the suggestion, the properties of the new concept are 
obvious from the generated lattice) 

5. This process is repeated until ontology designer is satisfied 

Fig. 1. Outline of the algorithm for designing ontologies using formal concept analysis. 

5 Example Ontology Design 

In this section, we will illustrate the process in detail on the example of designing the 
ontology of water geographical objects using the procedure described above. We start 
with the following initial objects and attributes: lake and river as objects and flowing 
and stagnant as attribute. Using these objects, the context cross table and the Hasse 



Ontology Design with Formal Concept Analysis 115Ontology Design with Formal Concept Analysis      5 

diagram are illustrated in the first step in the figure 2 (the diagrams are generated 
using ToscanaJ tool [8]). 

 

 Flowing stagnant 
lake  X 
river X   

 
Fig. 2. Concept lattice from initial objects and attributes. 

Two new concepts appeared in the visualization – the top and the bottom of the 
lattice. The top correspond to the concept of everything and the bottom corresponds to 
the concept of nothing (i.e. contradiction of attributes). So, the tool that helps with the 
design would ask whether there is an object that is stagnant and flowing. The user 
would confirm that there is no such object, because these two attributes are inverse 
one. 

However, from the intended usage of the ontology we discover, that there is a 
necessity to introduce object pond, which can be described by the current set of 
attributes by stagnant. Following the procedure above, the context cross table and the 
Hasse diagram are illustrated in the figure 3. 

 
 

 flowing stagnant 
lake  X 
river X  
pond  X  

 
Fig. 3. Added pond object – new attribute is suggested to distinguish between lake and pond. 

After visualization, we easily see that the objects lake and pond form one concept, 
which essentially means that they are exactly the same. It would have no sense to 
have two names for one concept, so as suggested by the tool following the procedure 
described above, we have to think about an attribute that would distinguish between 
these two objects. Such attribute can for example indicate whether the object is 
natural or artificial. After introducing these two opposite attributes, the situation 
looks is illustrated in the figure 4. 



116 Marek Obitko, Václav Snášel, Jan Smid6      Marek Obitko, Václav Snášel, Jan Smid  

 flowing stagnant natural artificial 
Lake  X X  
river X  X  
pond  X  X  

 
Fig. 4. A situation where new concepts can be suggested. 

From this situation, we see that some new concepts can be introduced. As in the 
situation above, there are no objects that would be both natural and artificial, and 
there are no objects that would be both flowing and stagnant. However, there exist 
objects that would be both flowing and artificial – canal and ditch. 

 
 

 flowing stagnant natural artificial 
lake  X X  
river X  X  
pond  X  X 
canal X   X 
ditch X   X  

 
Fig. 5. Need to distinguish between two concepts. 

In the need of distinguishing between canal and ditch, as suggested by the 
procedure above, we introduce attributes that say how large the object is – i.e. large 
and small. After introducing these attributes, the situation would look like as in the 
figure 6. 

As illustrated above, there are several new concepts that can be modelled using the 
existing attributes, but that do not have explicit name yet – such as a concept that is 
flowing and small, but that is also natural. An object with these properties is brook.  

In a similar way, we will add other new objects – slough and basin. The ontology 
after these steps is illustrated in the figure 7. 

As we see from the visualization, there are a lot of new concepts, such as the one 
that is natural and flowing, but has no other properties. We can also eliminate the 
opposite attributes and visualize the lattice only for properties large, natural, and 
flowing – see figure 8. From this we can see that no other concepts using the attributes 
we have would make any sense, so we stop our ontology design here. 

 
 

 



Ontology Design with Formal Concept Analysis 117Ontology Design with Formal Concept Analysis      7 

 flowing stagnant natural artificial large small 
lake  X X  X  
river X  X  X  
pond  X  X X  
canal X   X X  
ditch X   X  X  

 
 

Fig. 6. Focusing on a part of the concept lattice – flowing, small objects. 

 flowing stagnant natural artificial large small 
lake  X X  X  
river X  X  X  
pond  X  X X  
canal X   X X  
ditch X   X  X 

brooks X  X   X 
slough  X X   X 
basin  X  X  X  

 
Fig. 7. Final ontology after adding all objects and properties. 

 



118 Marek Obitko, Václav Snášel, Jan Smid8      Marek Obitko, Václav Snášel, Jan Smid  

 
Fig. 8. Final ontology with eliminated opposite attributes. 

6 Converting Ontology to Other Formalisms 

The ontology designed in the previous section can be converted to any other 
formalism [5][2] that is used for ontology modeling. The result from the previous 
section can be interpreted in several ways. The intended usage determines what 
conversion will be actually used. Some of the possibilities are follow (this is not 
exhaustive list): 

 
1. There are classes of things that are large, natural, etc., and there are instances of 

these classes that are lake, river, etc. 
2. There are classes of things that are large, natural, etc., and there are subclasses of 

these classes that are lake, river, etc. 
3. There are classes of things that are lake, river, etc., and properties large, natural, 

etc. The domain of the properties is determined by the FCA-generated lattice. 
4. In the case of inverse properties, these can be directly modeled in an ontology. This 

means that any of the previous conversions can be easily enhanced by stating 
inverse properties. 

 
Note that some of these approaches are not strictly different. For example, in 

description logic, the instances are often modeled as subclasses, which is only a trick 
for more efficient reasoning. The meaning is different, but when properly interpreted, 
the result after reasoning is the same. 



Ontology Design with Formal Concept Analysis 119Ontology Design with Formal Concept Analysis      9 

7 Conclusion 

We have presented a method for designing ontologies using a formal concept analysis 
and illustrated this method on an example. This method relies only on objects (or 
classes) and their properties, and allows to discover potential new objects and 
properties. Both existing and new suggested entities can be automatically shown in a 
visual way. A tool can guide ontology design in the described way. 

We believe that this approach leads to better ontologies that are more suitable for 
knowledge sharing than pure taxonomies. This approach can be also used to re-
engineer existing ontologies to enhance and validate them. 

8 Acknowledgement 

This research was supported in part by GACR grant 201/03/1318.  

References 

1. Beneš, M., Snášel, V.: Deducing Design Class Hierarchy from Object Properties. ISM'2002. 
Rožnov pod Radhoštěm. Czech Republic. 2002 

2. Chaudhri, A.F.V.,  Fikes, R., Karp, P., Rice, J.: OKBC: A Programmatic Foundation for 
Knowledge Base Interoperability. Proceedings of AAAI-98. 1998 

3. Ganter, B.,  Wille, R.: Formal Concept Analysis, Mathematical Foundation. Berlin: Springer 
Verlag. 1999 

4. Gruber, T.: A Translation Approach to Portable Ontology Specifications. Knowledge 
Acquisition. 5. 1993 

5. Harmelen, F.van, Hendler, J.,  Horrocks, I., McGuinness, D., Patel-Schneider, P., Stein, L.: 
Web Ontology Language (OWL) Reference. 2003. http://www.w3.org/TR/owl-ref/ 

6. Obitko, M.: Ontologies - Description and Applications. Report No. GL 126/01. Gerstner 
Laboratory for Intelligent Decision Making and Control Series of Research Reports. 2001. 
http://cyber.felk.cvut.cz/gerstner/reports/GL126.pdf 

7. Obitko, M., Smid, J.,  Snášel, V.: Using Easel Types for Document Management and 
Retrieval. PSMP3 Workshop within AIA2004. IASTED/ActaPress. 2004 

8. ToscanaJ website. http://toscanaj.sourceforge.net/ 




