
Boosting RDF Adoption in Ruby with Goo

Manuel Salvadores, Paul R. Alexander, Ray W. Fergerson,
Natalya F. Noy, and Mark A. Musen

Stanford Center for Biomedical Informatics Research
Stanford University, US

{manuelso,palexander,ray.fergerson,noy,musen}@stanford.edu

Abstract. For the last year, the BioPortal team has been working on
a new iteration that will incorporate major modifications to the existing
services and architecture. As part of this work, we transitioned BioPortal
to an architecture where RDF is the main data model and where triple
stores are the main database systems. We have a component (called
“Goo”) that interacts with RDF data using SPARQL, and provides a
clean API to perform CRUD operations on RDF stores. Using RDF and
SPARQL for a real-world large-scale application creates challenges in
terms of both scalability and technology adoption. In BioPortal, Goo
helped us overcome that barrier using the technology that developers
were familiar with, an ORM-alike API.

Keywords: SPARQL, RDF, ORM, Ontologies

1 Why Goo? Why a Framework?

BioPortal, developed in our laboratory, provides access to semantic artifacts
such as ontologies [9]. Our team has developed a new iteration of the BioPortal
REST API and related infrastructure. The most significant architectural change
is the replacement of the backend systems with an RDF triplestore. This single
RDF triplestore replaces a variety of custom database schemas that were used
to represent ontologies originated in different languages.

The BioPortal REST API provides search across all ontologies in its collec-
tion, a repository of automatically and manually generated mappings between
classes in different ontologies, ontology reviews, new term requests, and discus-
sions generated by the ontology users in the community [9]. Most importantly,
our API provides uniform access to the terminologies regardless of the language
used to develop them. Naturally, we did not expect the majority of developers
on our team and others who access the REST API to understand which specific
SPARQL query to use to access this complex information. Rather, it became
much more efficient to abstract the SPARQL queries into an API that operates
at the resource level. Goo (which stands for “Graph Oriented Objects”) is the
library that we developed for this purpose. In many ways, Goo contains char-
acteristics of traditional Object-Relational Mapping libraries (ORMs). ORMs
are widely used to handle persistency in relational databases and to provide

2 Lecture Notes in Computer Science

an abstraction over the physical structure of the data and the raw, underly-
ing SQL queries. They also help to map data between relational models and
object-oriented programming languages. Popular ORMs include Hibernate, Ac-
tiveRecord and SQLAlchemy for Java, Ruby and Python respectively. Goo is
therefore an ORM specifically designed to work with SPARQL backends. The
Goo library frees developers from thinking about the intricacies of SPARQL,
while still exposing the power of RDF’s ability to interconnect data.

The driving requirements for our design are the following:

Abstraction: Though BioPortal uses Semantic Web technologies, not all of the
BioPortal development team has been exposed to RDF and SPARQL. This
situation is probably common in many other development teams. At the
same time, most professional developers have dealt extensively with ORMs–
like Hibernate and ActiveRecord–and most developers feel very comfortable
working with them.

Scalability: Our data-access layer must be aware of the query patterns for
which the triplestore performance excels and must try to rely on those pat-
terns as much as possible.

Flexibility: The schemaless nature of triplestores supports heterogeneity very
well. Our store contains 2,541 different predicates, but the application needs
to provide special handling for only a small portion of those [7]. Our frame-
work needs to be flexible enough to let the developer choose what data
attributes get included in the retrieval.

A number of libraries for different platforms offer ORM-like capabilities for
RDF and SPARQL. Jenabean uses Jena’s flexible RDF/OWL API to persist
Java Beans [8]. But Jenabeans approach is driven by the Java object model
rather than an OWL or RDF schema. A number of tools use OWL schemas to
generate Java classes [1, 2]. These tools enable Model Driven Architecture devel-
opment, but do not provide support for triple stores. For Python, RDFAlchemy
provides an object-type API to access RDF data from triplestores. It supports
both SPARQL backends and Python RDFLib memory models [5]. ActiveRDF
is a library for accessing RDF data from Ruby programs. It can be used as data
layer in Ruby-on-Rails, similar to ActiveRecord, and it provides an API to build
SPARQL queries programmatically [6]. The SPIRA project, also for Ruby, pro-
vides a useful API for using information in RDF repositories that can be exposed
via the RDF.rb Ruby library [4, 3]. Because we use Ruby in the new BioPortal
platform, we considered SPIRA as our ORM. However, SPIRA’s query strategy
was not built to handle very large collections of artifacts and the query API did
not allow for the complex query construction that BioPortal needs.

2 Goo’s API in a Nutshell

This section briefly introduces the Goo API. In this section, and the rest of the
paper, we describe the API using a subset of BioPortal models that are complex
enough to help us outline Goo’s capabilities.

Boosting RDF Adoption in Ruby with Goo 3

class Person < Goo::Base::Resource
 model :person, namespace: :foaf, name_with: :name
 attribute :name, enforce: [:unique]
 attribute :birth_date, enforce: [:date_time], property: :birthday
 attribute :accounts, inverse: [on: :user_account, property: :person]
end

 p = Person.new
 p.name = "John Smith"
 p.birth_date = DateTime.parse("1980-01-01")
 if p.valid?
 p.save
 else
 puts p.errors
 end
 end

INSERT DATA { GRAPH <http://xmlns.com/foaf/0.1/Person> {
 <http://xmlns.com/foaf/0.1/person/John+Smith>
 a foaf:Person ;
 foaf:birthday "1980-01-01T00:00:00Z"^^xsd:dateTime ;
 foaf:name "John Smith" .
}

Model definition

Object persistence

SPARQL UPDATE QUERY

 1

 2

 3

The Ruby developer does not need to
understand/use the underlying RDF data
model.

Under the hood Goo interacts
with the SPARQL endpoint with
standard SPARQL 1.1 queries.

Class definition that maps the
model to an RDF vocabulary.

Fig. 1. The top of this figure is an example of a Goo model definition. The settings in
this model establish object validations and how this model is represented in RDF.
For more details on each of these settings see the project documentation page at
http://ncbo.github.io/goo/. The second part of this figure is a script that shows how
we achieve persistence like similar ORM-alike libraries.

The following set of models is mentioned in the remainder of the paper: User
(describes a user profile), Role (describes different roles of users in the applica-
tion, such as an administrator), Note (describes comments on ontologies provided
by users), Ontology (describes the object that represents an ontology entry in our
repository) and OWLClass. We do not provide a fully detailed schema for these
objects; each example is self-contained and the relations between objects should
be clear to the reader. The full documentation for the Goo API is available at
http://ncbo.github.io/goo/.

Goo models are regular Ruby classes. To enable RDF support each model
needs to extend the Goo::Base::Resource class. Figure 1 gives a brief descrip-
tion of how models get defined. In the same figure it is shown how Ruby devel-
opers can save and validate the object without having to deal with RDF and/or
SPARQL.

Once objects are defined, Goo provides a framework for creating, saving,
updating and deleting object instances. Goo assures uniqueness of RDF IDs in
collections and tracks modified attributes in persisted objects. The DSL allows
us to provide both validation rules and define how objects are interlinked.

Ruby is a typeless language and thus developers can assign arbitrary value
types to variables and attributes (i.e: the language does not enforce the assign-
ment of Date values to a property that should only accept Date objects). We
rely on Goo to perform these operations automatically and transparently, noti-
fying when a validation fails. Goo incorporates multiple built-in validations for

4 Lecture Notes in Computer Science

data types like email, URI, integer, float, date, etc. Moreover, the framework can
be extended by using Ruby lambdas which can be needed to perform custom
validations. For example, a custom ISBN format validation can be included in
the set of validations for a model with the following attribute definition:

attribute :isbn, enforce: [lambda { |self| isbn_valid?(self.isbn) }]

2.1 Querying: From Graphs of Triples to Graphs of Objects

Goo’s most important feature is its flexible query API. The API allows retrieving
individual objects, their attributes, collections, and so on.

Retrieving individual objects One can retrieve single resource instances using
Resource.find. This call is useful when querying by unique attributes or when
the URI that identifies a resource is known.

Retrieving object attributes By default, none of the query API calls attach any
attribute values to the instance object that they return. If we try to access an
attribute that has not been included (i.e., retrieved from the triplestore), Goo
throws an AttributeNotLoaded exception. Our design always defaults to strate-
gies that imply minimum data movements. This strategy improves efficiency by
retrieving only the attributes that the application cares about. Data attributes
are loaded into objects by using the include command (Figure 2).

Incremental Object Retrieval We have encountered situations in which one might
not know exactly what attributes need to be loaded in an object. Goo allows
incremental, in-place retrieval of attributes. An array of already loaded objects
can be populated with more attributes. This operation is in-place because Goo
will not create a new array of objects but will populate the objects that are
passed into the query via the models call.

Users.where.models(users).include(notes: [:content])

Pagination Our REST API outputs large collections of data and in some cases
we have to implement pagination over the responses. Pagination in SPARQL,
with LIMIT and OFFSET, works at the triple level but it is not trivial for non
SPARQL experts to develop the queries that retrieve a paginated collection
of items. Goo provides capabilities that abstract the intricacies of triple level
pagination and leverages this capability to the Ruby objects. Every query in
Goo can be paginated, the underlying SPARQL query uses SPARQL LIMIT and
OFFSET to assure low data transfers and minimun object instantiation. A Goo
API paginated call is shown in Figure 2.4.

Boosting RDF Adoption in Ruby with Goo 5

john = User.find("john")
notes = Note.where(owner: john)
 .include(:content)

notes = Note.where(owner: [:username “john”])
.include(:content)

john = User.find("john")
 .include(notes: [:content])
notes = john.notes

First get John and use that user
object to match the Note graph.

Query directly the Note graph to
retrieve every note that has an
owner attribute that points to a user
with username John

Access the Note graph through User.
Find John and include his notes with
their content.

 1

 2

 3

notes.each do |note|
 puts note.content
end

Just a plain Ruby loop over
John’s notes printing the
content.

notes = Note.where(owner: [:username “john”])
 .include(notes: [:content])
 .page(1,100)

 4 Same as (2) but using pagination

Fig. 2. Four different ways to retrieve John’s notes. 1: First retrieve the user and then
the notes. 2: Match the graph with a slightly more complex pattern. 3: Extract the
notes by including them in a User instance. 4: same as (2) but uses pagination.

Creating complex queries The API also allows for more complex query defini-
tions. One can combine calls with or and join, and with these we internally
construct SPARQL UNION blocks that can be combined with SPARQL joins.
Range queries can be also defined using the Filter object and the filter

method. All of these operations can be combined to build complex queries.

filter_on_created =

(Goo::Filter.new(:created) > DateTime.parse(’2011-01-01’))

.and(Goo::Filter.new(:created) < DateTime.parse(’2011-12-31’))

Users.where(notes: [ontology: [acronym: "SNOMEDCT"]])

.or(notes: [ontology: [acronym: "NCIT"]])

.join(notes: [:visibility [code: "public"]])

.filter(filter_on_created)

.include(:username, :affiliation)

The Ruby code above represents a Goo query that retrieves the list of users,
with their :username and :affiliation, that submitted notes to the ontologies
"SNOMEDCT" or "NCIT" and these notes have visibility code "public". In addi-
tion, a filter is created to filter users to just the ones that were created in the
system between a range of dates. This query has an extra complexity, the notes

attribute in User is defined as an inverse attribute. Goo is able to reverse the
SPARQL query patterns to match the graph with the correct pattern direction-
ality. The filtering implementation also allows for retrieval of nonexistent graph
patterns. To retrieve the list of users that never submitted a note we simply use
the unbound call in Filter.1

1 See usage of Filter.unbound at http://ncbo.github.io/goo/

6 Lecture Notes in Computer Science

3 Goo’s Query Strategy

Different query strategies can lead to starkly different performance in SPARQL.
A triplestore might have an efficient query implementation, but if our applica-
tion, for example, moves data around a lot, our queries will not perform well.
Indeed, one often hears complaints about the performance of SPARQL engines
whereas the real issue is the client who is not using SPARQL efficiently. Our
key rationale with implementing query strategies in Goo is to provide a layer
that ensures efficient access and query decomposition for SPARQL without the
developer having to worry about it.

Goo’s strategy navigates the graph of included patterns recursively. The first
query focusses on constraining the graph and retrieving attributes that are ad-
jacent to the resource type. To retrieve data attributes located more than one
hop away, Goo runs additional queries—as many of these queries are types of
resources that are involved in the retrieval request. As a result, when a developer
uses Goo to request attributes of dependent resources, Goo will decompose the
request into multiple queries.

Goo traverses the graph patterns recursively using a Depth First Search
(DFS); it focuses on individual resource types in each step. Figure 3 (right side)
shows how we chain these queries together with SPARQL FILTERs that join
sequences of OR operations. These filters help each subsequent query to retrieve
only attributes for the dependent models and not the entire collection.2

Consider the following example. In BioPortal, a user can attach notes to
ontologies. A note description links to a user (author of the note) and the on-
tology that the note refers to. Our testing dataset contains 400 ontologies, 10K
notes, 900 users and 10 roles. We have intentionally skewed our testing dataset
so that the top 10% ontologies account for 55% of the notes—the distribution
that reflects the actual state of affairs in BioPortal. Figure 3 highlights the per-
formance gain when retrieving notes for each ontology in BioPortal using Goo.
In the Naive approach performance degrades when we start projecting, into tab-
ular form, n-ary relations that are hidden in the graph. We have seen that it
is often the case that hand-written SPARQL queries retrieve too much data at
once, and this can cause combinatorial data explosions due to the hidden n-ary
relations.

As it can be seen in Figure 3, we can demonstrate the difference in the per-
formance of different query strategies even on this small dataset. Goo’s strategy
will recursively navigate different types of objects in the retrieval, avoiding com-
binatorial explosions.

4 Discussion

Traditional software development and database development has a long history
of reliable frameworks to access backend systems. The majority of Semantic Web

2 For this experiment we used 4store 1.1.5 in a cluster setup with 8 backend nodes.

Boosting RDF Adoption in Ruby with Goo 7

notes = Note.where(ontology: [:acronym “$ACR”])
 .include(:content)
 .include(owner: [:username, :email, roles: [:code])
 .include(ontology [:name])

SELECT ?note ?user ?content
FROM :Note
WHERE { ?note a :Note .
 ?note :owner ?user .
 ?note :content ?content .
 ?note :ontology ?ontology .
 ?ontology :acronym “$ACR” . }

SELECT ?user ?email ?username
FROM :User
WHERE { ?user a :User .
 ?user :name ?name .
 ?user :email ?email .
 FILTER (?user = <> || ?user = <> ...)
 }

Goo

SELECT ?role ?content
FROM :Role
WHERE { ?role a :Role .
 ?role :code ?code .
 FILTER (?role = <> || ?role = <> ...)
 }

SELECT ?note ?user ?content
FROM : Ontology
WHERE { ?ont a :Ontology .
 ?ont :name ?name .
 FILTER (?ont = <> || ?ont = <> ...)
 }

 4
 3

 2
 1

SELECT *
FROM :User FROM :Note FROM :Role
WHERE { ?id a :User .
 ?id :username ?username .
 ?id :email ?email .
 ?note :owner ?id .
 ?note :content ?content .
 ?note :ontology ?ontology .
 ?ontology :acronym "$ONT_ACRONYM" .
 ?ontology :name ?name .
 ?id :roles ?roles . ?roles :code ?description }

Naive

Fig. 3. Left-hand side shows a SPARQL query template that returns all notes and user
information for a ontology in BioPortal. Right hand side shows the same data retrieval
in Goo.

development today often includes writing SPARQL queries. In many cases, soft-
ware developers are unaware of what queries the SPARQL server is optimized
for and what queries they should use. Furthermore, many software-development
teams do not yet have SPARQL experts, which makes relying on triplestores as
components in large software systems problematic. Indeed, even in our team we
have experienced this problem as we were redesigning the BioPortal backend to
use a triplestore and not all of our developers were proficient in writing efficient
SPARQL queries. The development of Goo enabled our team members to over-
come that barrier using the technology that they were familiar with (Ruby). Goo
is a completely general ORM for SPARQL and therefore other developers can
use it in their projects defining their models that Goo will validate and relying
on the SPARQL query optimization in Goo to access their triplestores.

In this paper we show one example of how using naive SPARQL can lead to
unexpected bad performance (see Figure 3). Our preliminary study shows that
the combination of n-ary relations in hand-written queries result in query time
distributions that may not perform well. Figure 3 shows that a simple partioning
strategy can help to alleviate this issue.

We are proponents of semantic technologies, and thus we were drawn to the
idea of using ontologies to define our schemas, including the domains and the

8 Lecture Notes in Computer Science

allowed values for attributes. However, we see two major advantages to a DSL
like Goo. First, one of our goals was to make schema definitions easy to use for
developers who are not familiar with ontologies or OWL, and using ontologies
counteracts that goal. Second, ontologies traditionally entail new information
and are not designed to validate constraints.

Goo enables software developers without significant experience with semantic
technologies, to use SPARQL and RDF naturally and efficiently. The BioPortal
developers have found it easy to start working with the Goo API; as a result,
the transition to RDF and triple store technology within BioPortal was much
faster and smoother than it would have been otherwise. Basic query definitions
in Goo are intuitive because the combination of hashes and arrays to construct
Goo query patterns resembles JSON structures and developers are very famil-
iar with them. Knowing that following a few simple restrictions, such as only
querying for attributes that are needed, freed them from having to worry about
the performance of the data storage layer and allowed them just to focus on the
business logic, which sped development time significantly.

Acknowledgments This work was supported by the National Center for Biomed-
ical Ontology, under grant U54 HG004028 from the National Institutes of Health.

References

1. OWL2Java: A Java Code Generator for OWL. http://www.incunabulum.de/

projects/it/owl2java

2. Kalyanpur, A., Jimenez, D.: Automatic Mapping of OWL Ontologies into Java. In:
Proceedings of Software Engineering and Knowledge Engineering (2004)

3. Arto Bendiken, Gregg Kellogg, B.L., Borkum, M.: RDF.rb: Linked Data for Ruby.
http://rdf.rubyforge.org/

4. Ben Lavender, A.B., Humfrey, N.J.: Spira: A Linked Data ORM for Ruby. https:
//github.com/datagraph/spira

5. Graham Higgins, P.C.: RDF Alchemy, http://www.openvest.com/trac/wiki/

RDFAlchemy

6. Oren, E., Delbru, R., Gerke, S., Haller, A., Decker, S.: Activerdf: Object-oriented
Semantic Web Programming. In: Proceedings of the 16th International Conference
on World Wide Web. pp. 817–824. WWW ’07, ACM, New York, NY, USA (2007),
http://doi.acm.org/10.1145/1242572.1242682

7. Salvadores, M., Horridge, M., Alexander, P.R., Fergerson, R.W., Musen, M.A., Noy,
N.F.: Using SPARQL to Query BioPortal Ontologies and Metadata. In: Interna-
tional Semantic Web Conference (2). pp. 180–195 (2012)

8. Vollel, M.: Jenabean: A library for persisting java beans to RDF. http://code.

google.com/p/jenabean/

9. Whetzel, P.L., Noy, N.F., Shah, N.H., Alexander, P.R., Nyulas, C.I., Tudorache,
T., Musen, M.A.: BioPortal: Enhanced functionality via new web services from the
national center for biomedical ontology to access and use ontologies in software
applications. Nucleic Acids Research (NAR) 39(Web Server issue), W541–5 (2011)

