
What makes the Difference? -
Basic Characteristics of Configuration

Lothar Hotz
HITeC e.V., University of Hamburg, Germany

hotz@informatik.uni-hamburg.de

Abstract

This paper focuses on configuration as a process
that iteratively applies commonly known reasoning
techniques and creates an incrementally growing
configuration description. This approach empha-
sizes the synthesis aspect of configuration, which
continuously acquires requirements and computes
their effects on a configuration in a cyclic way.
We provide the definitions of needed ingredients as
there are partial configuration, configuration deci-
sion, and reasoning for computing entailments of
made configuration decisions. These ingredients
are the basis for implementations of configuration
systems that follow these approach.

1 Introduction
Configuration is the task of composing a valid system de-
scription from known component definitions (configuration
model) and customer requirements. Typical configuration ap-
proaches map this task to reasoning techniques such as con-
straint solving [Sabin and Freuder, 1996; John, 2002], De-
scription Logics [McGuinness, 2003], or Answer Set Pro-
gramming [Soininen et al., 2001]. Through this mapping, ap-
propriate reasoners solve the configuration task by computing
a solution of their respective logical reasoning problems.

These approaches make a fundamental assumption, i.e.
that the requirements of the configuration task can be ini-
tially given, e.g., through a a set of requirements – see also
[Sabin and Weigel, 1998] which call this approach batch con-
figuration. But for many, not simple, configuration tasks
this does not hold [Neumann, 1988; Stumptner et al., 1998;
Fleischanderl et al., 1998]. This is due to the fact, that
only during the configuration experience, when the config-
ured product grows in front of the user’s eye, the user realizes
their own desires and needs [Simonson, 2003]. For example,
during a sales conversation, if a requirement causes the need
of a subsystem, previously not recognized, additional require-
ments come into account that are related to the subsystem.
Thus, the requirements are not completely clear in the begin-
ning but change during the configuration undertaking. Sim-
ple examples are web-based configurators for consumer prod-
ucts such as cars or electronic items that lead the user through

a sequence of web-pages for successively acquiring require-
ments. Other examples are industrial configurators which
firstly acquire features of a system and than configure sys-
tem specific components, like it is described in [Haag, 1998;
Ranze et al., 2002; Hotz et al., 2006] – see also [Sabin and
Weigel, 1998] which call this approach incremental configu-
ration.

These considerations lead to a configuration approach that
combines reasoning techniques with the characteristic of a
configuration process. Process-related subtasks are identifi-
cation of next steps in the configuration process or managing
partial configurations. Especially the retraction of decisions
previously made by a user is a characteristic of configuration
processes [Günter and Cunis, 1992; Hotz and Wolter, 2013].

Configuration approaches that take only a certain reason-
ing technology into account, such as configuration based on
Description Logics [McGuinness, 2003] or pure constraint
processing [Tsang, 1993], have to build an external archi-
tecture (or even user interface) around the reasoning kernel,
which handles configuration process tasks. Such approaches
consider a configuration process as a sequence of changing
but fully defined configuration tasks. However, they leave
the process-related subtasks to the external architecture and
do not integrate them in a configuration system. These ap-
proaches lead to domain dependent non-declarative imple-
mented configuration processes.

If a configuration system integrates reasoning facilities and
process or procedural aspects, such as e.g. [Günter and Cu-
nis, 1992; Stumptner et al., 1998; Fleischanderl et al., 1998;
Günter and Hotz, 1999], the inherent dynamic aspects of con-
figuration tasks can be solved in a general, domain inde-
pendent way, based on the configuration model. This view
is also supported by the early definitions or thoughts about
configuration as a syntheses task, in opposite to an analy-
sis task like diagnosis [Brown and Chandrasekaran, 1989;
Cunis et al., 1989; Günter and Cunis, 1992; Brown, 1996;
Günter and Kühn, 1999].

Other approaches that focus on such aspect of configura-
tion are generative constraints. In [Stumptner et al., 1998] the
incrementing configuration is modeled through specific vari-
ables that are activated if certain parts of a configured system
come into play. This approach is similar to the one defined
in the following, however, we do not map the generative no-
tion to a certain reasoning technology (such as constraints in

Lothar Hotz 95

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria



[Stumptner et al., 1998]), but we provide a framework around
a reasoning technology that applies it on subsequently defined
new configuration tasks. This is done by iteratively including
requirement acquisition in the configuration process. Further-
more, we will not concentrate on a certain reasoning tech-
nique, but provide a general framework.

Thus, in this position paper, we elaborate on basic charac-
teristics of the configuration process which lead to a complex
mapping of the configuration task to reasoning techniques.
Newly introduced operators allow a definition of the dynam-
ics of the configuration process. These include definitions for
components and restrictions as well as requirements as usual.
Additionally, they provide notions for partial configurations
and requirement variables. Furthermore, operators for com-
puting requirement variables, acquiring requirements, and for
the actual reasoning will lead to a comprehensive definition
of the configuration problem.

Thus, we focus on the iterative characteristic of configura-
tion, i.e. incrementing configuration with intermediate partial
configurations (see Section 2). By taking this view, the paper
furthermore tries to clarify the relationship of configuration
to other reasoning techniques (see Section 3).

We follow ideas published in [Cunis et al., 1989; Günter,
1995]. However, by introducing process related definitions
and operators, a summary of the needed ingredients is estab-
lished that shall give the basis for process-based configuration
technologies.

2 General Definitions
In the following, through definitions that build on each other,
we develop a definition of a complex configuration problem
that take the iterative character of the configuration process
into account. We develop a general definition of the complex
configuration task that is independent of a certain knowledge
representation, such as logic or constraint-based approaches.

First, we provide the definition of a configuration model.
This model defines all possible configurations in a generic
way. The model represents entities to be configured (such
as hardware components, software modules, or services) and
relations between them.

We here discuss a combination of entities (e.g., represented
with component types or classes) and relations (e.g., repre-
sented with constraints). However, the operators defined in
the following are independent of the representation. For ex-
ample, if a pure constraint-based representation is initially
used, appropriate operators should have to be developed for
supporting the here considered complex configuration tasks.

The definitions are illustrated with an example of compos-
ing a menu with antipasti, main course, and dessert. While
antipasti will always be selected if a hearty menu is desired,
the selection of a dessert cannot be computed from con-
straints. A hearty menu is part of initial requirements, while
the dessert is only selected after the main course, demonstrat-
ing a dynamic requirements acquisition.

Definition 1 (Configuration Model). A configuration model
CM is a generic description of entities of an application do-
main. CM is a tuple 〈Γ,Ψ,Φ〉, where

• Γ is a set of attributed entity models EM ∈ Γ (e.g.
classes or concepts) each representing a set of concrete
entities to be configured. An entity model consists of
named properties. Each property P is a binary relation
that maps from EM to a property domain PDP .

• Ψ is a set of property domains PDP ∈ Ψ of properties
P . A PDP might be a structural property domain (and
P is called structural property) with a set of structural
property values, i.e. an entity model optionally com-
bined with a cardinality. Or it might be a primitive data-
type, such as a number, symbol, or string or a probably
infinite set (e.g. for number ranges) of those, than P is
called data-type property.

• Φ is a set of n-ary relations ER ∈ Φ between properties
of entity models.

Example 1. An entity model with one data-type property, one
structural property, and a n-ary relation representing the fact
that a menu should consist in any case of a main course and
might optionally has an antipasti and a dessert. Depending
on the kind of taste, an antipasti is selected if hearty taste is
desired:

(Entity-Model name: Menu
super-type: Aggregate
data-properties: ((kindOfTaste {hearty light}))
hasCourses:
((AntiPasti :min 0 :max 1)
(MainCourse :min 1 :max 1)
(Dessert :min 0 :max 1)))

(Entity-Model name: AntiPasti
super-type: Part)

(Entity-Model name: MainCourse
super-type: Part)

(Entity-Model name: Dessert
super-type: Part)

(Constraint name: HeartyEqualsToAntiPasti
Menu.kindOfTaste == hearty <=>
Menu.hasCourses HAS (AntiPasti :min 1 :max 1))

For representing concrete components of an application
domain, entity instances are used. First, we define a simple
entity instance, later on we enhance this definition.

Definition 2 (Simple Entity Instance). A SEIEM represents
one concrete entity of the application domain. SEIEM be-
longs to an entity model EM and has all or some properties
of EM. The property values are constant values that belong
to the respective property values of EM.

For representing customer requirements about the desired
configuration, configuration requirements are defined as fol-
lows.

Definition 3 (Simple Configuration Requirememts). Simple
configuration requirements SR are a set of simple entity in-
stances with some properties filled with constant values.

Example 2. Two simple entity instances representing the re-
quirement “Hearty menu with a main course”:

(Entity-Instance name: menu-1
entity-model: Menu
kindOfTaste: {hearty}
hasCourses: {mainCourse-1})

(Entity-Instance name: mainCourse-1
entity-model: MainCourse)

Typically, a configuration task is defined as follows:

96 Lothar Hotz

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria



Definition 4 (Simple Configuration Task). A configuration
task is defined through an entity model EM and configuration
requirements SR.
Definition 5 (Simple Configuration). A configuration is de-
fined through a set of completely filled configuration in-
stances CI.

A knowledge representation technique allows it to repre-
sent an configuration model and configuration requirements.
Furthermore, it provides reasoning techniques that allow to
solve the simple configuration problem.
Definition 6 (Simple Configuration Problem). CM =
〈Γ,Ψ,Φ〉 be a configuration model. A simple configuration
problem in CM is a tuple 〈CM,SR〉, where SR is a set of
initial simple entity instances. A solution (a configuration) of
the problem 〈CM,SR〉 is a set of simple entity instances that
is consistent with CM and fulfills the configuration require-
ments SR.

How consistency is concretely defined depends on the
knowledge representation. However, in general for structural
properties, consistency means that entity instances belong to
S according to the cardinality descriptions of the structural
property. Thus, structural relations emphasize a configura-
tion being a collection of related entity instances, while n-ary
relations related properties of those instances.
Example 3. A resulting configuration, the constraint infers
the need of an entity instance representing antipasti:

(Entity-Instance name: menu-1
entity-model: Menu
kindOfTaste: {hearty}
hasCourses: {mainCourse-1 antiPasti-1})

(Entity-Instance name: mainCourse-1
entity-model: MainCourse)

(Entity-Instance name: antiPasti-1
entity-model: AntiPasti)

These definition provide the basis for configuration tasks:
a configuration model, the customer requirements, and a
knowledge representation that allows for creating a configu-
ration that fulfills the customer requirements. This definition
makes a basic assumption, i.e. that SR, the set of particular
customer requirements, are given. In simple, one step config-
uration problems, such as parameterization of technical sys-
tems, this is a reasonable assumption. In more complex ap-
plications, the requirements evolve during the configuration
process. This observation leads to further definitions.

First, we enhance the definition of a simple entity instance
by allowing not only constant values for properties but also
subsets.
Definition 7 (Partial Property Domain). Let P be a prop-
erty of an entity instance EI of entity model EM. And let
PDP be the property value of P as defined in CM. A par-
tial property domain PPDP of P is a subset of PDP , i.e.
PPDP ⊆ PDP .

Please note that a specific partial property domain is a
property domain with one value representing a constant value,
e.g. a number of a data-type property or a single instance of
a structural property.
Example 4. Example for a partial property domain of a
structural property with one entity instance and two open car-
dinality definitions:

hasCourses: {mainCourse-1 (AntiPasti :min 0 :max 1)
(Dessert :min 0 :max 1)}

Definition 8 (Terminal Property Domain). A terminal prop-
erty domain T PDP of property P is a partial property do-
main that is marked with terminal. A constant value is auto-
matically marked as terminal. Structural property values or
sets may be marked through the heuristic operator (see be-
low).

Example 5. Example for a partial property domains of a
data-type property indicated as terminal:

kindOfTaste: {hearty [terminal]}

Definition 9 (Entity Instance). An EIEM represents one con-
crete entity of the application domain. EIEM belongs to an
entity model EM and has the same properties as EM. The
property values might be the same as defined for EM or sub-
sets of those, they might be partial or terminal property do-
mains. These partially filled entity instances represent uncer-
tain knowledge about the concrete entity. A completely filled
entity instance has a terminal property domain for each prop-
erty.

Example 6. One partially filled entity instance:
(Entity-Instance name: menu-1
entity-model: Menu
kindOfTaste: hearty
hasCourses: {mainCourse-1 (AntiPasti :min 0 :max 1)

(Dessert :min 0 :max 1)})

Example 7. One completely filled entity instance:
(Entity-Instance name: menu-1
entity-model: Menu
kindOfTaste: {hearty [terminal]}
hasCourses: {mainCourse-1 antiPasti-1 [terminal]})

Definition 10 (Partial Configuration). A partial configuration
PO is a set of partially or completely filled entity instances.

Definition 11 (Configuration Requirememts). Configuration
requirementsR are a set of instances with some property val-
ues set to terminal property domains.

Thus, configuration requirements are a specific kind of par-
tial configuration namely one with instances whose properties
do not have a terminal property domain for each property.
We also call this partial configuration initial partial configu-
ration.

Definition 12 (Final Configuration). A final configuration
FC is a set of completely filled entity instances. Furthermore,
for each structural property of an instance in FC, a related in-
stances exists inFC according to the structural property value
(i.e. the defined entity model and the cardinality).

Now, probably the main step in our definitions follows,
i.e. the introduction of the definition of a variable. Typically,
properties of components are considered as variables and the
configuration task is to provide a value for these variables,
i.e. for the properties of the components. In our definition, a
variable stands for a decision that has to be made for gaining
a final configuration. Thereby, each variable stands for one
property of an entity instance that has to be determined. How-
ever, during the configuration process there might be several
variables for one property, e.g. if a property value is reduced
by the user in several steps.

Lothar Hotz 97

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria



Definition 13 (Variable). A variable V represents one deci-
sion of setting the value of one certain property. One or more
decisions have to be made for each property of every entity
instance. The variable represents possible outcomes of the
decision through its variable domain Vd. A variable domain
is a property value.
Example 8. Variable representing the decision that antipasti
and dessert shall be selected as courses of a menu:

(Variable
entity-instance: menu-1
property: hasCourses
property-value: {mainCourse-1

(AntiPasti :min 0 :max 1)
(Dessert :min 0 :max 1)})

Definition 14 (Reduced Variable). A reduced variable RV

of a variable V with a domain Vd is a variable with a domain
RVd

with RVd
⊂ Vd. The reduced domain might also be a

terminal property domain. For a structural property with a
structural property value, the subset is a set of instances that
are conform with the cardinality descriptions of the structural
property value.

The reduced variable represents the result of a made deci-
sion.
Definition 15 (Heuristic Operator). A heuristic operatorHO
is an operator that takes a variable V and computes a reduced
variable RV (probably with a terminal property domain) by
some heuristic method, thus: HO: V → RV .

The heuristic operator represents the method for gaining
a reduced variable, e.g. the selection of a default value, the
computation of a function computing a reduced domain for
the variable, or the acquisition of a value for that variable
from the user. Thus, the heuristic operator acquires sub-
sequent requirements that come up during the configuration
process. Furthermore, by reducing a structural property the
heuristic operator incrementally expands the configuration,
because new entity instances are created when reducing the
structural property (see above). A new entity instance has the
same properties and property values as its entity model.
Example 9. Reduced variable created by a heuristic oper-
ator that asks the user, if a dessert is needed, answer was
“yes”:

(Variable
entity-instance: menu-1
property: hasCourses
property-value: {mainCourse-1

(AntiPasti :min 0 :max 1)
dessert-1)})

Example 9 represents the answer to the typically raised
question after a meal “Would you like a dessert?”, which is a
simplistic example for a dynamic requirement acquisition.
Definition 16 (Entailment Operator). An entailment opera-
tor EO is an operator that takes the configuration model CM
(especially the defined n-ary relations), a partial configura-
tion PCi, and one reduced variable RV and computes a new
partial configuration PCi+1 which contains the value of the
reduced variable and all entailments of this reduction, com-
puted by some reasoning method, thus:
EO: CM, PCi,RV → PCi+1.
In the initial case,RV might be empty, i.e.

EO: CM, PC0, → PC1 computing the entailments of the
values in PC0, i.e. the initial partial configuration.

The entailment operator represents the integration of one
made decision into a partial configuration and the computa-
tion of the influences of this decision to the partial configu-
ration. The influences are computed on the basis of the con-
figuration model, especially the n-ary relations, which relate
properties of entity models. An influence or entailment is a
reduction of domains of some variables in PCi. Typical ex-
amples for an entailment operator are the solution of a con-
straint problem or applying Description Logic services.

Example 10. Reduced variable created by an entailment op-
erator that uses the constraint for deciding that an antipasti
is needed if a hearty menu was selected:

(Variable
entity-instance: menu-1
property: hasCourses
property-value: {mainCourse-1

antiPasti-1
(Dessert :min 0 :max 1)})

Definition 17 (Open Issue Operator). An open issue operator
OIO is an operator that takes the configuration model CM
and a partial configuration PC and computes new variables
Vi that have no terminal property domains and are collected
in the set A, thus: OIO: CM, PC → A, with Vi ∈ A.

From Example 6 theOIO computes the variable shown in
Example 8 because of the partial property domain for prop-
erty hasCourses.

Definition 18 (Select Operator). A select operator SO is an
operator that select one variable V out of the set A by some
selection method, thus: SO: A → V .

Now, we define the actual configuration process and iden-
tify its main part, i.e. the configuration cycle. A configura-
tion process starts with an initial partial configuration given
through the requirements of a customer. By successively ap-
plying the above operators the final configuration will be cre-
ated. This process is defined as follows:

Starting from the initial partial configuration IP , EO com-
putes the first entailments and, thus, PC1. Hereafter, the open
issue operator OIO can be applied to PC1 for computing
next variables with non-terminal property domains and builds
A1. The operator SO selects a next variable to be decided V1.
From here the heuristic operator HO reduces the variable’s
domain to RV1. The entailment operator uses the previous
partial configuration (EO(PC1)) for computing the next par-
tial configuration PC2. This way the operators are succes-
sively applied until the final configuration PCn is created and
no more open issues can be identified (i.e. OIO computes an
empty set). In total, we have:

98 Lothar Hotz

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria



IP, EO−−→ PC1 OIO−−−→ A1
SO−−→ V1 HO−−→ RV1

EO(PC1)−−−−−−→ PC2 OIO−−−→ A2
SO−−→ V2 HO−−→ RV2

EO(PC2)−−−−−−→ PC3 OIO−−−→ A3
SO−−→ V3 HO−−→ RV3

. . .

EO(PCn−2)−−−−−−−→ PCn−1 OIO−−−→ An−1
SO−−→ Vn−1 HO−−→ RVn−1

EO(PCn−1)−−−−−−−→ PCn OIO−−−→ ∅
Thus, the general configuration cycle is defined as follows:

Definition 19 (Configuration Cycle). A configuration cycle
COC is a sequence of operators OIO,SO,HO, EO as fol-
lows:

PCi OIO−−−→ Ai
SO−−→ Vi HO−−→ RVi

EO(PCi)−−−−−−→ PCi+1

Definition 20 (Complex Configuration Problem).
CM = 〈Γ,Ψ,Φ〉 be a configuration model. A
complex configuration problem in CM is a tuple
〈CM,R,HO, EO,SO,OIO〉, where R is a set of
initial entity instances and HO, EO,SO,OIO the pre-
viously introduced operators. A solution of the problem
〈CM,R,HO, EO,SO,OIO〉 is a final configuration that
was computed by applying the configuration cycle, that
is consistent with CM, and that fulfills the configuration
requirementsR.

Like in the simple configuration problem definition, how
consistency is concretely defined depends on the knowledge
representation. Furthermore, the knowledge representation
defines the entailment operator.

3 Discussion
The commonly used view on configuration is to specify a con-
figuration model and customer requirements as a reasoning
task of a reasoning system, such as a constraint system, and
than solve the reasoning task and present the resulting con-
figuration. This paper provides a view on configuration that
basically iterates these two steps of defining requirements and
reason about them, i.e.:

1. Start from an initial configuration including the require-
ments,

2. compute entailment of the requirements on the configu-
ration (operator EO),

3. create an agenda with not yet made decisions (operator
OIO),

4. select one decision (operator SO),
5. make the decision (operatorHO), and
6. compute its entailments (operator EO),
7. goto Step 3.
The computation of the entailments (Step 2 and Step 6)

correspond to the solution of the reasoning task, e.g. by con-
straint processing. The construction of a reasoning task is
included in the configuration process in the steps 3, 4, and 5.

Thus, the overall schema for configuration as seen in our
approach provides an iterative application of commonly ap-
plied reasoning techniques for configuration. For solving a
complex configuration problem, a configuration system or a
technological approach should realize the operators defined
above.

Of course, there exist variations of the here presented basic
framework. For example, the proposed approach to represent
requirements with instances might be enhanced to complex
requirements that need further reasoning to compute them
[Thäringen, 1995; Kopisch and Günter, 1992]. Or the selec-
tion of a decision may be enhanced to selecting multiple deci-
sions or to let the user select next decisions from the agenda.
Another extension is to include techniques for conflict reso-
lution [Günter and Hotz, 1995; Felfernig and Schubert, 2010;
Hotz and Wolter, 2013]. However, this paper provides the ba-
sic ingredients for solving a configuration task incrementally.
Configuration tools which follow our approach are KON-
WERK [Günter and Hotz, 1999], engcon [Hollmann et al.,
2000], or Plakon [Cunis et al., 1989].

4 Summary
This paper defines the necessary ingredients for a configu-
ration process that iteratively generates a configuration. Be-
sides the typically used reasoning techniques, the process ad-
ditionally supplies steps for creating requirements on the fly
and include them and their entailments in a growing configu-
ration. Enhancements in future work will be the inclusion of
operators for resolving conflicts that might occur during the
configuration process.

References
[Brown and Chandrasekaran, 1989] D.C. Brown and

B. Chandrasekaran. Design Problem Solving - Knowledge
Structures and Conrtol Strategies. Research Notes in
Artificial Intelligence Series. Pitman Publishing, London,
1989.

[Brown, 1996] D.C. Brown. Some Thoughts on Configura-
tion Processes. AAAI 1996 Fall Symposium Workshop:
Configuration FS-96-03, MIT, Cambridge, Massachusetss,
USA, 1996.

[Cunis et al., 1989] R. Cunis, A. Günter, I. Syska, H. Pe-
ters, and H. Bode. PLAKON - An Approach to Domain-
Independent Construction. In Proc. of Second Int. Conf. on
Industrial and Engineering Applications of AI and Expert
Systems IEA/AIE-89, pages 866–874, June 6-9 1989.

[Felfernig and Schubert, 2010] A. Felfernig and M. Schu-
bert. Diagnosing Inconsistent Requirements. In L. Hotz
and A. Haselböck, editors, Proc. of the Configuration
Workshop on 19th European Conference on Artificial In-
telligence (ECAI-2010), Lisbon, Portugal, August 2010.

[Fleischanderl et al., 1998] Gerhard Fleischanderl, Ger-
hard E. Friedrich, Alois Haselböck, Herwig Schreiner,
and Markus Stumptner. Configuring large systems
using generative constraint satisfaction. IEEE Intelligent
Systems, 13(4):59–68, July/August 1998.

Lothar Hotz 99

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop

August 29-30, 2013, Vienna, Austria



[Günter and Cunis, 1992] A. Günter and R. Cunis. Flexible
Control in Expert Systems for Construction Tasks. Journal
Applied Intelligence, 2(4):369–385, 1992.

[Günter and Hotz, 1995] A. Günter and L. Hotz. Auflösung
von Konfigurationskonflikten mit Wissensbasiertem Back-
tracking und Reparaturanweisungen (Conflict Resolu-
tion with Knowledge-based Backtracking and Repair-
Statement). In A. Günter, editor, ”Wissensbasiertes Kon-
figurieren”, St. Augustin, 1995. Infix.

[Günter and Hotz, 1999] A. Günter and L. Hotz. KON-
WERK - A Domain Independent Configuration Tool. Con-
figuration Papers from the AAAI Workshop, pages 10–19,
July 1999.

[Günter and Kühn, 1999] A. Günter and C. Kühn.
Knowledge-Based Configuration - Survey and Fu-
ture Directions. In F. Puppe, editor, XPS-99: Knowledge
Based Systems, Proceedings 5th Biannual German Con-
ference on Knowledge Based Systems, Springer Lecture
Notes in Artificial Intelligence 1570, Würzburg, March
3-5 1999.

[Günter, 1995] A. Günter. Wissensbasiertes Konfigurieren
(Knowledge-based Configuration). Infix, St. Augustin,
1995.

[Haag, 1998] A. Haag. Sales Configuration in Business Pro-
cesses. IEEE Intelligent Systems, pages 78–85, July Au-
gust 1998.

[Hollmann et al., 2000] O. Hollmann, T. Wagner, and
A. Günter. EngCon: A Flexible Domain-Independent
Configuration Engine. In Proc. ECAI-Workshop Config-
uration, page 94 pp, Berlin, Germany, August 21-22 2000.

[Hotz and Wolter, 2013] Lothar Hotz and Katharina Wolter.
Beyond Physical Product Configuration - Configuration in
Unusual Domains. AI Commun., 26(1):39–66, 2013.

[Hotz et al., 2006] L. Hotz, K. Wolter, T. Krebs, S. Deelstra,
M. Sinnema, J. Nijhuis, and J. MacGregor. Configuration
in Industrial Product Families - The ConIPF Methodol-
ogy. IOS Press, Berlin, 2006.

[John, 2002] U. John. Konfiguration und Rekonfiguration
mittels Constraint-basierter Modellierung (Configuration
and Reconfiguration by Means of Constraint-Based Mod-
eling). Infix, St. Augustin, 2002.

[Kopisch and Günter, 1992] M. Kopisch and A. Günter.
Configuration of a Passenger Aircraft Cabin - based on
Conceptual Hierarchy, Constraints and Flexible Control.
In F. Belli and F.J. Radermacher, editors, Proceedings of
IEA/AIE, Paderborn, 1992. Springer-Verlag.

[McGuinness, 2003] D. L. McGuinness. Configuration. In
Franz Baader, Diego Calvanese, Deborah L. McGuinness,
Daniele Nardi, and Peter F. Patel-Schneider, editors, De-
scription Logic Handbook, pages 397–413. Cambridge
University Press, 2003.

[Neumann, 1988] B. Neumann. Configuration Expert Sys-
tems: A Case Study and Tutorial. In Bunke, editor,
Proc. 1988 SGAICO Conference on Artificial Intelligence

in Manufacturing, Assembly, and Robotics. Oldenbourg,
Munich, 1988.

[Ranze et al., 2002] K.C. Ranze, T. Scholz, T. Wagner,
A. Günter, O. Herzog, O. Hollmann, C. Schlieder, and
V. Arlt. A Structure-Based Configuration Tool: Drive So-
lution Designer DSD. 14. Conf. Innovative Applications
of AI, 2002.

[Sabin and Freuder, 1996] D. Sabin and E.C. Freuder. Con-
figuration as Composite Constraint Satisfaction. In Pro-
ceedings of the Artificial Intelligence and Manufactur-
ing Research Planning Workshop, pages 153–161. AAAI
Press, 1996.

[Sabin and Weigel, 1998] Daniel Sabin and Reiner Weigel.
Product Configuration Frameworks - A Survey. IEEE In-
telligent Systems, pages 42–49, 1998.

[Simonson, 2003] I. Simonson. Determinants of Customer’s
Responses to Customized Offers: Conceptual Framework
and Research Propositions. Stanford GSB Working Paper
No. 1794, 2003.

[Soininen et al., 2001] Timo Soininen, Ilkka Niemelä, Juha
Tiihonen, and Reijo Sulonen. Representing Configuration
Knowledge with Weight Constraint Rules. In Alessandro
Provetti and Tran Cao Son, editors, 1st International Work-
shop on Answer Set Programming: Towards Efficient and
Scalable Knowledge, pages 195–201, 2001.

[Stumptner et al., 1998] M. Stumptner, G. Friedrich, and
A. Haselböck. Generative Constraint-based Configuration
of Large Technical Systems. AI EDAM, 12(04):307–320,
1998.

[Thäringen, 1995] M. Thäringen. Wissensbasierte Erfassung
von Anforderungen (Knowledge-based Acquisition of Re-
quirements). In A. Günter, editor, Wissensbasiertes Kon-
figurieren. Infix, 1995.

[Tsang, 1993] Edward Tsang. Foundations of Constraint
Satisfaction. Academic Press, London, San Diego, New
York, 1993.

100 Lothar Hotz

Michel Aldanondo and Andreas Falkner, Editors
Proceedings of the 15th International Configuration Workshop
August 29-30, 2013, Vienna, Austria


