
Towards Domain-Specific Testing Languages for
Software-as-a-Service

Dionny Santiago, Adam Cando, Cody Mack, Gabriel Nunez,

Troy Thomas, and Tariq M. King

Ultimate Software Group, Inc.
2000 Ultimate Way, Weston, Florida 33326, USA

{dionny_santiago,adam_cando,cody_mack,gabriel_nunez,
troy_thomas,tariq_king}@ultimatesoftware.com

http://www.ultimatesoftware.com

Abstract. There continues to be a trend towards using the power of
cloud computing to tackle inherently large and complicated problem
domains. Validating domain-intensive cloud applications presents a sig-
nificant challenge because of the complexity of both the problem do-
main and the underlying cloud platform. In this paper, we describe
an approach that leverages model-driven engineering to improve test-
ing domain-intensive cloud applications. Our approach combines a set
of abstract test commands with various domain and configuration mod-
els to define a domain-specific testing language. We have developed a
prototype of our approach that provides language editing and platform
configuration tools to aid test specification, execution and debugging.

Keywords: Testing, Model-Driven Engineering, Domain-Specific Lan-
guages, Cloud Computing, Human Capital Management Software

1 Introduction

Validating software-as-a-service applications is difficult due to the large size of

the problem domain, coupled with the complexity of the underlying cloud plat-

form. Adequate functional testing is heavily dependent on domain expertise from

each product area, and typically requires extensive data setup. Since the soft-

ware is delivered as a service over the Internet, functional UI testing must be

performed using different browsers to ensure a good user experience. In addition,

engineers need to be able to set up tests to run on specific configurations of the

underlying cloud infrastructure.

Model-driven engineering (MDE) seeks to simplify software development by

raising the level of abstraction through domain modeling, while promoting com-

munication between groups working on the same system [1]. Researchers and

practitioners have developed a number of MDE tools and techniques, most of

which have focused on exploiting domain models for automatic code generation.

However, there has also been research on MDE approaches to enhance software

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 43 -

testing [2, 3]. A more recent interest that has arisen is the use of MDE to support
emerging paradigms such as adaptive and cloud computing [4].

In this paper, we describe an approach that leverages MDE to improve the
specification, execution, and debugging of functional tests for domain-intensive
cloud applications. Our approach is the result of investigating new and innovative
ways to test UltiPro, a comprehensive cloud-based human capital management
(HCM) solution [5]. Domain models and abstractions for common UI interac-
tions, data setup, environment and platform configurations are combined with
highly extensible testing frameworks [6–8]. The result is a powerful domain-
specific language (DSL) for creating automated functional tests. Our test au-
thoring DSL is supported by an editor that provides syntax checking and high-
lighting, intelli-sense, tooltips, and debugging features.

The major contributions of this research paper are as follows: (1) describes
a novel approach that integrates various domain and configuration models into
a test case specification language for cloud applications; (2) presents the design
of a prototype used to demonstrate the feasibility of the approach; and (3) dis-
cusses our experience developing the prototype, focusing on the lessons learned.
The rest of this paper is organized as follows: the next section motivates the
research problem. Section 3 describes our domain-specific test case specification
approach for cloud applications. Section 4 presents a prototype that implements
the proposed approach. Section 5 discusses the lessons learned from building the
prototype. Section 6 is the related work and Section 7 concludes the paper.

2 Motivation

Our research has been motivated by the challenges faced when testing UltiPro
[5]. Delivered on-demand as software-as-a-service in the cloud, UltiPro pro-
vides HCM functionality including recruitment, onboarding, payroll, payment
services, benefits, compensation management, performance management and re-
views, succession planning, and more. Data is available across all areas of HCM,
and can be accessed by department, division, or country. Several reporting and
analysis features are also available through UltiPro’s web-based portal.

The large size and complexity of the problem domain makes testing the
functionality of UltiPro challenging. Individual product areas (e.g., recruitment,
payroll) encompass so many features that each area could be considered as a
product itself. Adequately testing UltiPro requires each product area to be val-
idated, which is impossible without domain expertise. Although each product
area is large, UltiPro has been designed and developed as a unified solution
which seamlessly integrates all aspects of HCM. Validation of the overall prod-
uct therefore relies heavily on the collaboration of domain experts across all
product areas. This ensures that changes to one product area does not have an
adverse effect on other product areas.

Testing UltiPro is further complicated because of its development and de-
livery as a cloud application service. Cloud application services are hosted on
complex, distributed infrastructures with multiple servers and architectural lay-

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 44 -

ers that extend from the underlying network up to the web-based user interface.
To ensure a good user experience, functional UI testing must be performed using
different web browsers. Other non-functional factors such as high performance
and security requirements also make it difficult to test cloud applications. How-
ever, this paper limits the scope of the testing problem for cloud applications to
functional UI and platform compatibility testing.

3 Approach

Our approach defines a test specification language that can be used to develop
automated tests for a particular application domain. As shown in Figure 1, we
leverage abstract test commands, domain and platform models, and test automa-
tion frameworks for the purpose of creating a domain-specific language (DSL)
for testing cloud applications. The DSL allows us to provide test case editing,
execution, and debugging tools tailored for domain experts, test engineers, and
end users. Abstract tests defined using the DSL are translated into executable
scripts that run on the underlying testing tools and frameworks. For the remain-
der of this section, we describe the various test abstractions and models used in
our approach. Transformation of abstract tests into tool-specific testing scripts
is discussed as part of the prototype design in Section 4.

!"#$%&'(#$)*+# ,*+$-%.#)/'/(/-'"

0*1#%
23"($*+(/-'"

4-'($-5
23"($*+(/-'"

.*(*%6#(78

!"#$%&'(#$*+(/-'

!"#$%&'$()*#$(
+,--&./#

2+(/-'%
4-99*':"

2""#$(/-'%
4-99*':"

)*#$(+&#*(01*'232'&$2,.(4&.56&5*
;;%.-9*/'<68#+/)/+%==

4-')/17$*(/-'

05*()-$9

>'?/$-'9#'(

)*#$(+&#*(01*'232'&$2,.(4&.56&5*(7/2$,%

)*#$(!6$,-&$2,.(),,8#(&./(9%&-*:,%;#

<,/*8#

Fig. 1. A Domain-Specific Testing Language for Cloud Applications

3.1 Abstract Test Commands

At the core of the language is a set of abstract test commands. There are two
types of commands: Action Commands and Assertion Commands (left of Figure
1). Action commands apply inputs that exercise the system under test (SUT).
This includes stimulating UI controls such as textboxes, dropdowns, and buttons,
as well as database-related actions. On the other hand, assertion commands
perform UI and database checks to verify the behavior of the SUT. Table 1
describes some of the key test commands defined under our approach.

3.2 Application Domain Models

Domain concepts are introduced into our testing language through two types of
models: User Interface and Macro Definitions (right of Figure 1).

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 45 -

! Command Description

Actions

Blur Loses focus of an element
Clear Empties the value of an element
Click Presses and releases mouse button while hovering over an element
Mouse Over Hovers the mouse pointer over an element
Mouse Out Of Move the mouse pointer from within the hover area of an element
Set Assigns a value to an element

Assertions

Is Checks if the value of an element equals a given value
Is Like Checks if the value of an element contains a given value as a substring
Is Visible Checks if an element is visible
Is Enabled Checks whether an element used for input is enabled
Exists Checks if an element is present
Has Options Checks if a dropdown provides a specified list of values
Has Number Of Options Checks if the size of a dropdown list is equal to a specified value

!
"#$%&'!(')!"**+,$%&'!-&..(')*!&'!/+0!12!-&'$,&3*!456$$&'*7!-8+#90&:+*7!;,&<)&='*7!>,%)*7!?+:$0&:+*@!

!

! Command Description

 Actions

Add Rollback Set a restore point on the database
Clear Rollback Remove a restore point on the database
Rollback Restore previous database values
Execute Runs a database script

Assertions Match Checks whether two datasets are equal

!
"#$%&'!(')!"**+,$%&'!-&..(')*!&'!/+0!12!-&'$,&3*!456$$&'*7!-8+#90&:+*7!;,&<)&='*7!>,%)*7!?+:$0&:+*@!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Table 1. Web UI Abstract Test Commands

User Interface This model is a generalization of the user interface of the SUT.
For example, in the case of UltiPro the UI model consists of abstractions repre-
senting its web pages and controls. These page and control objects encapsulate
the CSS selectors used to identify web elements in the HTML source document
tree. Automated tests then reference these abstractions instead of the implemen-
tation details, which makes tests easier to maintain as the application changes
[8, 9]. Furthermore, page and control objects are named using domain-specific
concepts. For example, a grid control used for entering pay data would be named
PayDataEntryGrid. Using such terms allows domain experts and end users to
easily identify and specify various aspects of the SUT.

Macros A macro in computer science is a pattern that specifies how a sequence
of inputs is mapped to a replacement input sequence. Macros are often used
to make programming tasks less repetitive and less error-prone. Our approach
leverages the benefits of macros to improve test specification. Testers can define
frequently used test setup, input, or assertion command sequences, and store
them in a central location. These macros are then named using domain-specific
terms, and integrated into our testing language. Similar to our abstract test
commands, test macros can target user or database interactions.

3.3 Configuration Models

Several abstractions for configuring the underlying platform and environment
of the SUT are integrated into our language. These include abstractions for:
Server Environment Configuration – Application servers, web servers, database
servers, reporting servers that make up the test environment; OS/Platform Con-
figuration – Operating systems on which to test the desktop and mobile versions
of the cloud application; Web Browser Configuration – Clients to use during
cross-browser compatibility testing, e.g., Chrome, Firefox, Internet Explorer or
a combination thereof; and Test Harness Configuration – Modes and settings
that allow users to tweak aspects of test execution including timing characteris-
tics, logging, among others.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 46 -

!!"##$%&'''''

!!"#$%&'(''')*+,-*.(!/#0!"*1$&++!2(*.#$(!

!!3#.4&$'!!!5,&001!6*0.,*7&8!3-*9!:*0-&!

!!:&0;,7'!!!<=>?8!"*1$&++@AB!

()*+$%$,-./0!!''
C+.,"$&!'' 1+,-2%.'

''

!),"3''''''

!!D,E(0 F 6(.#%!*!"*1$&++!G<<<H! ! !

!!30-!+*#0I4!1+,-2%.'

!!30-!+&7,0!*'!*!"*1$&++!3-9,0,'.$*.&$!

J1!!!! !'(..,07!.4(!C'($=*9(?(K.J&K!.&!L*-9,0L8!

!!!!!!!!!!!!!!!!!!!"*''M&$-?(K.J&K!.&!L#+.,L!

30-!!!! !I+,IN,07!&0!.4(!O&7,0J#..&0!

!
'4)0,0

'' '6I(0*$,&P!"*1$&++!64&#+-!/#0!.&!:&9%+(.,&0

!!D,E(0! =*E,7*.(!.&!.4(!"*1$&++!QE($E,(MF! !!

!!R4(0!F!I+,IN!.4(!6.*$."*1$&++J#..&0!

!!?4(0!.4(!"$&I(''6.*.#'O*S(+!,'!L:&9%+(.(-<L!

!!30-!.4(!:$(*.(J*.I4('J#..&0!,'!(0*S+(-!

!

!

!

!

!

Fig. 2. Example Test Case Specification

3.4 Illustrative Example

Figure 2 presents an example test case specification defined using our approach.

The example test consists of four main blocks: Summary, Declarations, Setup,

and Tests. The summary block (Lines 1-4) holds meta information about the test,

which includes a purpose, authors, and various configurations. In Line 4, .NET
is a configuration that runs tests against the UltiPro desktop web application

using three browsers for compatiblity testing. On the same line, Payroll-14 sets

up the test to run on a server environment configured for payroll processing.

Applications and data that will be used throughout the test must appear

in the declarations block (Lines 6-7). In this block, automatic word completion

popups (i.e., intelli-sense) is filtered to a list of available application models and

database types. Line 7 of Figure 2 specifies that the UltiPro application model

will be referenced whenever the name UltiPro appears in the test.

The setup block (Lines 9-15) contains a set of preconditions for the test,

written using a behavioral-driven development (BDD) style syntax. Line 10 il-

lustrates the use of a database macro to Setup a Payroll. Note that elipses are

used to mask the actual parameters passed into the macro. Inline, users can de-

clare high-level test steps (Line 12), and define how those steps are implemented

as actions or assertions on the application model (Lines 13-15).

Test cases appear within the block named Tests (Lines 17-22). Line 18 pro-

vides a name for the single test in the example, while Line 19 demonstrates the

usage of a UI navigation macro. The click action command is illustrated in Line

20, while Lines 21 and 22 show the Is and Is Enabled assertion commands.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 47 -

4 Prototype

This section presents the setup, design and implementation of the Legend pro-
totype, which was developed to demonstrate the feasibility of the proposed ap-
proach. Legend primarily consists of tools for authoring, executing and debug-
ging tests written to validate UltiPro [5].

Legend has been developed in C# as a Visual Studio (VS) extension. The
VS 2010 SDK provides components for extending the VS Editor with a cus-
tom language service. The Legend language service supports many of the VS
SDK features including syntax coloring, error highlighting, intelli-sense, outlin-
ing, tooltips, and debugging. Integration of application and configuration models
using domain concepts is a novel feature of Legend that separates it from other
test specification languages and tools.

The underlying testing framework used to run Legend tests is an in-house
tool called Echo [8]. Echo was developed based on Selenium, a cross-browser
web UI automated testing framework [7]. Page and control abstractions for the
application domain model are defined using Echo, in accordance with the page
object pattern [9]. Frameworks such as MbUnit [6] are used to provide capabili-
ties such as test fixture setup and teardown, data-driven testing, and reporting.
The custom tooling developed for the prototype is divided into two categories:
Editing Tools and Configuration Tools.

Editing Tools Figure 3 provides a UML package diagram showing the de-
sign of Legend DSL Editor. As shown in Figure 3, the editor is comprised of
three major packages: EditorExtension, ApplicationModelIntegration and
CodeGeneration. Key classes from each package, along with their interdepen-
dency relationships are also shown in the diagram.

The EditorExtension subsystem (top of Figure 3) contains the components
that implement token colorization, syntax checking, block outlining, and intelli-
sense. This subsystem is the main point of interaction between the Visual Stu-
dio editor and the Legend code extensions. The classes with the stereotypes
Providers, Controllers, Taggers, and Sources are derived from the Visual
Studio SDK, and directly interact with the .NET Managed Extensibility Frame-
work (MEF) [10]. Classes stereotyped Augmentors and Services represent our
custom extensions. The LanguageService class coordinates several of the inter-
actions between the editor and the application models.

Integration with the application model is achieved via the Application-
ModelIntegration subsystem (bottom-left of Figure 3). It contains two types of
classes: ModelProviders and Models. The ModelProvider classes use reflection
to read the page objects, control objects, macros and elements that make up
the Models. It is also responsible for filtering intelli-sense on the model, given a
specific test context. For example, at the point where a test declares access to
a particular web page, the ModelProvider scopes the word completion picklist
for elements to include only elements that appear on that page.

Lastly, the CodeGeneration subsystem (bottom-right of Figure 3) provides
logic for translating the abstract tests written in Legend into code executable

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 48 -

Legend.CodeGenerationLegend.ApplicationModelIntegration

Legend.EditorExtension

+GetApplicationModels()

<<ModelProviders>>

<<Interface>>

IApplicationModelProvider

<<ModelProviders>>

ApplicationModelProvider

<<Services>>

LanguageService

<<Providers>>

TokenTaggerProvider

<<Taggers>>

TokenTagger

<<Augmentors>>

TokenTagAugmentor

<<Augmentors>>

LanguageAugmentation

<<Providers>>

CompletionSourceProvider

<<Sources>>

CompletionSource

<<Augmentors>>

<<Interface>>

ICompletionAugmentor

+GetCurrentCompletions()

+GetTags()

+UpdateSnapshotState()

<<Services>>

<<Interface>>

ILanguageService

<<Models>>

AutomationContext

<<Models>>

Element <<Models>>

ControlObject

<<Models>>

PageObject

+GenerateScript()

+GenerateAssembly()

<<Generators>>

EchoGenerator

<<Parsers>>

EchoCommandParser

<<Generators>>

EchoAssemblyBuilder

<<Generators>>

EchoTestBuilder

<<Models>>

Macro

<<Models>>

MacroCategory

Fig. 3. Diagram showing the package structure and class design of the prototype

by the Echo framework. In order to support debugging at multiple levels of

abstraction, the EchoGenerator has two modes of generation: Script – generates

test scripts written in the Echo syntax; and Assembly – generates a Common

Intermediate Language (CIL) representation of the Echo test. Our prototype

maps the CIL to the domain-specific test steps. A test can therefore be executed

and debugged at the level of the domain-specific test language, or the script

language of the underlying Echo testing framework.

Configuration Tools Abstractions for the test environment and platform con-

figurations are implemented in two distinct XML files called Environments.xml
and Parameters.xml. The environments XML contains a list of all the test

environments that are connected to a tool that can automatically request the

latest UltiPro build. The file is auto-generated and populated with the unique

identifiers used by each team to refer to their test environments. Information

related to the specific network and database servers, along with any credentials

for authentication are also stored in the Environments.xml file.

The Parameters.xml allows users to specify a range of configurations ranging

from desktop web settings such as browsers and languages, to mobile web settings

such as device screen size and orientation. Although each team can create their

own configurations, there are a set of fixed configurations that are available for

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 49 -

use across all teams during regression testing. The data in both the environments
and parameters XML files are passed directly to the Echo testing framework prior
to test execution.

5 Lessons Learned

A key factor that contributed to the successful development of the prototype
was having robust, highly extensible and configurable underlying testing frame-
works. Echo and Selenium provided the implementations to support many of the
abstractions described in the approach. Building the application models required
a collaborative effort among developers, testers and domain experts. Developers
would create the page objects and control objects, while testers and domain ex-
perts made sure they were named and exposed appropriately for testing. Macro
creation was primarily done by testers and domain experts, with occasional as-
sistance from the developers if necessary.

One of the more complex aspects of the prototype implementation was the
module for keeping track of the test context in order to filter intelli-sense. This
required the creation of a state-based rules engine to allow us to perform different
editor actions based on previously specified lines in the test. Although challeng-
ing to implement, this feature was necessary to provide meaningful intelli-sense
that guides testers during test creation. In other words, testers are only pre-
sented with commands, model elements, and other keyword suggestions if they
are applicable in the current context.

Based on initial responses to prototype demonstrations, a major benefit of
Legend is the ease with which test cases can be specified and reviewed by non-
technical users. The tool can therefore be leveraged by domain experts and
end users during acceptance testing. It also allows these stakeholders to assist in
debugging issues using a language they understand, and without being concerned
with the low-level implementation details of the test automation. Since tests are
specified in an english-like syntax, using Legend could reduce or eliminate the
need to maintain a separate inventory of test documentation. However, further
evidence through a case study or empirical evaluation is needed to be able to
fully validate these claims.

A limitation of the current prototype is the lack of an externalized point of
extension for the test commands and their syntax. Since domain experts, testers
and developers from several teams will be defining new model elements as the
application evolves, we need to provide a mechanism that allows new page or
control-specific commands to be easily added to the language. Web UI elements
with dynamically generated identifiers are also not supported by the prototype,
or the underlying Echo testing framework, but are planned for future releases.

6 Related Work

Although the use of domain modeling to support software engineering is not
new, only a few researchers have leveraged MDE and DSLs to support software

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 50 -

testing [2, 3, 11]. Kanstren and Puolitaival [3] present the OSMOTester approach
and tool that is very related to our work. OSOMOTester automatically generates
tests with domain-specific concepts. A domain expert is used to construct a
test model of the system, which is combined with a domain-specific modeling
language that constrains and guides test case generation.

Hernandez et al. [2] describe a model-driven technique for designing plat-
form independent tests for validating web-based applications. These platform
independent tests are then combined with a model of the web technologies used
to implement the application, and generate platform-specific tests [2]. Kuhn
and Gotzhein [11] present an approach that uses configurable simulations to do
platform-specific testing. They extend the UML testing profile to include plat-
form models for real deployments, and describe how to use these models to test
embedded systems by simulating various hardware configurations.

Some researchers have proposed model-driven approaches that aid the devel-
opment of high-performance and cloud computing systems [12]. Palyart and
Lugato define a high-performance computing modeling language (HPCML).
HPCML provides constructs for specifying different concerns in high-performance
scientific computing such as mathematics, parallelism, and validation. Nagel et
al. [13] introduce a meta-model for specifying bindings between business pro-
cesses and cloud services considering service-level agreements. They further ex-
tend that meta-model to support dynamic adaptation of cloud-based services.

There are several general purpose behavioral-driven development (BDD) test-
ing tools that help to tie acceptance tests to business requirements [14–16].
Similar to Legend, such tools aim to bridge the gap between domain experts,
developers, and testers [16]. These tools typically work by creating and linking
two sets of files – specifications and step definitions [15]. Legend combines these
two activities into a single, domain-specific test authoring experience. Our re-
search on Legend extends previous work on the Echo Web UI Test Automation
Framework [8]. Echo provides a thin layer of abstraction on top of Selenium [7],
and adds several features including command timeouts, wait throttling between
commands, database interaction, and environment and test configuration.

7 Conclusion

The work in this paper presented an approach that applied model-driven engi-
neering to the development of a domain-specific test case specification language.
Our approach is general in the sense that it can be applied to any domain, but in
terms of technologies we focus on web-based applications which are deployed on
cloud computing platforms. We have implemented a prototype of the proposed
approach for a cloud-based human capital management solution. Developing the
prototype gave us first-hand experience on some of the benefits and challenges
associated with creating a DSL for testing UltiPro. Feedback from interactive
prototype demonstrations has been positive. Our next steps are to develop a full
implementation of Legend, and perform a case study using data from UltiPro.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 51 -

Acknowledgments. The authors would like to thank Jorge Martinez, Michael

Mattera, and members of the Virtual Team at Ultimate Software for their con-

tributions to this work. We also give thanks to the judges and participants of

the Summer 2012 Ultimate Software 48 Hours Project for their valuable feed-

back. Any opinions, findings, conclusions, or recommendations expressed in this

material are those of the authors, and do not necessarily reflect the views of the

Ultimate Software Group, Inc.

References

1. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Tech-
nology, Engineering, Management. John Wiley & Sons (2006)

2. Hernandez, Y., King, T.M., Pava, J., Clarke, P.J.: A meta-model to support re-
gression testing of web applications. In: SEKE. (2008) 500–505

3. Kanstrén, T., Puolitaival, O.: Using built-in domain-specific modeling support to
guide model- based test generation. In: MBT. (2012) 58–72

4. Brunelière, H., Cabot, J., Jouault, F.: Combining Model-Driven Engineering and
Cloud Computing. In: Modeling, Design, and Analysis for the Service Cloud -
MDA4ServiceCloud’10, Paris, France (June 2010)

5. Ultimate Software: Human Capital Management Solutions: Ultipro Enterprise
(July 2013) www.ultimatesoftware.com/solution.

6. Jeff Brown: MbUnit Test Framework http://mbunit.com/ (July 2013).
7. Stewart, S., Huggins, J.: Selenium - Web Browser Automation http://docs.

seleniumhq.org/ (July 2013).
8. Virtual Team: Echo Web UI Test Automation Framework. Technical report,

Ultimate Software Group, Inc. (October 2010)
9. Wilk, J.: Page Object Pattern (March 2012) http://blog.josephwilk.net/

cucumber/page-object-pattern.html (July 2013).
10. Microsoft: MSDN - Visual Studio: Extending the Editor (July 2013) http://msdn.

microsoft.com/en-us/library/dd885242.aspx.
11. Kuhn, T., Gotzhein, R.: Model-driven platform-specific testing through config-

urable simulations. In: Model Driven Architecture - Foundations and Applications.
Volume 5095 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2008) 278–293

12. Palyart, M., Ober, I., Lugato, D., Bruel, J.M.: HPCML: a modeling language
dedicated to high-performance scientific computing. In: Proceedings of the 1st
International Workshop on Model-Driven Engineering for High Performance and
Cloud computing. MDHPCL ’12, New York, NY, USA, ACM (2012) 6:1–6:6

13. Nagel, B., Gerth, C., Yigitbas, E., Christ, F., Engels, G.: Model-driven specification
of adaptive cloud-based systems. In: Proceedings of the 1st International Work-
shop on Model-Driven Engineering for High Performance and Cloud computing.
MDHPCL ’12, New York, NY, USA, ACM (2012) 4:1–4:6

14. Chelimsky, D., Myron Marston, M., Lindeman, A., Rowe, J.: RSpec - BDD frame-
work for the Ruby Programming Language (December 2010) http://rspec.info
(July 2013).

15. Hellesoy, A., Wynne, M.: The Cucumber Book: Behaviour-Driven Development
for Testers and Developers. Pragmatic Programmers. Pragmatic Bookshelf (2012)

16. Nagy, G., Bandi, J., Hassa, C.: SpecFlow: Pragmatic BDD for .NET (November
2009) http://www.specflow.org/specflownew/ (July 2013).

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 52 -

