
Czech Technical University in Prague, FIT, Dept. of Software Engineering
Charles University in Prague, MFF, Department of Software Engineering

VŠB–TU Ostrava, FEECS, Department of Computer Science
Czech Society for Cybernetics and Informatics

Proceedings of the Dateso 2014 Workshop

http://www.cs.vsb.cz/dateso/2014/
http://www.ceur-ws.org/Vol-1139/

Sc.

Group

AMPHORA RESEARCH GROUP

A GR

Amphor

April 16 – 18, 2014
Roudnice nad Labem

DATESO 2014
c© J. Pokorný, K. Richta, V. Snášel, editors

This work is subject to copyright. All rights reserved. Reproduction or publication of
this material, even partial, is allowed only with the editors’ permission.

Technical editor:
Adam Šenk, senkadam@fit.cvut.cz and Pavel Moravec, pavel.moravec@vsb.cz

Page count: 108
Impression: 50
Edition: 1st

First published: 2014

This proceedings was typeset by PDFLATEX.
Cover design by Pavel Moravec (pavel.moravec@vsb.cz) and Tomáš Skopal.
Printed and bound in Prague, Czech Republic by Česká technika – nakladatelstv́ı
ČVUT.

Published by Czech Technical University in Prague

FIT, Department of Software Engineering

Thákurova 9, 160 00 Prague 6, Czech Republic

Steering Committee

Václav Snášel VŠB-Technical University of Ostrava, Ostrava
Karel Richta Czech Technical University, Prague
Jaroslav Pokorný Charles University, Prague

Program Committee

Michal Valenta (chair) Czech Technical University, Prague
Wolfgang Benn Technische Universität Chemnitz, Chemnitz, Germany
Václav Snášel VŠB-Technical University of Ostrava, Ostrava
Jaroslav Pokorný Charles University, Prague
Karel Richta Czech Technical University, Prague
Vojtěch Svátek University of Economics, Prague
Peter Vojtáš Charles University, Prague
Dušan Húsek Inst. of Computer Science, Academy of Sciences, Prague
Michal Krátký VŠB-Technical University of Ostrava, Ostrava
Pavel Moravec VŠB-Technical University of Ostrava, Ostrava
Irena Holubová Charles University, Prague
Martin Nečaský Charles University, Prague
Jǐŕı Dvorský VŠB-Technical University of Ostrava, Ostrava
Radim Bača VŠB-Technical University of Ostrava, Ostrava
Jan Martinovič VŠB-Technical University of Ostrava, Ostrava
Pavel Strnad Czech Technical University, Prague
Ondřej Macek Czech Technical University, Prague
Robert Pergl Czech Technical University, Prague
Martin Kruǐs Czech Technical University, Prague

Organizing Committee

Pavel Moravec VŠB-Technical University of Ostrava, Ostrava
Adam Šenk Czech Technical University, Prague
Alena Libánská Czech Technical University, Prague

Preface

DATESO 2014, the international workshop on current trends on Databases, In-
formation Retrieval, Algebraic Specification and Object Oriented Programming,
was held on April 16 – 18, 2014 in Roudnice nad Labem.

The 14th year was organized by Department of Software Engineering, FIT
ČVUT Praha, Department of Computer Science VŠB-Technical University Os-
trava, Department of Software Engineering MFF UK Praha, and Working group
on Computer Science and Society of Czech Society for Cybernetics and Informa-
tics. The DATESO workshops aim for strengthening connections between these
various areas of informatics.

The proceedings of DATESO 2014 are also available at DATESO Web site:
http://www.cs.vsb.cz/dateso/2014/ and CEUR Workshop Proceeding site:
http://www.ceur-ws.org/Vol-1139/ (ISSN 1613-0073). The Program Com-
mittee selected 9 papers (6 full and 3 short papers) from 11 submissions, based
on two independent reviews.

We wish to express our sincere thanks to all the authors who submitted
papers, the members of the Program Committee, who reviewed them on the basis
of originality, technical quality, and presentation. We are also thankful to the
Organizing Committee Special thanks belong to Czech Society for Cybernetics
and Informatics.

Our thanks go also to Pavel Moravec who, as copy editor of DATESO Pro-
ceedings, helped to prepare this volume and provided technical support for the
conference preparation portal.

April, 2014 J. Pokorný, K. Richta, V. Snášel (Eds.)

Table of Contents

Full Papers

Towards a Harmonic Complexity of Musical Pieces . 1
Ladislav Marš́ık, Jaroslav Pokorný, Martin Ilč́ık

INTLIB – an INTelligent LIBrary . 13
Irena Holubová, Tomáš Knap, Vincent Kŕı̌z, Martin Nečaský, Barbora
Vidová-Hladká

Spatial Clustering of Disease Events Using Bayesian Methods 25
Lukáš Marek, Vı́t Pászto, Pavel Tuček, Jiř́ı Dvorský

Performance Analysis of the Activation Neuron Function in the Flexible
Neural Tree Model . 35
Tomáš Buriánek, Sebastián Basterrech

Ternary Tree Optimalization for n-gram Indexing . 47
Daniel Robenek, Jan Platoš, Václav Snášel

EEG signals similarity based on compression . 59
Michal Pŕılepok, Jan Platoš, Václav Snášel

Short papers

Exploiting HTML5 Technologies for Distributed Parasitic Web Storge . . . 71
Martin Krulǐs, Zbyněk Falt, Filip Zavoral

An Application of Process Mining by Sequence Alignment Methods to
the SAP Invoice Process Example . 81
Jakub Štolfa, Svatopluk Štolfa, Kateřina Slaninová, Jan Martinovič

QuickDB – Yet Another Database Management System? 91
Radim Bača, Peter Chovanec, Michal Krátký, Petr Lukáš

Author Index . 100

Towards a Harmonic Complexity of Musical
Pieces

Ladislav Marš́ık1, Jaroslav Pokorný1, and Martin Ilč́ık2

1 Dept. of Software Engineering, Faculty of Mathematics and Physics
Charles University, Malostranské nám. 25, Prague, Czech Republic

{marsik, pokorny}@ksi.mff.cuni.cz
2 The Institute of Computer Graphics and Algorithms,

Vienna University of Technology, Favoritenstraße 9-11, Vienna, Austria
ilcik@cg.tuwien.ac.at

Towards a Harmonic Complexity of Musical
Pieces

Ladislav Marš́ık1, Jaroslav Pokorný1, and Martin Ilč́ık2

1 Dept. of Software Engineering, Faculty of Mathematics and Physics
Charles University, Malostranské nám. 25, Prague, Czech Republic

{marsik, pokorny}@ksi.mff.cuni.cz
2 The Institute of Computer Graphics and Algorithms,

Vienna University of Technology, Favoritenstraße 9-11, Vienna, Austria
ilcik@cg.tuwien.ac.at

Abstract. Music information retrieval (MIR) is small, but fast grow-
ing discipline. It aims at extraction of relevant information from music
in order to improve the work with multimedia information systems. A
popular approach in MIR is to apply signal processing techniques to ex-
tract low-level features from a musical piece. However, in order to create
helpful applications, high-level concepts, such as music harmony, need
to be examined as well. In this paper, we present a new model for un-
derstanding music harmony in computer systems. The proposed model
takes the challenge of filling the gap between music theory and mathe-
matical structures. Inspired by the computational complexity, we then
derive a new term, harmonic complexity, that can be evaluated for a
musical piece, and we test it on a genre classification problem.

Keywords: music information retrieval, harmonic analysis, harmonic complexity,

chord transcription, chord progression

1 Introduction

A massive distribution of digital media has made music information retrieval
(MIR) a wanted field of study. Musicians and non-musicians both benefit from
applications that ease their work with music, such as notation software or in-
ternet radios. One of the recent challenges has been to develop an intelligent
retrieval of musical piece based on user preferences (Schönfuss [13]). However,
information systems are still not able to understand the music in its full depth
and more research is needed in this field. In this work, we narrow our focus
on content-based recommendation and classification tasks. Rather than giving
a complete solution, we define a new term, harmonic complexity, and a model
of music harmony, to help future research in both tasks, and provide tools for
other harmony-related problems.

Content-based recommendation or classification can be addressed using rules
of music acoustics, by computing the Discrete Fourier Transform (DFT), and

J. Pokorný, K. Richta, V. Snášel (Eds.): Dateso 2014, pp. 1–12, ISBN 978-80-01-05482-6.

2 Ladislav Marš́ık, Jaroslav Pokorný, Martin Ilč́ık

dealing with the frequency-domain features (Li [8]). To achieve even more ac-
curacy, some knowledge of higher-level concepts can be used, such as chord
progression or key analysis (Absolu et al. [1], Sapp [11]). That leads us to the
use of music theory and tonal harmony.

Tonal harmony. Music theory is a highly developed field that provides us
with a framework for working with musical structures. In our work, we choose
music theory, and in particular, tonal harmony (TH), to help us understand
one of the important aspects in music. Our focus on tonal harmony comes from
understanding, that acoustic sounds (tones) sounding simultaneously form struc-
tures, which even listeners without explicit musical training implicitly recognize
(Krumhansl [4]). Brief definitions of TH can be found in Section 2.

Harmonic complexity. With music classification and recommendation tasks,
naturally a question arises: What features can we use to determine the music
genre or to match the music with user’s preference? There have been several
attempts to select the relevant musical features resulting in useful applications
(Schönfuss [13] or Pandora music radio3). However, in the most successful sys-
tems like Pandora, the extraction of relevant features is still a domain of human
analysis. We propose a new feature, harmonic complexity, that simulates the pro-
cess a trained musician would use to analyze the musical piece. Whenever the
music obeys simple TH rules, we assign it a lower value of complexity, whereas
if the rules are complex, or the harmony does not obey any known rules, we
assign it higher values. For this purpose, we have created a model of harmonic
complexity based on formal grammars.

We are motivated by the fact, that although TH is a stable theory based
on music acoustics (e.g. Schönberg [12]), there is still a gap between the for-
malizations of music theory and mathematics. We believe that new models can
clarify the connection between the fields. Moreover, TH provides us an universal
approach to analyze music, which is independent from any genre or any given
dataset, as opposed to machine learning.

To summarize, the main contributions of this paper are:

• Defining a new term, harmonic complexity, that can be used as a new musical
feature to aid the content-based music recommendation and music classifi-
cation tasks
• Proposing a mathematical model based on tonal harmony, reusable for future

harmony-related tasks
• Testing the proposed model and harmony complexity evaluations on a music

classification problem

After providing definitions of TH, we summarize the results of the related
work in Section 3. We then describe our model of harmonic complexity in Section

3 http://www.pandora.com

Towards a Harmonic Complexity of Musical Pieces 3

4. Afterwards, we propose its usefulness for music classification challenge in
Section 5. In the end we provide conclusion and discuss the future work, as well
as the connection of our research to music recommendation task.

2 Tonal harmony

In this section we provide brief definitions of TH, based on Schönberg [12] and
Riemann [10]. We consider the following terms to be known to the reader and
reference Schönberg [12] or Krumhansl [5] for clarification: tone, octave, acci-
dentals (sharp] or flat [), semitone and whole tone intervals, chord, chord root,
scale, key and degrees of the scale or key.

We further make use of the concept of basic harmonic functions character-
istic for each key. The harmony in music usually starts in the tonic, a function
of harmonic steadiness and release. Optionally, it deviates to the subdominant.
Finally, the harmonic movement culminates in the dominant, a function repre-
senting the maximal tension, requiring a transition back to the tonic. According
to Zika [16] it is the skeleton of every music motion in musical pieces in the TH
system.

Fig. 1. Basic harmonic functions in the C major key

In addition to the three basic harmonic functions, there are also variants, or
parallels of the basic harmonic functions. We provide a simplified definition of a
function parallel based on the original definition by Riemann [10].

Definition 1. Function parallel is the chord created from the basic harmonic
function either by extending the highest tone (i.e. fifth degree in the tonic, first
degree in the subdominant and second degree in the dominant) by a whole tone,
or by diminishing the root tone by a semitone. We denote a parallel by adding a

”
P“ subscript to the function (T → TP)

An example parallels for the C major chord c, e, g are c, e, a or b, e, g.

4 Ladislav Marš́ık, Jaroslav Pokorný, Martin Ilč́ık

We also add a definition from one of the modern interpretations of TH,
described by Volek [14] and based on Leoš Janáček’s conception of added disso-
nances to the chord. We will use it in accordance with the original concept.

Definition 2. Chord with an added dissonance is a chord enriched with tones
that did not originally belong to the chord (non-chord tones), thus creating a
whole tone or a semitone dissonance.

An example of a chord with an added dissonance is c, e, f , g, with the tone
f added to the original C major chord c, e, g.

Some well-known tunes have a simple harmonic structure, for example Happy
Birthday : T – D – T – S – T – D – T . However, more complex compositions,
such as Smetana’s Vltava from Má vlast can be interpreted as: T – SP (D)
– TP (T) – S – T – D – T . We can notice the use of the function parallels.
Moreover, some functions can have multiple meanings, if we consider switching
to a different key (functions in the parentheses). We capture this principle in the
next section.

3 Related work

In this section we provide the summary of the work most related to ours.

De Haas, Magalhães, and Wiering [2] have described, how music harmony
analysis can improve chord transcription algorithms (detecting the correct chord
progression for a musical piece). The authors have found statistically significant
improvement, when the tonal harmony analysis was used. The presented Haskell-
based system HarmTrace4 is capable of deriving a tree structure explaining the
tonal function of the chords in the piece. The number of errors in creating the
tree can be considered as a possible way to calculate the harmonic complexity
using tonal harmony, even though it was not the aim of the work.

Lots of works have been done on tonal tension (see Lerdahl and Krumhansl
[7]). Tonal tension focuses on the distance from the tonic in every moment and
so describes the harmonic movements of a musical piece. However, speaking
about complexity, we may want to consider tonic, subdominant, and dominant,
all three as the fundamental parts of a musical piece with a simple harmony
structure.

Finally, the works on chord distance are closely related to our research. In
his inspiring work, Lerdahl [6] introduces the term tonal pitch space, a model
describing distances between pitches, chords, and keys. The model of a space
starts with the layer of semitones, upon which other four layers are built. The
number of transformations of the basic space measure the distance between the
chords.

If new concepts are to be designed, they need to be in accordance with
previous research.

4 http://hackage.haskell.org/package/HarmTrace-2.0

Towards a Harmonic Complexity of Musical Pieces 5

4 Model of harmonic complexity

The basic idea of our model is simple: The use of basic harmonic functions does
not increase harmonic complexity. However, every single use of a parallel or
added dissonances increase the complexity of a musical piece. We can recognize
the use of complex harmonies by evaluating each pair of succeeding chords –
evaluating their harmonic transition. If we shape the three basic transitions (be-
tween T , S, D) in a triangle, the idea of increasing complexity can be illustrated
as in the Figure 2.

Fig. 2. Increasing complexity of a harmonic movement: The transitions T – D – T or
T – S – D – T are assigned zero complexity, but the transitions T – SP and SP – D
are considered more complex.

We base our model on the overtone series and consequent harmony rules by
Schönberg [12] and Riemann [10]. We further chose not to differentiate between
the transitions S – D, or D – S, and the rest of the transitions between the basic
harmonic functions. In particular, the transition D – S violates the rules of the
original TH. However, there are some exceptions described by Zika [16] and the
mentioned transition is appearing more often in today’s music. Moreover, we
chose the modifying of the basic harmonic functions to be our primary target
in evaluating the harmonic complexity. The transitions between the basic har-
monic functions itself are principally different from creating parallels or adding
dissonances and therefore should not be considered complex in this concept.

We also merge the concepts of a function parallel and a chord with an added
dissonance defined in Section 2, since both are a way to modify the basic har-
monic function. The aim here is to generalize the process of creating complex
harmonies, while focus on specific aspects will be a subject of our future work.

4.1 Formalization of transitions

We now want to evaluate the transition from the basic harmonic function to
its parallel (e.g. T → TP) and in between the parallels (e.g. TP → SP). That
alone can give us information how much the music deviates from the simplest

6 Ladislav Marš́ık, Jaroslav Pokorný, Martin Ilč́ık

progression and translates to harmonic complexity. We use a linguistic approach
to evaluate these transitions.

First of all, let us consider the simplest case: T → TP . We wish to create
a parallel either by adding a tone or modifying a tone. Formally, we define a
sentential form as a form of chord notation and two different parametric rules
to modify the sentential form: add(t) and alter(t,alt).

Definition 3. A chord is written in sentential form t1t2...tn if it consists of the
tones t1, t2, . . . , tn, and for i 6= j: ti 6= tj, moreover t1 . . . tn are ordered in the
order of the chromatic scale.

The sentential form is therefore only an ordered enumeration of chord’s tones,
neglecting the duplicity (working in one octave). We further define the transition
rules between the sentential forms in the same fashion as Hopcroft, Motwani,
and Ullman [3], but with notable differences. We design our own types of rules,
applicable to the whole sentential form. We also try to avoid excessive formalism.
In the following we assume, that the derivation starts with the sentential form
representing the (original) basic harmonic function – an analogy with the start
symbol of Hopcroft et al.

Definition 4. The add(t) rule between two sentential forms h and g is defined
as follows: h −−−−→

add(t)
g ⇔ (h = t1, t2, . . . tn) ∧ (g = t1, . . . tj , t, tj+1, . . . tn), where

t belongs to the same key as t1 . . . tn, and ∀i : t 6= ti.
We wish to simulate both adding dissonances and creating Riemann’s par-

allels. We choose an approach which can be confusing at first – both transfor-
mations can be achieved using the add rule. If we set, that the basic harmonic
function that we start with does not necessarily need to contain 3 tones, but pos-
sibly also a single tone or two tones (substituting the basic harmonic function),
using add rule we can indeed get a Riemann’s function parallel. For example,
we can get a parallel cea as ce + a, where ce substitutes the tonic ceg in C ma-
jor. The alter rule will therefore have a different role – moving the tone outside
the key, and so creating sharp dissonances and alterations in the way that TH
describes them [12].

Definition 5. The alter(t,alt) rule between two sentential forms h and g is
defined as follows:

h −−−−−−−→
alter(t,alt)

g ⇔ (h = t1,ti, t, ti+1, . . . tn) ∧ (g = t1, . . . ti, talt, ti+1, . . . tn),

where t belongs to the same key as t1 . . . tn, talt does not belong to that key,
and talt is created from t by augmentation (alt =]) or diminution (alt = [)
by a semitone. Moreover, t can not be one of the tones of the original basic
harmonic function of h (the basic harmonic function that the whole derivation
started with).

The constrains we cast on the add and alter rules yield the rules of TH. First
of all, we can not modify the original tones, because we do not want to lose the
sense of the basic harmonic function. If we wish to weaken the basic harmonic

Towards a Harmonic Complexity of Musical Pieces 7

functions, we always have the possibility to start with only a subset if its tones.
Secondly, we can add the tones, but only from the same key. And thirdly, we
can alter the tones to a different key, but only after they have been added. Such
hierarchy agrees with Lerdahl’s definition of tonal pitch space [6].

Note that, using add and alter rules we are able to create arbitrary harmonies.
The only thing we need to keep in mind is, that given a sentential form h, we first
have to find out, which key h belongs to. There are 24 possibilities, comprising
12 major and 12 minor keys. Then we can apply the add and alter rules.

Remark 1. In a simple example we derive the tonic parallel (TP) cef]g] from the
original tonic (T) ce, in the key C major : ce −−−−→

add(f)
cef −−−−−−→

alter(f,])
cef] −−−−→

add(g)

cef]g −−−−−−→
alter(g,])

cef]g].

We first define a chord complexity for a simple chord. Then we proceed to
define a transition complexity between two chords.

Definition 6. A chord complexity (in the given key) c(h) of chord h is the
minimal length of derivation of the chord’s sentential form (in the given key).

Remark 2. For our example tonic parallel: cef]g], the chord complexity in the
key C major is 4. However, overall chord complexity for this chord can be even
lower. If we choose the key G major and treat the form ce as a subdominant in
G major, we will have 3 as the resulting chord complexity (due to the fact that
the tone f] can be added in one step – it is a part of the key G major.

Understanding that the chord h can be treated in multiple keys, have mul-
tiple derivations and multiple chord complexities, we always use the shortest
derivation (lowest complexity) to define the chord. We label such chord com-
plexity c(h). We use similar approach in our final definition – chord transition
complexity.

Definition 7. Let us have the sentential form of chord h1 and the sentential
form of chord h2. We define a chord transition complexity tc(h1, h2). We dif-
ferentiate between these possibilities:

1. Let us assume, that there is a common ancestor in both derivations of h1 and
h2 – a sentential form a, that h1 and h2 can be both derived from, h1 in k1
steps, and h2 in k2 steps. Then if k1+k2 ≤ c(h1)+c(h2), the chord transition
complexity tc(h1, h2) equals to k1 +k2. Otherwise, tc(h1, h2) = c(h1)+c(h2).

2. Let us assume, that there is no such common ancestor. ∃r1, r2, kh1, kh2 : h1

can be derived from an original basic harmonic function r1 in kh1 steps, h2

can be derived from an original basic harmonic function r2 in kh2 steps.
(a) Let us assume that r1, r2 are such basic harmonic functions, that are

from the same key and the sum kh1 + kh2 is minimal. Then the chord
transition complexity tc(h1, h2) equals to kh1 + kh2.

(b) The common key for r1 and r2 does not exist. Then the chord transi-
tion complexity tc(h1, h2) equals to u1 + u2, where u1 is the number of
steps required to derive h1 from the empty sentential form, and u2 is the
number of steps required to derive h2 from the empty sentential form.

8 Ladislav Marš́ık, Jaroslav Pokorný, Martin Ilč́ık

In other words, we define the transition complexity between two chords as
the amount of steps needed to disassemble the first chord into its basic harmonic
function (rolling back the derivation), then we switch the function and count the
number of steps to assemble the new chord. The resulting number of steps is the
transition complexity. If there is a common ancestor in derivations, closer than
the basic harmonic function, we disassemble and assemble only to and from this
common ancestor. Finally, if no common key can be found for the two harmonies,
we choose to disassemble the first chord all the way to an empty sentential form,
and construct the second chord from an empty sentential form.

In all of these cases, it is only a simple constructing and destructing the
chords, using our derivation rules. This is when the analogy with computational
complexity comes in – the chord transition complexity can be understood as the
computational complexity of reconstructing the chord h1 to h2. The illustration
of chord transition complexity can be found in the Figure 3.

Fig. 3. Chord transition complexity: The chords SP1 and SP2 have a common ancestor
in the derivation, and are assigned a chord transition complexity of 5. The chords SP2

and DP do not have a common ancestor in derivation, therefore their chord transition
complexity is equal to the sum of their chord complexities.

4.2 Harmonic complexity of a musical piece

Finally, we can proceed to evaluation of harmonic complexity for a whole piece.
We have a musical piece M . We can use different algorithms (some of them

Towards a Harmonic Complexity of Musical Pieces 9

are described in the Section 5) to extract the sequence of chords {Ci}i≤l of
the length l. Keeping in mind the analogy with the computational complexity,
we are interested in obtaining an average number of steps needed to construct
a chord from the basic harmonic functions. We average the values because we
want to abstract from the length of the progression, in the same fashion as the
computational complexity theory abstracts from the length of the input. Other
interesting statistical values for harmonic complexity will be the subject of our
future work.

Definition 8. An average transition complexity (ATC) for a musical piece M ,
a sequence of chords {Ci}i≤l of the length l and a sequence of its transition
complexities {ti}i≤l−1 is defined as follows:

ATC(M) =

l−1∑
i=0

ti

l − 1

4.3 Implementation methods

Understanding that, for a given chord, multiple basic harmonic functions can
be found, along with multiple different keys, the model can become difficult
to implement. We propose two methods of implementation, based on internal
representation of musical data:

1. Query method – The fundamental rules of TH (keys, basic harmonic func-
tions) are saved in a database and a number of queries precedes the calcu-
lation of transition complexity for chords.

2. Graph method – We can also abstract from the ambiguity of keys and func-
tions and avoid complicated queries. Working within the bounded space of
all possible sets of tones in the octave, we have designed our derivation rules
in such fashion, that for a given chord it is easy to calculate all chords with
transition complexity of 1 from a given chord. That approach can result in
constructing a graph representation of the problem, with edges represent-
ing a transition complexity of 1. On such a graph, queries can be easily
implemented using the breadth-first search algorithm.

5 Experiments

In our experiments, we focused on determination, whether the newly defined
concept of harmonic complexity can be a good descriptor for music classification
task. The aim is to show that ATC values (see Definition 8) can distinguish the
different genres, artists in one genre, or even the songs from the same artist.

10 Ladislav Marš́ık, Jaroslav Pokorný, Martin Ilč́ık

The dataset was selected from the top 5 best-selling artists in 2013, according
to renowned worldwide music charts and separate for each genre: Rock and Pop5,
Jazz6 and Classical music7. In each genre, 25 different pieces were analyzed.

For obtaining a chord sequence, Vamp-plugins NNLS Chroma and Chordino8

version 0.2.1 by Mauch [9] were used. We used Chordino plugin to find where the
harmony significantly changes. Then we used NNLS Chroma plugin to obtain
the tones sounding in each time interval. For the purpose of these experiments,
we have selected the 4 most significant tones in each interval to form a chord
representation, allowing (multiple) dissonances.

We split the experiments into 3 parts.

1. First we measure the mean ATC for different genres. Since the Classical
music developed historically and particular music periods are known to obey
certain composition styles, we show the same type of analysis for music
periods of Classical music.

2. Second we measure the mean ATC for different artists from the Rock genre.
3. Third we measure the ATC found for different songs selected from the 2

artists of Rock music: The Beatles and Queen.

The Figure 4 shows the result of the analysis. ATC values around 1 means
that the transitions were not complex and aligned with the basic tonal harmony
theory. On the other hand, values above 3 meant that the transitions needed on
average more than 3 steps. We can see how our model gives the highest ranking
to the Jazz music. Rock music averaged around 2 and the lowest rankings were
assigned to Pop songs. This aligns with the expectations. There is an ambiguity
between Rock and Pop genres, that is understandable, because the genres may
overlap.

In Classical music periods we can observe how the music has developed
through the centuries. This also corresponds with the theoretical knowledge,
knowing that after Romanticism, the composers began to break the established
harmony rules.

We have also discovered some interesting results about the concrete artists
and songs. Queen songs were analyzed to be considerably more complex than
the rest of the Rock artists, that can be attributed to their famous ensembles
sounding together in an unusual way. Some particular songs have the ATC value
that is out of the area where the songs of the same genre belong to with high
probability (highlighted). In one particular case (Radio Ga Ga by Queen), we
can conclude that, in correspondence with our results, the harmonic movements
of the song are really considered to be less complex, since the song is known
to have more popular genre than the rest of Queen’s production. The song Let
It Be by The Beatles is also known for its repetitive chorus containing 4 basic
chords.

5 Source: http://www.billboard.com
6 Source: http://www.artistsdirect.com
7 Source: http://www.classical-music.com
8 http://isophonics.net/nnls-chroma/

Towards a Harmonic Complexity of Musical Pieces 11

Fig. 4. Mean ATC for genres, music periods, Rock artists and ATC for individual Rock
songs. The grey interval marks the typical complexity of Rock songs.

6 Conclusion and discussion

In this paper we have proposed a new term that can be evaluated for a musical
piece – harmonic complexity. We have presented a mathematical model based on
tonal harmony, for evaluating harmonic complexity. Lastly, we have successfully
conducted a series of experiments to prove that the new feature is relevant for
music classification task. The results correspond with the expectations. Knowing
that our model can evaluate the harmonic movements precisely we propose using
this technique to obtain music descriptors for future music classication attempts.

In the discussion we would also like to propose an idea of content-based music
recommendation based on harmonic complexity. As Zanette pointed out [15], the
complexity and change in music together with the repetition of pleasant stimuli
are two fundamental, but contradictory, principles that the listeners are looking
for in music. That translates to the initial idea that drives our research – the
expectations of music listeners are different and subjective. One listener may
prefer simple harmonies, while other might prefer more complex or more specific
music (e.g. jazz or modern classical music). The model of harmonic complexity
therefore presents a new way of understanding the need of listeners and can be
used to recommend him music according to his/her needs.

12 Ladislav Marš́ık, Jaroslav Pokorný, Martin Ilč́ık

For future work, we propose music classification experiments with the use of
harmonic complexity as one of the music features. We also realize that harmonic
complexity as described is only one of the possible implementations of the broad
term of complexity in music and much can be done in specifying other simi-
lar measures (space complexity, complexity of modulations, the use of seventh
chords, etc.). We hope that by showing this point of view we have induced some
new ideas for the future research.

Acknowledgments. The study was supported by the Charles University in
Prague, project GA UK No. 708314.

Bibliography

1. Absolu, B., Li, T., Ogihara, M.: Analysis of Chord Progression Data. In: Advances
in Music Information Retrieval, Studies in Computational Intelligence, vol. 274.
Springer (2010)

2. De Haas, W.B., Magalhães, J.P., Wiering, F.: Improving Audio Chord Transcrip-
tion by Exploiting Harmonic and Metric Knowledge. In: Proceedings of the 13th
International Society for Music Information Retrieval Conference. ISMIR 2012
(2012)

3. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, Boston, second edn. (2001)

4. Krumhansl, C.L.: The Cognition of Tonality – As We Know It Today. Journal of
New Music Research 33/3 (2004)

5. Krumhansl, C.L.: The Geometry of Musical Structure: A Brief Introduction and
History. Computers in Entertainment 3/4 (2005)

6. Lerdahl, F.: Tonal Pitch Space. Oxford University Press, Oxford (2001)
7. Lerdahl, F., Krumhansl, C.L.: Modeling Tonal Tension. Music Perception: An

Interdisciplinary Journal 24/4 (2007)
8. Li, T., Ogihara, M., Li, Q.: A Comparative Study on Content-based Music Genre

Classification. In: Proceedings of the 26th Annual International ACM SIGIR Con-
ference on Research and Development in Informaion Retrieval. SIGIR ’03, ACM
(2003)

9. Mauch, M., Levy, M.: Structural Change on Multiple Time Scales as a Correlate
of Musical Complexity. In: Proceedings of the 12th International Society for Music
Information Retrieval Conference. ISMIR 2011 (2011)

10. Riemann, H.: Harmony Simplified. Augener Ltd., London (1896)
11. Sapp, C.S.: Visual Hierarchical Key Analysis. Computers in Entertainment 3/4

(2005)
12. Schönberg, A.: Theory of Harmony. University of California Press, Los Angeles

(1922)
13. Schönfuss, D.: Content-Based Music Discovery. In: Exploring Music Contents, Lec-

ture Notes in Computer Science, vol. 6684. Springer (2011)
14. Volek, J.: The Structure and Figures of Music. Panton, Prague (1988)
15. Zanette, D.H.: Music, Complexity, Information. The Computing Research Repos-

itory 0807.0565 (2008)
16. Zika, P., Koř́ınek, M.: Tonal Harmony for 1st-3rd Class of Music Conservatory.

SPN, Bratislava (1990)

INTLIB – an INTelligent LIBrary?

Irena Holubová1, Tomáš Knap1, Vincent Kŕıž2, Martin Nečaský1, and
Barbora Vidová-Hladká2

1 Department of Software Engineering
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
holubova@ksi.mff.cuni.cz

2 Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
hladka@ufal.mff.cuni.cz

INTLIB – an INTelligent LIBrary?

Irena Holubová1, Tomáš Knap1, Vincent Kríž2, Martin Nečaský1, and
Barbora Vidová-Hladká2

1 Department of Software Engineering
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
holubova@ksi.mff.cuni.cz

2 Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
hladka@ufal.mff.cuni.cz

Abstract. In this paper we describe the project INTLIB – an INTelligent LIBrary
whose aim is to provide a more sophisticated and user-friendly tool for querying
textual documents than full-text search. On the input we assume a collection of
documents related to a particular problem domain (e.g., legislation, medicine,
environment, etc.). In the first phase we extract from the documents a knowledge
base, i.e. a set of objects and their relationships, which is based on a particular
ontology (semantics). In the second phase we deal with sophisticated and user
friendly visualization and browsing (querying) of the extracted knowledge. The
whole system is proposed as a general framework which can be modified and
extended for particular data domains. To depict its features we use the legislation
domain.

1 Introduction

Nowadays, large collections of documents form one of the main sources of information
and their sophisticated browsing or querying is the key aspect in many areas of human
activity. Existing solutions to the problem of searching large collections of documents
typically implement two approaches. The full-text search allows the user to find doc-
uments with the highest frequency of occurrences of a specified set of keywords. The
search is automatically optimized using a pre-generated index that keeps track of the
occurrences of keywords. Other approaches enable to search, e.g., the co-occurrence
of words, specify their proximity, etc. By contrast, the metadata search allows the user
to find documents with given properties (such as, e.g., author, creation date, expiration
date, list of keywords, etc.). Nevertheless, the metadata are assigned to the documents
manually and, thus, inefficiently and expensively.

In general, both the common approaches do not work with the semantics (meaning)
of the documents in the collection. For example, considering the legislation, we may
need to know that the term "the High Court" means a particular institution in a particular
country that has certain powers and relations to the Constitutional Court. To enable the
user to access the data this way means:
? This work was supported by the TAČR grant INTLIB, no. TA02010182.

J. Pokorný, K. Richta, V. Snášel (Eds.): Dateso 2014, pp. 13–24, ISBN 978-80-01-05482-6.

14 Irena Holubová et al.

1. to interpret the semantics of the documents in terms of real-world objects and the
relationships between them which are described in the documents,

2. to transform the interpretation into a suitable database preferably having a standard
format and standard query language, and

3. to present the interpretation to the user in a form which enables sophisticated, pre-
cise and user-friendly browsing and filtering.

In this paper we describe project INTLIB – an INTelligent LIBrary whose aim is
to provide a more sophisticated and user-friendly tool for querying textual documents
than full-text or metadata search. On the input we assume a collection of human-written
documents related to a particular problem domain. INTLIB processes the data in two
phases. In the extraction phase we extract from the documents a knowledge base, i.e.
a set of objects and their mutual relationships, which is based on a particular ontology.
The extraction phase first exploits and utilizes linguistic approaches and machine learn-
ing techniques. Then it applies algorithms for cleaning and linking of the data, and their
transformation to RDF [9]. In the presentation phase we deal with efficient and user-
friendly visualization and browsing (querying) of the extracted knowledge. The whole
system is proposed as a general framework which can be modified and extended for
various data domains using plug-ins. Naturally, each of the domain may require spe-
cific features; however, the general methodology we propose will remain the same. To
depicts the features of the framework we use the legislation domain and we implement
plug-ins that process the legislation of the Czech Republic.

The rest of the paper is structured as follows: In Section 2 we provide a larger
motivating example from the area of legislation. In Section 3 we describe the current
systems used for legislation processing in the Czech Republic and in Section 4 solutions
used abroad. In Section 5 we propose the architecture of INTLIB and describe particular
modules. In Section 6 we conclude and outline future work.

2 Motivating Example: Legislation

Sources of law are usually structured into sections which may contain further subsec-
tions. Moreover, a source of law may contain links to other sources which may target
not only a whole source of law but also its particular section. Therefore, the structure
encoded in sources of law and links between them form a complex network which the
users want to browse and search for relationships between sources of law and/or their
parts. Common use cases are, e.g.:

– A user is reading a particular section of an act. He would like to see what court
decisions have been made in the last decade related to this particular section.

– A user is working with a particular amendment. He would like to see what sections
of what acts have been corrected by this amendment or by its section.

– A user is reading a particular section of an act. He would like to find out what
amendments correcting the chosen section will come to force in the next year.

A natural solution is to enable machines to search for the relationships. However,
much has to be done to achieve an efficient software solution. In particular, we have to
find out ways of how to:

INTLIB – an INTelligent LIBrary 15

– automatically extract the logical structure of sources of law,
– assign unique machine interpretable identifiers to the sources of law as well as to

their sections and subsections so that they can be linked,
– automatically extract the links between sources of law and their parts,
– represent the extracted structure and links in a data format suitable for representing

generic graph structures.

In INTLIB we concentrate on both recognizing the logical structure of source of law
and recognizing references (links) between them automatically in their textual represen-
tations. We also propose a data structure which allows us to represent the recognized
structure and links in a way suitable for further database processing.

Besides the logical structure and links, sources of law contain also semantic infor-
mation. This is mainly the case of acts (and their amendments). Acts and other sources
of law define rights and/or obligations of natural and legal persons. Different sources
of law define different rights and obligations for the same kind of natural or legal person
or for different persons which are, however, semantically related (e.g. one person is a
special type of another person and it “inherits” the rights and obligations). Therefore,
the rights and obligations of persons defined by acts and other sources of law form a
complex network, similar to the described network of links among sources of law. In
this case the network is defined by the semantic information encoded in the sources of
law and we can therefore speak about a semantic network or a knowledge graph. Again,
it would be useful for users to be able to browse and query such network. We list some
sample common use cases and demonstrate them in Figure 1:

– A user wants to know what are the obligations of his employer regarding his health
insurance. For example, according to the sample network depicted in Figure 1, the
user can get information that his employer has an obligation to record employee’s
documentation, notify insurance company about changes in case of changes in em-
ployee’s information, etc.

– A user wants to know what kind of information his health assurance company has
to provide him. For example, according to Figure 1, the user can see that he has the
right to obtain information from his insurance company about services provided
and paid by the company as well as information about prices of services which are
paid by him.

A software solution which enables browsing the network of the semantic concepts
and relationships and automates searching and querying the network and its visual-
izations would be helpful for users. However, it is again necessary to solve various
problems, such as to:

– automatically extract the semantic concepts and relationships between them from
the textual representation of sources of law,

– assign unique machine interpretable identifiers to the concepts so that they can be
linked on each other and other extending information can be linked on them,

– represent the extracted concepts and links between them in a data format which
allows further database processing.

16 Irena Holubová et al.

Employer

Recording employee’s
documentation

Notification of insurance
company in case of

changes

Notification of insurance
company in case of new

employment

Paying insurance taxes of
its employees

Insured
Person

has obligation

has obligation

has obligation

has obligation

Information about
services paid by

insurance company

Information about prices
of services which are not

paid

has_right

has right

Insurance
Company

has obligation

has obligation

Act
48/1997

defines

defines

defines

defines

defines

defines

Fig. 1. Sample of semantic concepts extracted from Public Health Act valid in Czech Republic

3 Current Czech Legislation and Related Systems

In the Czech Republic, there currently exist several systems that provide an access to (a
subset of) law, court decisions or other related information in an electronic form. Some
of them even claim to provide the consolidated versions of acts, nevertheless none of
them is an official version to be approved by the Head of the Parliament (who is respon-
sible for it). If fact, even the members of the Czech Parliament work with these systems,
i.e. with unofficial data. The solution to the problem is being provided in two closely re-
lated projects proposed by the Czech Government – eSbirka3 and eLegislativa4 – whose
aim is (1) to provide official and approved version of the consolidated versions of acts
in the electronic form and available to anyone and (2) to enable to speed up the legisla-
ture process in the Czech Republic via direct amending of these official electronic acts.
The problem of these systems is currently the financial support. It is not the question of
preparing an electronic version of the documents or suitable interfaces for various types
of users (a citizen, a member of the Parliament, a Head of the Parliament, etc.), but
it requires a tremendous effort of experts in law to solve known ambiguities, to study
historical acts that are still valid and not in accordance with newer acts, etc.

In the following sections we provide a brief overview of existing systems that enable
to browse and query (a part of) the Czech legislation.

3.1 ASPI

System ASPI5 from the Wolters Kluwer, Czech Republic is currently one of the most
popular systems that enable to browse and query electronic version of legislation and
related data. In addition, being a publishing company, the vendor provides an interesting
and important extension – an access to related basic literature where various acts are

3 eLegislation in English
4 eLegislature in English
5 http://www.systemaspi.cz/ [in Czech]

INTLIB – an INTelligent LIBrary 17

explained, commented and discussed. Considering the browsing and querying aspects,
it supports full-text search supporting also all grammatical forms of Czech or Slovakian
respectively. The search can cover all texts, or selected parts such as titles, content,
appendices, notes, or tables of contents. The system enables to filter the documents
according to meta data, such as identification (e.g. file numbers of court decisions), date
of issue (valid versions or older versions), or issuing institution (e.g. the Constitutional
Court, the Supreme Administrative Court etc.).

3.2 LexGalaxy

LexGalaxy6 is another tool which enables to browse and search the legislation. It in-
volves a selection of 100,000 documents from the constitutional order of the Czech
Republic from 1918. The system includes also a selected information on law of the Eu-
ropean Union and the European Court of Human Rights. The search in the legislation
can be done in three ways – using full-text search, document identifications, or indexes.
Full-text search enables to specify the searched area (e.g. paragraph, title, appendix,
etc.) and supports various grammatical forms of the searched words. The indexes in-
volve types of documents (e.g. acts, Constitutional Court decisions, etc.), date of issue,
validity, issuing institution, etc. The search conditions can be combined using logical
and proximity operators.

3.3 Public Administration Portal Portal.Gov.cz

The Public Administration Portal Portal.Gov.cz7 involves various information for citi-
zens, entrepreneurs and businessmen, foreigners living in the Czech Republic, and pub-
lic authorities. The functionalities involve also a module for simple full-text search in
legislation. It enables to search in texts of acts, their titles or according to their number.

4 Current Research Projects and Foreign Solutions

The first research solutions in the considered area are the techniques for automated
categorization of documents or their parts based on machine learning [17]. They are
able to assign each document or its part (e.g. a paragraph) a category from a given set.
The methods achieve good results in case of categorization of collections of documents
from a narrowly focused domain of interest.

The next step in this field is the usage of an ontology instead of a set of categories.
An ontology formally describes the semantics of the domain of interest; however, in
addition to the categories of objects they also describe possible relationships between
objects. The aim is to interpret individual parts of the document just against the ontology
which is actually an extension to the methods described in [17]. The current literature is
currently focussed in extending these applications in the biomedical field [4]. In the area
of legislative data; however, their application has not yet been sufficiently explored.

6 http://www.legsys.cz/ [in Czech]
7 http://portal.gov.cz/app/zakony/?path=/portal/obcan/ [in Czech]

18 Irena Holubová et al.

The interpreted objects and relationships between them can be further effectively
represented in the RDF data model. At present there are many methods for database
processing of RDF data, although yet especially at the level of basic research [10].

4.1 The JURIX Conference

The Foundation for Legal Knowledge Based Systems (JURIX)8 is a forum for researchers
in the field of Law and Computer Science in the Netherlands and Flanders. From the
point of view of INTLIB we can find several interesting papers which deal with enhanc-
ing the way legislation is searched using semantics of the data.

Paper [14] distinguishes the relevant approaches into knowledge-engineering, in-
volving artificial intelligence or case-base reasoning, and natural language process-
ing. The authors claim that the former class suffers from several problems, such as
domain specificity or high financial cost, and they argue that natural language process-
ing is promising. Paper [12], similarly, analyzes whether machine learning techniques
or knowledge-engineering approaches are better for classification of sentences in laws.
The conclusion is that both the approaches reach similar results; however, the machine
learning techniques are naturally sensitive to the training set and its correspondence to
the analyzed data. In paper [13] the authors apply a thesaurus-based statistical indexing
technique to retrieve relevant case law from 68,000 court verdicts. It is based on classi-
cal vector space model extended with thesaurus so that only terms from a particular do-
main are considered. Finally, paper [8] describes the results of a study consisting of two
tasks: (i) how the “obligation” Fundamental Legal Concept is differently represented
in the FrameNet9 resource, in terms of Semantic Frames, and (ii) how the concept of
“public function” stemmed from the “obligation” Fundamental Legal Concept can be
ontologically characterized. The FrameNet project is building a lexical database of En-
glish that is both human- and machine-readable, based on annotating examples of how
words are used in texts.

In general, the papers prove that our aim is right and that it is crucial to create a
general system that enables to work with the legislation data in a more sophisticated way
provided by extending them with semantics. The experiments show that the strategy is
promising; however, such a system is still missing.

4.2 Plans of the European Union

Another important related work can be found in strategies and plans of the European
Union. The final report of Working group “Indexing and Search” [7] identifies and
recommends best practices and technologies which highly correlate with our aim and
which thus confirms that the strategy is promising a should be further extended.

5 INTLIB Architecture

As we have mentioned in the Introduction, there are two key parts of the INTLIB project
– extraction and presentation, i.e. creating the knowledge base and its user-friendly

8 http://www.jurix.nl/
9 https://framenet.icsi.berkeley.edu/fndrupal/

INTLIB – an INTelligent LIBrary 19

Fig. 2. Architecture of system INTLIB

browsing. Since our aim is a general framework utilizable and extensible for particular
problem domains with plug-ins, the architecture is more complex. It is based on the
idea of pipelines which specify the selected steps of the process.

5.1 System Architecture

The architecture of the system is depicted in Figure 2. On the input we can assume
various types of data, i.e. not only documents with a natural text in, e.g., PDF [3] format
(i.e. in our case acts and court decisions), but also HTML [16] or XML [11] documents,
data stored in a relational database, RDF [9] triples etc.

The data are first provided to the knowledge acquisition pipelines which extract the
knowledge base, i.e. the objects described in the data, their relations and properties.
The pipelines need to be first configured, i.e. particular modules need to be selected.
The configured pipeline also needs to be debugged and evaluated. The pipelines consist
of knowledge extractors and knowledge cleaners and linkers. The cleaners ensure, that
the data extracted from different data sources of various quality are cleaned, e.g., the
duplicities and false candidates are removed. The linkers map the newly extracted data
to the current data in the knowledge base.

Apart from automatic knowledge base extraction, cleaning and linking, the system
also involves a user interface that enables browsing the knowledge base and its manual
enrichment (i.e adding new components), as well as cleaning and linking. The aim of
this part is:

1. to provide a preliminary interface which enables to create at least a basic knowledge
base for testing related modules,

20 Irena Holubová et al.

2. to enable to add data that cannot be added manually (due to various reasons, such
as, e.g., confidentiality of data sources or limitations of the automatic knowledge
base extraction part), and

3. to enable to confirm or refute candidates for linking, discarding, unifying etc.

An emphasis is put on the GUI, because in this case we assume a user which is an expert
in the particular domain (i.e. a lawyer), but not in the RDF representation and related
technologies such as SPARQL. In preliminary stages of the implementation the module
provides all possible candidates to be confirmed/refuted. Later we will add also filtering
and cleaning modules that show only possible candidates for correction of discarding.

The last but not least part of the system involves the module which enables to visu-
alize the knowledge base and in particular analyze its content in a user friendly manner.
The analytical part involves an advanced query interface including smart hints, learning
from previous user queries and results, etc. For the purpose of visualization of the data
we will utilize the SW project Payola [5] which enables to visualize graph data in a user
friendly manner.

5.2 System Pipelines

Systems pipelines can in general form an acyclic graph whose nodes represent particular
modules which process the data and edges represent inputs and outputs of the modules.
In general, the exchanged data can be of any format that is understood by the respective
output/input module; however, for our case and for the sake of simplicity and clarity we
assume RDF data in all the cases (if not stated otherwise).

The idea of pipelines results from a SW project ODCleanStore [6] which supports
textual configuration of pipelines and respective modules. In case of INTLIB the user
interface is more friendly, providing a graph visualization of the pipeline and a set of
forms that enable to fill in the respective parameters of the particular modules (based
on the idea of XForms [2] and VAADIN [1]).

Examples of two use cases represented by pipelines are depicted in Figure 3. In the
former case we can see a set of pipelines for extraction of references among acts, in
the latter case a set of pipelines which recognizes structure and terms used in particular
acts. In both the cases first the annotation pipeline annotates “interesting” parts of the
input data, i.e. substrings of acts that represent references, terms, parts etc. Next, the
extraction pipeline processes the annotated text and select parts which truly represent
particular items. The transformation pipeline deals with cleaning of the extracted data,
whereas it can be even empty when we know that the previous steps cannot produce
duplicities. Finally, the loader ensures loading of the extracted and cleaned data into
the knowledge base, including the linking phase.

The system involves also a scheduler which enables to run the pipelines periodically
(e.g. in case a pipeline crawles data refreshed or extended gradually), after another
pipeline finishes, etc. Similarly, for the purpose of debugging the system involves also a
debugger. It enables, e.g., to log intermediate results of particular modules of pipelines,
run the modules in a debugging mode with extended reports on status, or running only
a part do the pipeline (e.g. a selected path or subgraph).

INTLIB – an INTelligent LIBrary 21

Fig. 3. Sample pipelines of the system

5.3 LEX Ontology

The goal of the LEX ontology is to enable to represent the legislation (sources of law) in
a machine-readable form conforming to Linked Data principles. Data from other data
sources can be linked to legislation represented according to the LEX ontology and,
therefore, enriched with the legislative information for further processing by machines.
Legislation can also be linked to other data sources.

As we have already indicated, there are different kinds of sources of law:

– act is a source of law enacted by a national or regional parliament,
– decree is a source of law issued by a national or regional government, ministry, or

another public authority
– regulation is a source of law issued by a national or regional government, ministry,

or another public authority which complements and/or specifies an act,
– court decision is a source of law issued by a court as an official decision in a par-

ticular legal case,

A source of law can also change another source of law. In that case, we call the
source of law amendment. An amendment of a given kind can change a source of law
which is of the same kind. For example, an act may change another act.

The LEX ontology introduces the following classes for the kinds of sources of law
mentioned above: lex:SourceOfLaw for sources of law of all kinds (superclass of
all other classes), lex:Act for acts, lex:Decree for decrees, lex:Regulation
for regulations, and lex:Decision for court decisions. (We omit the respective UML
diagram for simplicity and space limitations.)

Sources of law of most kinds (except of court decisions) exist in different versions.
Some versions are outdated, at most one version is currently valid, and some versions
are enacted but have not come to force yet. From this viewpoint, it is reasonable to repre-
sent a source of law as an abstract notion of intellectual creation which is independent of

22 Irena Holubová et al.

Fig. 4. Legislation Ontology LEX

particular versions of the source. Moreover, each version of the source as well as its each
physical embodiment should have representation on its own. This logic is built into the
LEX ontology. However, we do not introduce own ontological constructs but reuse the
Functional Requirements for Bibliographic Records (FRBR)10 ontology (as depicted
in Figure 4). We reuse the following three FRBR classes: frbr:Work for abstract
notions of an intellectual creation which are sources of law, frbr:Expression for
particular versions of sources of law, and frbr:Manifestation for particular doc-
uments which are physical embodiments of particular versions of sources of law. The
usage of FRBR allows us to distinguish a source of law itself, its particular versions and
their physical embodiments. From the linked data point of view, it is therefore possible
to link and query the source of law as an abstract entity which is independent of partic-
ular versions of the source. It is also possible to link and query its particular versions
and also their amendments.

We also reuse two FRBR properties: frbr:realizationOf to link a version
(member of frbr:Expression) to its source of law (member of frbr:Work) and
frbr:embodimentOf to link a document (member of frbr:Manifestation)
to a version of a source of law it is embodiment of (member of frbr:Expression).
Because each source of law (member of lex:SourceOfLaw) is also a member of
frbr:Work we set lex:SourceOfLaw as a subclass of frbr:Work.

For a given source of law we need to know its currently valid version, original ver-
sion (i.e. the first version), and the last enacted version (which have not necessarily

10 http://www.loc.gov/cds/downloads/FRBR.PDF

INTLIB – an INTelligent LIBrary 23

needed to come to force yet). For this, we introduce three new properties in the LEX
ontology: lex:originalExpression to link the original (first) version to the re-
spective source of law, lex:actualExpression to link the currently valid version
to the respective source of law, and lex:lastExpression to link the last enacted
version to the respective source of law.

Last but not least, we also model changes in legislation with lex:Change class.
We distinguish three subclasses for three specific kinds of changes: lex:Creation
to model that something new has been created, lex:Cancellation to model that
something existing has been removed and lex:Update to express that something
existing has been updated. More information on the LEX ontology can be found in
[15].

6 Conclusion

The aim of this paper was to describe the first phase of project INTLIB – an INTelligent
LIBrary, i.e. analysis of the problem domain, architecture of the project and related
ontology for legislation documents. The target of the project is to provide a general
framework for extraction of knowledge from input data (of any kind) so that more
advanced querying than usual full-text is possible. Using plug-ins it can be utilized for
a particular kind of data – in the first phase the legislation documents.

In the following phases of the project we will naturally focus on implementation of
all parts of the system described in Section 5. The key emphasis will be first put on the
user interface, configuration and evaluation parts and interfaces between the modules,
so that in the next phase we can focus on implementation of all the related plug-ins for
legislation processing. As a future work we plan to use the system in other applications,
such as environmental reports, policies of companies, etc.

References

1. VAADIN. W3C Recommendation, 20 October 2009. https://vaadin.com/.
2. XForms 1.1. W3C Recommendation, 20 October 2009. http://www.w3.org/TR/

xforms/.
3. ISO 32000-1:2008: Document Management – Portable Document Format. Adobe, 2008.
4. Current Issues in Biomedical Text Mining and Natural Language Processing. Journal of

Biomedical Informatics, 42(5):757 – 759, 2009.
5. Payola. Student SW Project, Charles University in Prague, Czech Republic, 2012. https:

//github.com/payola/.
6. ODCleanStore. Student SW Project, Charles University in Prague, Czech Republic, 2013.

http://sourceforge.net/p/odcleanstore/home/Home/.
7. A. Gola et al. Working Group Indexing and Search – Final Report. European Forum of

Official Gazettes, Riga, Latvia, 2011.
8. T. Agnoloni, M. Fernandez, M. Sagri, D. Tiscorni, and G. Venturi. When a FrameNet-

Style Knowledge Description Meets an Ontological Characterization of Fundamental Legal
Concepts. In AI Approaches to the Complexity of Legal Systems, volume 6237 of LNCS,
pages 93–112. Springer Berlin Heidelberg, 2010.

24 Irena Holubová et al.

9. D. Beckett. RDF/XML Syntax Specification (Revised). W3C, February 2004. http://
www.w3.org/TR/rdf-syntax-grammar/.

10. C. Bizer, T. Heath, and T. Berners-Lee. Linked Data – The Story So Far. International
Journal on Semantic Web and Information Systems, 5(3):1–22, 2009.

11. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible Markup
Language (XML) 1.0 (Fifth Edition). W3C, 2008. http://www.w3.org/TR/xml/.

12. E. de Maat, K. Krabben, and R. Winkels. Machine Learning versus Knowledge Based Clas-
sification of Legal Texts. In JURIX 2010, pages 87–96, Amsterdam, The Netherlands, 2010.
IOS Press.

13. M. Klein, W. van Steenbergen, E.Uijttenbroek, Arno Lodder, and F. van Harmelen.
Thesaurus-based Retrieval of Case Law. In JURIX 2006. IOS Press.

14. K. T. Maxwell and B. Schafer. Concept and Context in Legal Information Retrieval. In
JURIX 2008, pages 63–72, Amsterdam, The Netherlands, 2008. IOS Press.

15. M. Necasky, T. Knap, J. Klimek, I. Holubova, and Barbora Vidova-Hladka. Linked Open
Data for Legislative Domain – Ontology and Experimental Data. In LIT 2013, Poznan,
Poland, pages 172 – 183, Poznan, Poland, 2013. Springer-Verlag.

16. D. Raggett, A. Le Hors, and I. Jacobs. HTML 4.01 Specification. W3C, December 1999.
http://www.w3.org/TR/html401/.

17. F. Sebastiani. Machine Learning in Automated Text Categorization. ACM Comput. Surv.,
34(1):1–47, March 2002.

Spatial Clustering of Disease Events Using
Bayesian Methods

Lukáš Marek, Vı́t Pászto, Pavel Tuček, and Jǐŕı Dvorský

Department of Geoinformatics, Faculty of Science, Palacky University in Olomouc
17. listopadu 50, Olomouc, 771 46, Czech Republic

{lukas.marek, pavel.tucek}@upol.cz, vit.paszto@gmail.com,

jiri.dvorsky@vsb.cz

http://www.geoinformatics.upol.cz/

Spatial Clustering of Disease Events Using Bayesian

Methods

Lukáš Marek1, Vít Pászto
1
, Pavel Tuček

1
, Jiří Dvorský1

1 Department of Geoinformatics, Faculty of Science, Palacky University in Olomouc,

17. listopadu 50, Olomouc, 771 46, Czech Republic
{lukas.marek, pavel.tucek}@upol.cz, vit.paszto@gmail.com,

jiri.dvorsky@vsb.cz

http://www.geoinformatics.upol.cz/

Abstract. One of main aims of the spatial analysis of health and medical da-

tasets is to provide additional information to the specialized medical research.

These analyses can be used for disease mapping; searching for places with a

higher intensity and probability of the disease event; or the influence assess-

ment of selected natural or artificial phenomena. Suitably selected methods al-

low a proper analysis of these data and identification of irregularities and devia-

tions of the phenomena in the area of interest. The structure of medical data

usually needs to be standardized (over age structure of the population) before

the comparison of different regions. Bayesian statistics derives the posterior

probability as a consequence of a prior probability and a probability model for

the data observed. Geosciences and geomedicine usually use the Bayesian theo-

ry for smoothing of data - to help depict the real spatial pattern and its changea-

bility. The Bayesian principles, together with the spatial neighbourhood and

statistical models, are successfully used also for the identification of spatial and

space-time clusters with significantly higher/lower risk of incidence of the dis-

ease. These procedures are denoted as methods of spatial clustering and can be

used with or without utilization of properties of certain phenomena. Particular-

ly, occurrence data of campylobacteriosis infection in four Moravian regions in

period 2008 – 2012, which were provided by The National Institute of Public

Health, were used for the case study.

1 Introduction

The disease mapping, visualization of disease rates and the clustering of disease data

are still one of the most interesting topics in geosciences. It is because of the nature of

the data which are often pure spatial with rich descriptive part and it is easy to com-

bine them with other data (demographic, economic, etc.) [14]. This contribution aims

to present the usage of empirical Bayesian methods in the disease mapping and subse-

quent creating of disease maps. Bayesian methods incorporate the prior knowledge

about the phenomenon (or underlying processes) to provide more accurate and easily

understandable description of the situation. Empirical Bayesian procedures are used

for disease rates smoothing in the case of choropleth map. They also help to identify

local clusters of more/less affected areas. The main topic of the case study in this

paper is the analysis of the spatial distribution of disease called campylobacteriosis in

J. Pokorný, K. Richta, V. Snášel (Eds.): Dateso 2014, pp. 25–34, ISBN 978-80-01-05482-6.

26 Lukáš Marek, Vı́t Pászto, Pavel Tuček, Jǐŕı Dvorský

Moravian regions between years 2008 and 2012 with usage of Bayesian estimates

based on Poisson distribution.

2 Case study and Data

The case study, where further described methods are applied, is dealing with the spa-

tial distribution of the campylobacteriosis in four Moravian regions (Moraskoslezsky,

Zlinsky, Olomoucky and Jihomoravsky) between years 2008 and 2012. There were

almost 49 thousand of cases of the disease during that period, while only 34 thousand

were expected according to previous records. Using disease counts and disease rates

calculated for the municipalities in the area of interest, we tried to identify areas that

are possibly more vulnerable to the disease than their neighbourhood. The 5-year

observed number of cases, expected number of cases and relative risk (SIR) were used

as main disease characteristics for this study.

Campylobacteriosis is caused by bacteria called Campylobacter jejuni, which is

found worldwide in the intestinal tracts of animals. The bacteria are spiral shaped and

can cause disease in animals and humans. Most cases of campylobacteriosis are asso-

ciated with handling or eating raw or undercooked poultry meat or fresh milk. Cam-

pylobacteriosis causes gastrointestinal symptoms, such as diarrhoea, cramping, ab-

dominal pain, and fever in domestic animals and humans. Young animals and humans

are the most severely affected [23].

2.1 Data

The data set for this study was provided by The National Institute of Public Health of

the Czech Republic. The database contains almost 50 thousands records of the cam-

pylobacteriosis occurrence in the period 2008 – 2012. Names, surnames, identity

numbers and sometimes also the full addresses are not included because it is treated

with sensitive personal data. The data were firstly cleansed of inconsistencies and then

the geocoding process was run. Furthermore, the individual records were aggregated

to the municipalities - administrative units - due to the clarity of the visualization and

analyses [15]. The problem of the conversion of spatial phenomena between different

areal or administrative units is well known as MAUP – Modifiable Area Unit Problem

[18]. During the calculation of disease rates and expected number of cases, the popu-

lation data from the Population and Housing Census of the Czech Republic were used

as the main basis for the data standardization.

Figure 1 shows the probability density function of disease events counts, total pop-

ulation and standardized incidence ratio in Moravian municipalities visualized in the

logarithmic scale (upper graph) and in the logarithmic scale and centred (lower graph)

in order to simplify visual analysis. The probability function of population and diseas-

es events counts are fairly similar, which indicates the need for standardization and

also analysis that considers this close relation. Figure 2 then depicts the spatial distri-

bution of standardized incidence ratio (SIR). SIR is the ratio of the number of disease

cases observed in the study group or population to the number that would be expected

if the study population had the same specific rates as the standard population, multi-

plied by 100 and usually expressed as a percentage [10]. By this way, SIR expresses

Spatial Clustering of Disease Events Using Bayesian Methods 27

relative risk (or vulnerability) of the municipality to certain disease. Municipalities

traversing value of 1 are more vulnerable to disease, while municipalities with SIR

lower than 1 are healthier.

Fig. 1. The probability density function of disease events counts (red), total population (green)

and standardized incidence ratio (blue) in Moravian municipalities visualized in the logarithmic

scale (upper graph) and in the logarithmic scale and centred (lower graph) in order to simplify

visual analysis.

3 Methods

During the study of disease spatial distribution, mainly in the case of aggregated data,

it is often suitable to focus on the local variability of the disease occurrence or relative

risk rather than examine the study area as a whole. This procedure is usually denoted

the disease cluster detection. The general review of methodology as well as usage of

spatial clustering methods and its Bayesian enhancements in the literature, e.g [6, 11,

21] etc.

In geosciences the spatial clustering is often encapsulated as the analysis of the spa-

tial autocorrelation. The spatial autocorrelation is the correlation among values of a

single variable, which is strictly attributable to their relatively close locations on a

two-dimensional (2-D) surface, introducing a deviation from the independent observa-

tions assumption of classical statistics [7]. Positive spatial autocorrelation refers to the

patterns where nearby or neighbouring values are more alike; while negative spatial

28 Lukáš Marek, Vı́t Pászto, Pavel Tuček, Jǐŕı Dvorský

autocorrelation refers to the patterns where nearby or neighbouring values are dissimi-

lar. One can distinguish two main types of spatial autocorrelation, which are global

and local. The null hypothesis for global clustering is simply that no clustering exists

(i.e. random spatial dispersion ≈ CSR). Probably the most used method for both global

and local analyses of spatial autocorrelation is Moran’s I statistics (together with e.g.

Getis-Ord G and Geary’s C statistics). Moran’s I coefficient of autocorrelation is simi-

lar to Pearson’s correlation coefficient, and quantifies the similarity of an outcome

variable among areas that are defined as spatially related [16]. The problem with vari-

ance instability for rates or proportions, which served as the motivation for applying

smoothing techniques to maps may also affect the inference for Moran’s I test for

spatial autocorrelation [1]. The implementation of the adjustment procedure of

Assuncao and Reis (1999), which uses a variable transformation based on the Empiri-

cal Bayes principle may be one of solutions. This yields a new variable that has been

adjusted for the potentially biasing effects of variance instability due to differences in

the size of the underlying population at risk [1].

Fig. 2. Choropleth map of standardized incidence ratio, which is generally the ratio between

observed disease cases and its potential (expected) amount, which is based on the population

and its age structure in individual municipalities.

3.1 Spatial clustering of case events data

If a cluster is described as an uncommon collection of events, then it is needed to

detect these collections observed within the data set. Such methods define a set of

potential clusters, collections of events each of which we might define as a cluster if

the collection appears unusual enough (discrepant from the null model of interest),

then identifies the most unusual of these [21]. This general idea motivated the “geo-

Spatial Clustering of Disease Events Using Bayesian Methods 29

graphical analysis machine” (GAM) of Openshaw where potential clusters were de-

fined as collections of events falling within circular buffers of varying radii [17]. The

buffers were centred at each point in a fine grid covering the study area and the GAM

approach mapped any circle whose collection of events were detected as unusual, e.g.,

those circles where the number of events exceeded the 99.8th percentile of a Poisson

distribution with mean defined by the population size within the buffer multiplied by

the overall disease risk [21]. GAM is very useful for descriptive purposes, but should

not be used for hypothesis testing.
Scan statistics provide another approach that is similar to the local case/control ra-

tios. A scan statistic involves definition of a moving window and a statistical compari-

son of a measurement (e.g., a count or a rate) within the window to the same sort of

measurement outside the window. Kulldorff [8] defines a spatial scan statistic very

similar to the GAM and other methods, but with a slightly different inferential frame-

work. The primary goal of a scan statistic is to find the collection(s) of cases least

consistent with the null hypothesis, i.e. the most likely cluster(s) but Kulldorff goes a

bit further and seeks to provide a significance value representing the detected cluster’s

unusualness, with an adjustment for multiple testing [22]. Kulldorff [8] considers

circular windows with variable radii ranging from the smallest observed distance be-

tween a pair of cases to a user-defined upper bound. He builds an inferential structure

based on earlier works where authors note that variable-width one-dimensional scan

statistics represent collections of local likelihood ratio tests comparing a null hypothe-

sis of the constant risk hypothesis compared to alternatives where the disease rate

within the scanning window is greater than that outside the window. The maximum

observed likelihood ratio statistic provides a test of overall general clustering and an

indication of the most likely cluster(s), with significance determined by Monte Carlo

testing of the constant risk hypothesis [22].

The outstanding description of methods including their mathematical apparatus or

their possible implementations and applications provide mainly [8, 9, 17].

3.2 Bayesian mapping and spatial clustering of case events data

Presentation of disease rates in area units as choropleth maps can inadvertently pro-

vide misleading information. This fact is well known mainly in the case of small-area

studies that introduces an extra source of variability into the map because of random

variation. Typically, sparsely populated areas with few (or zero) cases can generate

extreme values of the SMR (and also prevalence), as the variance of the SMR is in-

versely related to expected number of cases and small populations have large variabil-

ity in the estimated rates [5] and that is why risk estimates and other rates are rather

unstable.

Bayesian methods provide a solution for this kind of bias. They use probability mod-

els to obtain smoothed estimates consisting of a compromise between the observed

rate for each region and an estimate from a larger collection of cases and persons at

risk (e.g., the rate observed over the entire study area or over a collection of neigh-

bouring regions) [22]. The basic principle of Bayesian methods is that uncertain data

can be strengthened by combining them with prior information [19]. In the case of

30 Lukáš Marek, Vı́t Pászto, Pavel Tuček, Jǐŕı Dvorský

empirical Bayes estimation of spatially-varying disease risk, posterior risk can be

estimated from a weighted combination of the local risk (also called the likelihood)

and the risk in surrounding areas, the latter representing the prior information [4].

The set of areal units on which data are recorded can form a regular lattice or differ

largely in both shape and size, so data typically exhibit spatial autocorrelation, with

observations from areal units close together tending to have similar values. A propor-

tion of this spatial autocorrelation may be modelled by including known covariate risk

factors in a regression model, the residual spatial autocorrelation can be induced by a

number of factors, and violates the assumption of independence that is common in

many regression models [12]. The most common remedy for this residual autocorrela-

tion is to augment the linear predictor with a set of spatially correlated random effects,

as part of a Bayesian hierarchical model. These random effects are typically repre-

sented with a conditional autoregressive (CAR) model, which induces spatial autocor-

relation through the adjacency structure of the areal units. However, the CAR priors

force the random effects to exhibit a single global level of spatial autocorrelation,

ranging from independence through to strong spatial smoothing. Such a uniform level

of spatial smoothness for the entire region is unrealistic for real data, which are in-

stead likely to exhibit sub-areas of spatial autocorrelation separated by discontinuities.

Such localized spatial smoothing may occur where rich and poor communities live

side-by-side, and in this context the response variable is likely to evolve smoothly

within each community with a sudden change in its value at the border where the two

communities meet [12].

To be more particular, the analysis provided in the case study is based on the func-

tion that fits a Poisson log-normal random effects models to spatial count data, where

the random effects are modelled by the localised conditional autoregressive (CAR)

model proposed by [13]. The random effects in neighbouring areas (e.g. those that

share a common border) are modelled as correlated or conditionally independent,

depending on whether the populations living in the two areas are similar (correlated

random effects) or very different (conditionally independent). The model represents

the natural log of the mean function for the set of Poisson responses by a combination

of covariates and a set of random effects. Inference is based on Markov Chain Monte

Carlo (MCMC) simulation, using a combination of Gibbs sampling and Metropolis

steps [12]. The outstanding overview of Bayesian techniques are provided in [11, 12]

and others.

4 Results

Firstly, the original data of disease events needed to be aggregated to the municipality

level, filtered to selected area of the Czech Republic. Subsequently, aggregated counts

that represented actually observed cases served as the bases for the calculation of

expected number of cases in the area that were found out using internally indirect

standardization. SIR, which is the ratio between observed and expected number of

cases and expresses the relative risk of the area can be seen in the Fig. 2.

Both values served as inputs for the Openshaw’s Geographical Analysis Machine

that allowed the identification of possible disease clusters in the area. Radius for the

analysis was chosen as 7 km, the alpha value for the cluster identification was 99.8

Spatial Clustering of Disease Events Using Bayesian Methods 31

quantile of the Poisson probability distribution. Several significant clusters can be

identified throughout the study area (Fig. 3), but 2 most visible can be seen – the first

is located in the southern part of the area near the Brno municipality, while the second

cluster is placed in densely populated surroundings of Ostrava (but surprisingly except

the city itself). As it was mentioned before, GAM is very useful for descriptive pur-

poses, but should not be used for hypothesis testing because of the overestimation of

clusters. That is why other methods - scan statistics and Bayesian identification of

inference in the area, were performed.

Fig. 3. Identification of spatial disease clusters of campylobacteriosis with the use of Open-

shaw’s Geographical Analysis Machine. Colours and legend depicts standardized incidence

ration, while red squares identify locations that are involved in probable disease spatial clus-

ters.

Results of scan statistics used for the identification of spatial disease clusters of

campylobacteriosis with the use of the clustering function for Kulldorff and Nagarwal-

la's statistic are shown on the Fig. 4. The scan statistics is based on the Poisson distri-

bution of disease events, 15 % significance and 5 % fraction of total population. Un-

like GAM results, only one significant cluster was identified in the northern part of the

study area and it is located in the surrounding of the Ostrava with the core in the vil-

lage Kateřinice (dark grey area on the Fig. 4).

The last analysis is based on the function that fits a Poisson log-normal random ef-

fects models to spatial count data, where the random effects are modelled by the local-

ised conditional autoregressive (CAR) model. The model is based on the list of binary

neighbourhood with the queen contiguity conceptualization of space. The observed

amount of cases is modelled as the of logarithmical scale of amount of expected

number of disease events (intercept) and the ratio between young people (under 15)

and elderly people (64+), which is also the basis of the dissimilarity matrix. The anal-

ysis detected only two areas (Fig. 5 - left part) that might be the cores of possible

32 Lukáš Marek, Vı́t Pászto, Pavel Tuček, Jǐŕı Dvorský

clusters. The first municipality is located in the south-western part of the study area

(village Podhradí nad Dyjí). The second theoretical core area is placed in the village

Nelepeč-Žernůvka in the west of the study area. That might indicate other necessary

customization of the model with the use of other characteristics of the area. Similar

analysis based on the distribution of the population was performed due to the compar-

ison. It is depicted in the right part of Fig. 5. Unlike the previous analysis, the result

showed significantly more borders between clustering areas and their neighbourhood.

On the other hand most of them are densely populated, so the analyst should consider

their importance carefully and focus on several individual locations.

Fig. 4. Identification of spatial disease clusters of campylobacteriosis with the use of the clus-

tering function for Kulldorff and Nagarwalla's statistic. Dark grey areas stand for central (core)

area, light grey colour stand for other municipalities in the spatial cluster.

5 Discussion and Conclusion

The contribution aimed to introduce methods of spatial clustering and Bayesian spatial

clustering that were based either on the location of disease events in the study area of

four Moravian regions or their locations and demographical characteristics of munici-

palities. One has to realize that all presented methods are dependent on the scale and

also on the prior information, which is entering the models mostly in the form of the

probability distribution. Therefore, results and their evaluation have to be performed

carefully in order to avoid misinterpretation. The aim of the contribution is therefore

not only to use methods in real case study but also to show several different results

that originally come from the same data.

Firstly Openshaw’s GAM detected high number of possible diseases clusters, but

due to its disadvantages, results were taken just as informative and an initial step for

further analysis. Then, scan statistics based on Kulldorff and Nagarwalla's statistic was

used for the identification of spatial disease clusters of campylobacteriosis. The scan

statistics discovered one statistically significant cluster on the north of the study area.

Lastly, the Poisson log-normal random effects models to spatial count data, where the

Spatial Clustering of Disease Events Using Bayesian Methods 33

random effects are modelled by the localised conditional autoregressive (CAR) model,

was used to proceed more detailed and complex analysis. This model incorporated the

information about neighbourhood of individual municipalities and also the dissimilari-

ty matrix based on the age structure of the population in the neighbouring villages or

cities. The model was able to identify two core areas of possible clusters.

One has to realize that Bayesian techniques usually tend to shift values to the mean

risk – global or local by incorporating information between areas. The risks in areas

with more information (e.g., urban areas) are usually less smoothed than in areas that

exhibit higher sampling variation (typically those with low number of cases), and thus

produce more stable estimates of the pattern of underlying disease risk [20]. However,

although raw risks can produce “noisy” maps that are difficult to interpret, over-

smoothed maps may produce a homogeneous risk surface, masking the true risk distri-

bution [3]. It is important to mention that all analyses presented in this paper are heav-

ily dependent on the scale. We chose the scale of municipal districts but results on

other scales could show differences. When someone chooses to broad scale for the

analysis, results will probably reveal one (or several) large cluster so the local vari-

ance disappears. On the other hand, to local scale may not lead to identification of

any clusters. The extension of Bayesian model using other characteristic of the popu-

lation, spatial unit or disease is possible; however their dynamic properties are mainly

shrunk to the sequential procession of time series or time slices.

Fig. 5. Identification of spatial disease clusters of campylobacteriosis with the use of localised

conditional autoregressive (CAR) model based on dissimilarity metrics with binary neighbour-

hood relations to spatial Poisson data. Colours and legend depicts standardized incidence ra-

tion, while red areas identify locations that are centres of probable disease spatial clusters. The

left part describes the relation of likely clusters to the ratio of old people to children, while the

right part is based on the population.

Acknowledgement

The authors gratefully acknowledge the support by the Operational Program Educa-

tion for Competitiveness - European Social Fund (project CZ.1.07/2.3.00/20.0170 of

the Ministry of Education, Youth and Sports of the Czech Republic).

34 Lukáš Marek, Vı́t Pászto, Pavel Tuček, Jǐŕı Dvorský

References

1. Anselin, L.: GeoDaTM 0.9 User’s Guide. (2003).

2. Assuncao, R., Reis, E.: A new proposal to adjust Moran’s I for population density. Stat.

Med. 2162, November 1998, 2147–2162 (1999).

3. Beale, L. et al.: Methodologic issues and approaches to spatial epidemiology. Environ.

Health Perspect. 116, 8, 1105–10 (2008).

4. Clayton, D., Bernardinelli, L.: Bayesian methods for mapping disease risk. In: Elliott, P. et

al. (eds.) Geographical and Environmental Epidemiology: Methods for Small Area Studies.

Oxford University Press, Oxford (1996).

5. Elliott, P., Wartenberg, D.: Spatial Epidemiology: Current Approaches and Future

Challenges. Environ. Health Perspect. 112, 9, 998–1006 (2004).

6. Goodchild, M., Haining, R.: GIS and spatial data analysis: Converging perspectives. Pap.

Reg. Sci. 44, 0, 1–26 (2004).

7. Griffith, D., Arbia, G.: Detecting negative spatial autocorrelation in georeferenced random

variables. Int. J. Geogr. Inf. Sci. 24, 3, 417–437 (2010).

8. Kulldorff, M.: A spatial scan statistic. Commun. Stat. - Theory Methods. 26, 6, 1481–1496

(1997).

9. Kulldorff, M., Nagarwalla, N.: Spatial disease clusters: Detection and inference. Stat. Med.

14, 8, 799–810 (1995).

10. Last, J., Abramson, J.: A Dictionary of Epidemiology. Oxford University Press, USA

(2001).

11. Lawson, A.B.: Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology.

CRC Press (2009).

12. Lee, D.: CARBayes: An R Package for Bayesian Spatial. J. Stat. Softw. 55, 13, 24 (2013).

13. Lee, D., Mitchell, R.: Boundary detection in disease mapping studies. Biostatistics. 13, 3,

415–26 (2012).

14. Marek, L. et al.: Bayesian mapping of medical data. (2014).

15. Marek, L. et al.: On Estimation of the Spatial Clustering: Case Study of Epidemiological

Data In Olomouc Region, Czech Republic. VŠB – Technická univerzita Ostrava, Ostrava

(2013).

16. Moran, P.: Notes on continuous stochastic phenomena. Biometrika. 37, 1, 17–23 (1950).

17. Openshaw, S. et al.: A Mark 1 Geographical Analysis Machine for the automated analysis

of point data sets. Int. J. Geogr. Inf. Syst. 1, 4, 335–358 (1987).

18. Openshaw, S.: The Modifiable Areal Unit Problem. , Norwhich (1984).

19. Pfeiffer, D. et al.: Spatial analysis in epidemiology. Oxford University Press (2008).

20. Richardson, S. et al.: Interpreting Posterior Relative Risk Estimates in Disease-Mapping

Studies. Environ. Health Perspect. 112, 9, 1016–1025 (2004).

21. Waller, L.: Detection of clustering in spatial data. SAGE Handb. Spat. Anal. 34 (2009).

22. Waller, L.A., Gotway, C.A.: Applied Spatial Statistics for Public Health Data. John Wiley

& Sons (2004).

23. The Center for food security & public health: Campylobacteriosis, available at:

http://www.cfsph.iastate.edu/FastFacts/pdfs/campylobacterosis_F.pdf, (2013).

Performance Analysis of the Activation Neuron
Function in the Flexible Neural Tree Model

Tomáš Buriánek and Sebastián Basterrech

IT4Innovation
VŠB–Technical University of Ostrava,

Czech Republic
{Tomas.Burianek.St1,Sebastian.Basterrech.Tiscordio}@vsb.cz

Performance Analysis of the Activation Neuron

Function in the Flexible Neural Tree Model

Tomáš Buriánek and Sebastián Basterrech

IT4Innovation
VŠB–Technical University of Ostrava,

Czech Republic
{Tomas.Burianek.St1,Sebastian.Basterrech.Tiscordio}@vsb.cz

Abstract. The time series prediction and forecasting is an important
area in the field of Machine Learning. Around ten years ago, a kind of
Multilayer Neural Network was introduced under the name of Flexible
Neural Tree (FNT). This model uses meta-heuristic techniques to deter-
minate its topology and its embedded parameters. The FNT model has
been successfully employed on time-series modeling and temporal learn-
ing tasks. The activation function used in the FNT belongs to the family
of radial basis functions. It is a parametric function and the parameters
are set employing an heuristic procedure. In this article, we analyze the
impact on the performance of the FNT model when it used other fam-
ily of neuron activation functions. For that, we use the hyperbolic tan-
gent and Fermi activation functions on the tree nodes. Both functions
have been extensively used in the field of Neural Networks. Moreover,
we study the FNT technique with a linear variant of the Fermi function.
We present an experimental comparison of our approaches on two widely
used time-series benchmarks.

Keywords: Neural Network, Flexible Neural Tree, Neuron Activation
Function, Time-series modeling, Forecasting

1 Introduction

The Flexible Neural Tree (FNT) have been used for several time-series problems
as learning predictor. The model consists of an interconnected nodes forming a
tree architecture [9, 10]. There are two kind of nodes, functional and terminal
nodes. The terminal nodes contains the information of the input patterns. The
functional nodes process the information using a specific activation function.
The parameters of the model are: the weight connections among the nodes, the
parameters in the activation function and the pattern of connectivity on the
tree. The method combines two heuristic algorithms in order to find theses pa-
rameters. Several bio-inspired methods can be used as meta-heuristic technique
to find the topology of the tree such as: Probabilistic Incremental Program Evo-
lution (PIPE), Genetic Programing (GP), Ant Programming (AP). In order to
find the embedded parameters, it can be used: Genetic Algorithms (GA), Par-
ticle Swarm Optimization (PSO) and Differential Evolution (DE), and so on.

J. Pokorný, K. Richta, V. Snášel (Eds.): Dateso 2014, pp. 35–46, ISBN 978-80-01-05482-6.

36 Tomáš Buriánek, Sebastián Basterrech

The first FNT model was developed with a Gaussian activation function in the
functional nodes.

In this paper we analyze the FNT performance when another kind of activa-
tion functions is used in the nodes. We study the nodes with hyperbolic tangent
and Fermi activation function, both family of functions were extensively studied
in the field of Neural Networks. Additionally, we test the model with a linear
variant of the Fermi activation neurons. We present an experimental comparison
of the different activation functions on two widely used time-series benchmarks.
The first one is a simulated benchmark commonly used in the forecasting liter-
ature called 20-order fixed NARMA data set. The another one is a real data set
about the Internet traffic from an European Internet service provider.

The paper is organized as follows. In Section 2, we present a description
of the Flexible Neural Tree model. Section 3 contains the description of other
activation functions. Next, we present our experimental results. Finally, the last
part presents the article conclusion.

2 The Flexible Neural Tree model description

About ten years ago a new kind of Neural Network (NN) was introduced under
the name of Flexible Neural Tree (FNT) [9, 10]. A FNT is a multilayer feed-
forward NN with an irregular topology. In the original FNT model each neuron
has a parametric activation function. The network architecture is designed in an
automatic way considering a pre-defined set of instructions and functional oper-
ators. The automatic process involves the parameters of the activation function,
defines the pattern of connectivity among the units and selects the input vari-
ables. An evolutionary procedure is used to evaluate the performance of the
tree topology. In temporal learning tasks is hard to select the proper input vari-
ables, the FNT technique uses an automatic procedure for this selection. Another
meta-heuristic algorithm is employed to find the neural tree parameters. The
FNT model proposes to use a simple random search method for setting the tree
parameters. For this task can be use some of the following techniques:Particle
Swarm Optimization (PSO) [13, 19] and Differential Evolution (DE) [16, 20]. In
the pioneering FNT approach was used the Probabilistic Incremental Program
Evolution (PIPE) [17] for encoding the NN in a tree [9]. In the literature other
techniques were studied to find the topology and tree parameters, such that the
Genetic Programing (GP) [4–6,8] and Ant Programming (AP) [?].

2.1 The tree construction

The topology of the tree is generated using a pre-defined instruction set. We
consider the following function set F = {+2,+3, . . . ,+Nf

}. A node operator +i

is an internal vertex instruction with i inputs. In the original FNT, the activation
neuron function of any unit i is the following parametric function:

f(ai, bi, x) = e
−(

x−ai
bi

)2
, (1)

Performance Analysis of the Activation Neuron Function . . . 37

where the parameters ai and bi are adjustable parameters. The terminal set of
the tree consists of T = {x1, x2, . . . , xNt

}. The instruction set S is defined as
follows:

S = F ∪ T = {+2,+3, . . . ,+Nf
} ∪ {x1, x2, . . . , xNt

}. (2)

Each functional node +i has i random nodes as its inputs, which can be inter-
nal and terminal nodes. The model outputs can be computed using a depth-
first strategy for traversing the tree. Given a functional node +i with inputs
{x1, . . . , xi}, the total input charge of +i is defined as:

neti =

i∑

j=1

wjxj , (3)

where wj is the weight connection between xj and +i. The output of the node
+i is obtained using the expression (1)

outi = e
−(

neti−ai

bi
)2
. (4)

Let i be a functional node if some of its inputs are other functional nodes, then
the output of i is computed in a recursive way following the expressions (3)
and (4). The algorithm complexity for traversing the tree is O(N) algorithmic
time where N is the number of unit in the tree. Figure 1 illustrates an example
of an FNT.

2.2 The fitness function

In order to evaluate the accuracy of the FNT model in learning tasks an error
distance is considered. In this context, this performance measure is called fitness
function. In a supervised learning problem given a training set {(x(t),ytarget(t)), t =
1, . . . , T}, the goal is to infer a mapping ϕ(·) in order to predict ytarget, such
that the fitness function is minimized. Most often is used the Mean Square Error
(MSE) or Root Mean Square Error (RMSE) [10], given by the expression:

MSE =
1

T

T∑

t=1

(y(t)− ytarget(t))
2. (5)

Another important parameter of the model performance is the number of nodes
in the tree. Obviously, between two trees with equal accuracy the smaller one is
preferred.

2.3 The parameter optimization using meta-heuristic techniques

Several strategies have been used to find “good” parameters and topology [4,
7–10]. The model parameters embedded in the tree are the activation function
parameters (ai and bi, for all +i) and the weight connections. In this paper,
we use Genetic Programming (GP) for finding a “good” connectivity among the

38 Tomáš Buriánek, Sebastián Basterrech

+7

x3 x4 x1 x5 x7+3 +5

+3 +4 +2x3 x2 x1 x6 x3

x5 x6 x2 x1 x2 x4 x6 x3 x4

Fig. 1: Example of a Flexible Neural Tree with the function instruction
set F = {+2,+3,+4,+5,+6,+7} and the terminal instruction set T =
{x1, x2, x3, x4, x5, x6, x7}. The root in the tree (+7) is the output layer and the
input layer is composed by the leaves in the bottom level of the tree.

neurons in the tree and we use the PSO method to find the embedded tree
parameters.

The GP theory was intensely developed in the 90s [15]. A GP algorithm
starts defining an initial population of same specific devices. The procedure is
iterative, at each epoch it transforms a selected group of individuals producing a
new generation. This transformation consists in applying some bio-inspired rules
to the individuals. In our problem the individuals are the flexible trees. A set
of individuals are probabilistically selected and a set of genetic rules is applied.
The operating rules arise from some biological genetic operations, which basi-
cally consist of: reproduction, crossover and mutation. The reproduction is the
identity operation, an individual i of a generation at time t is also presented at
the generation at time t+ 1. Given two sub-tree the crossover consists in inter-
changing their parents. The mutation consists in selecting a tree and realizing
one of the following operations: to change a leaf node to another leaf node, to
replace a leaf node for a sub-tree, and to replace a functional node by a leaf node.
The GP algorithms applied for our specific problem is described in Algorithm 1.

There are two kinds of adjustable parameters on the tree: the activation
function parameters ai and bi for each functional node i presented in the expres-
sion (1), another one refers to the weight connections between the nodes in the
tree. In this paper, we use Particle Swarm Optimization (PSO) [13] for finding
these parameters. The PSO algorithm is an evolutionary computation technique

Performance Analysis of the Activation Neuron Function . . . 39

Algorithm 1: Specification of the Genetic Programming algorithm used
for finding the optimal flexible tree topology.
Inputs : Nt,Nf , training data set, algorithm parameters
Outputs: Tree

1 Initialize the population of trees;
2 Compute the fitness function for all trees;
3 while (Termination criterion is not satisfied) do

// Creation of the new population

4 while (Size of population is not satisfied) do

5 Select genetic operation;
6 if (Selection is crossover) then

7 Select two trees from population using tournament selection;
8 Realize the crossover operation;
9 Insert the two new offspring into the new population;

10 if (Selection is mutation) then

11 Select one tree from population using tournament selection;
12 Realize the mutation operation;
13 Insert the new offspring into the new population;

14 if (Selection is reproduction) then

15 Select one tree from population;
16 Insert it to the new population;

17 Compute the fitness function of the new trees;

18 Replace old population by the new population;

19 Return the tree with best fitness function.

based on the social behaviors in a simplified social environment. A swarm is a
set of particles, which are characterized by their position and their velocity in
a multidimensional space. We denote the position of a particle i with the col-
umn Nx-vector x

(i) = (x
(i)
1 , . . . , x

(i)
Nx

). The velocity of i is defined by the column

Nx-vector ve
(i) = (v

(i)
1 , . . . , v

(i)
Nx

). Besides, we use auxiliary vectors p
∗ and p

(i),
∀i, each one has dimension Nx × 1. The vector p

(i) denotes the best position of
i presented until the current iteration. The best swarm position is represented
by the vector p

∗. Besides, we use two auxiliary random weights r
(i)
1 and r

(i)
2 of

dimensions Nx×1, which are randomly initialized in [0, 1] for each particle i. At
any iteration t, the simulation of the dynamics among the particles is given by
the following expressions [18]:

v
(i)
j (t+1) = c0v

(i)
j (t)+c1r1j (t)

(i)(p
(i)
j (t)−x

(i)
j (t))+c2r2j (t)

(i)(p∗j (t)−x
(i)
j (t)), j ∈ [1, Nx]

(6)
and

x
(i)
j (t+ 1) = x

(i)
j (t) + v

(i)
j (t+ 1), j ∈ [1, Nx], (7)

40 Tomáš Buriánek, Sebastián Basterrech

where the constant c0 is called the inertia weight the constants c1 and c2 regulate
local and global position of the swarm, respectively.

In order to use PSO for estimating the embedded tree parameters, the po-
sition p

(i) of the particle i is associated with the embedded parameters in one
flexible tree (the weights and aj , bj , ∀j ∈ F). The PSO algorithm return the
global optimal position according to the fitness function, presented in the expres-
sion (5). The relationship between the tree parameters and the particle position
is given by:

(p
(i)
1 , . . . , p

(i)
Nx

) = (a1, . . . , aNf
, b1, . . . , bNf

,w), (8)

where w is a vector with the tree weights.
We present in the Algorithm 2 the PSO method used as meta-heuristic tech-

nique for finding the tree parameters.

Algorithm 2: Specification of the Particle Swarm Optimization used for
finding the embedded tree parameters.
Inputs : Nx, number of particles, S, training data set, algorithmic

parameters
Outputs: Tree parameters

1 t = 0;
2 Random initialization of p(i)(t) and v

(i)(t) for all i;
3 Compute the fitness value associated with i using (8) and the fitness

function;
4 Set p

∗(t) and p
(i)(t) for all i;

5 while (Termination criterion is not satisfied) do

6 for (Each particle i) do

7 Compute v
(i)(t+ 1) using the expression (6);

8 Compute x
(i)(t+ 1) using the expression (7);

9 Compute the fitness value associated with i using (8) and the
fitness function;

10 Compute p
(i)(t+ 1);

11 Compute p
∗(t+ 1);

12 t=t+1;

13 Return the parameters using p
∗(t) and the expression (8);

3 Performance of other neuron activation functions in

the nodes of the tree

In this paper we analyze the impact of other neuron activation function in the
performance of the FNT model. The original model uses a Gaussian function

Performance Analysis of the Activation Neuron Function . . . 41

presented in the expression (4). This kind of function has been widely used in
Support Vector Machine (SVM) where the model uses the radial basis function
(RBF) kernel [11]. Additionally it has been used in Self-Organizing Maps (SOM)
as neighbourhood function among the neurons on the Kohonen networks [14]. In
the area of Neural Network two kind of activation function have been exten-
sively used: the tanh(·) function and the Fermi function. The sigmoid activation
function is

f(x) = tanh(x) =
ex − e−x

ex + e−x
. (9)

The Fermi activation function is

f(x) =
1

1 + e−x
. (10)

In this paper we test the FNT model using the tanh(·) and Fermi function.
Moreover, we analyze a parametric variation of these functions, given by:

g(x) = aif(x) + bi, (11)

where f(x) is the function of expression (9) and (10) and the parameters ai and
bi are specifics for each tree node i. We use PSO in order to find the parameters
ai and bi.

4 Empirical results

4.1 Description of the benchmarks

We use two benchmarks, a simulated data set which has been widely used in the
forecasting literature and a real data set about the Internet traffic data.

(1) Fixed kth order NARMA data set. This data set presents a high non-
linearity, for this reason has been extensively analyzed in the literature [1,3],

b(t+ 1) = 0.3b(t) + 0.05b(t)

k−1∑

i=0

b(t− i) + 1.5s(t− (k − 1))s(t) + 0.1,

where k = 20 and s(t) ∼ Unif [0, 0.5]. The task consists to predict the value
b(t + 1) based on the history of b(t) up to time t. The size of the training
data was 3980 and the test data numbered 780.

(2) The Internet traffic data from United Kingdom Education and Research Net-
working Association (UKERNA). The data was collected from 19 November
and 27 January, 2005. This data set was analyzed in [2, 12]. The problem
was studied collecting the data in five minute scale, The goal is to pre-
dict the traffic at time t using the information of the Traffic in the time
{t− 1, t− 2, t− 3, t− 4, t− 5, t− 6}. This sliding window was studied in [12].
The training data corresponds to the initial 66% of the data. The size of the
training set is the 13126 and the test set has 6762 patterns. We normalized
the data in [0, 1].

42 Tomáš Buriánek, Sebastián Basterrech

4.2 Results

We can see in the two graphics of Figure 2 the performance of the FNT prediction
for the NARMA test data set using Gaussian activation function and Fermi
activation function. Figure 3 shows the prediction of the model for the NARMA
data set using the Gaussian activation function. In this last case we present
the estimation on the last 200 samples. A example of estimation of the FNT
using Gaussian is showed in the left figure of 4. The right figure of 4 shows
the estimation of the model when the activation function is Fermi function. A
example of prediction of the FNT model using the Fermi activation function for
the Internet traffic data set is illustrated in Figure 5. We can see in Figure 4 the
FNT estimation with the Fermi activation and the Gaussian activation function
are very close. The Fermi function is not parametric, then the PSO algorithm
is used only to estimate the weights in the tree. As a consequence the FNT
model with Fermi function is faster in the training process than the FNT with
exponential parametric function. The accuracy for the Internet Traffic data using
the FNT technique and Fermi activation function was better than when we used
the Gaussian activation function. Table 1 shows a comparison of the accuracy
of the model using the different kinds of activation function in the nodes.

Function Narma Internet Traffic data
Gaussian 2.25646× 10−3 10.0642× 10−5

tanh(·) 3.47218× 10−3 10.2117× 10−5

Fermi function 2.37082× 10−3 8.67417× 10−5

Linear Fermi 3.23204× 10−3 9.95649× 10−5

Table 1: Accuracy of the FNT models for different kind of activation function
in the tree nodes. The first and second column show the MSE obtained by the
model, the error is presented using a scientific notation. First row refers the
function used in the original FNT. The last three rows refer to the functions 9,
10 and 11.

5 Conclusions and future work

Ten years ago, the Flexible Neural Tree (FNT), a specific type of Neural Network
was presented. The method has proved to be a very powerful tool for time series
processing and forecasting problems. The model uses meta-heuristic techniques
for defining the topology of the tree and for finding “good” parameters in learning
tasks. The FNT uses activation function with exponential form in the nodes.
In this paper we analyze the performance of the model with another family of
function in its nodes, we studied the hyperbolic tangent and the Fermi functions.
We tested the performance in two widely used benchmark data: a simulated and

Performance Analysis of the Activation Neuron Function . . . 43

a real data set. The results are promising, specifically for the FNT model that
uses Fermi function its the nodes. In future works, we will use statistical tests for
comparing the different approaches presented here, as well as we will compare
our results with other forecasting techniques.

0.1 0.2 0.3 0.4

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

FNT prediction with Gaussian function

target

pr
ed

ic
tio

n

0.1 0.2 0.3 0.4

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

FNT prediction with Fermi function

target

pr
ed

ic
tio

n

Fig. 2: Example of the FNT prediction for the NARMA data set. Both figures
show the estimation of the last 80 time units of the test data set. The left
figure shows the FNT prediction using the Gaussian activation function. The
right figure illustrates the estimation of the model using the Fermi activation
function. The red line corresponds the identity function.

Acknowledgments

This article has been elaborated in the framework of the project New creative
teams in priorities of scientific research, reg. no. CZ.1.07/2.3.00/30.0055, sup-
ported by Operational Program Education for Competitiveness and co-financed
by the European Social Fund and the state budget of the Czech Republic. Addi-
tionally, this work was partially supported by the Grant of SGS No. SP2014/110,
VŠB - Technical University of Ostrava, Czech Republic, and was supported by
the European Regional Development Fund in the IT4Innovations Centre of Ex-
cellence project (CZ.1.05/1.1.00/02.0070) and by the Bio-Inspired Methods: re-
search, development and knowledge transfer project, reg. no. CZ.1.07/2.3.00/20.0073
funded by Operational Programme Education for Competitiveness, co-financed
by ESF and state budget of the Czech Republic.

44 Tomáš Buriánek, Sebastián Basterrech

700 720 740 760 780

0.
1

0.
2

0.
3

0.
4

FNT prediction with Gaussian function

time

N
ar

m
a

da
ta

se
t

Fig. 3: FNT prediction using the Gaussian activation function on the NARMA
data set. The estimation was realized on the last 200 time units of the test data.
The red line is the prediction o the data and the black line is the target data.

6550 6600 6650 6700 6750

0.
2

0.
3

0.
4

0.
5

FNT prediction with Gaussian function

time

Tr
af

fic
 d

at
as

et

6550 6600 6650 6700 6750

0.
2

0.
3

0.
4

0.
5

FNT prediction with Fermi function

time

Tr
af

fic
 d

at
as

et

Fig. 4: FNT prediction on the Internet traffic dataset. Both figures show the
estimation of the last 200 time units of the test data set. The left figure shows
the prediction with the Gaussian activation function (red line). The right figure
illustrates the estimation of the model (blue line) using the Fermi activation
function. In both cases the black line is the target data.

References

1. Sebastián Basterrech, Colin Fyfe, and Gerardo Rubino. Self-Organizing Maps and
Scale-Invariant Maps in Echo State Networks. In Intelligent Systems Design and

Performance Analysis of the Activation Neuron Function . . . 45

0.2 0.3 0.4 0.5

0.
2

0.
3

0.
4

0.
5

FNT prediction with Gaussian function

target

pr
ed

ic
tio

n

Fig. 5: FNT prediction using the Gaussian activation function on the Internet
traffic data set. The estimation was realized on the last 80 time units of the test
data set. The red line is the identity function.

Applications (ISDA), 2011 11th International Conference on, pages 94–99, nov.
2011.

2. Sebastián Basterrech and Gerardo Rubino. Echo State Queueing Network: a new
Reservoir Computing learning tool. IEEE Consumer Comunications & Networking
Conference (CCNC’13), pages 118–123, January 2013.

3. Sebastián Basterrech and Václav Snášel. Initializing Reservoirs With Exhibitory
And Inhibitory Signals Using Unsupervised Learning Techniques. In International
Symposium on Information and Communication Technology (SoICT), pages 53–60,
Danang, Viet Nam, December 2013. ACM Digital Library.

4. Yuehui Chen, Ajith Abraham, and Bo Yang. Feature selection and classification
using flexible neural tree. Neurocomputing, 70(1-3):305–313, 2006.

5. Yuehui Chen, Ajith Abraham, and Bo Yang. Hybrid flexible neural-tree-based in-
trusion detection systems. International Journal of Intelligent Systems, 22(4):337–
352, 2007.

6. Yuehui Chen, Ajith Abraham, and Ju Yang. Feature selection and intrusion detec-
tion using hybrid flexible neural tree. In Jun Wang, Xiao-Feng Liao, and Zhang Yi,
editors, Advances in Neural Networks, volume 3498 of Lecture Notes in Computer
Science, pages 439–444. Springer Berlin Heidelberg, 2005.

7. Yuehui Chen, Lizhi Peng, and Ajith Abraham. Exchange rate forecasting using
flexible neural trees. In Jun Wang, Zhang Yi, JacekM. Zurada, Bao-Liang Lu,
and Hujun Yin, editors, Advances in Neural Networks - ISNN 2006, volume 3973
of Lecture Notes in Computer Science, pages 518–523. Springer Berlin Heidelberg,
2006.

46 Tomáš Buriánek, Sebastián Basterrech

8. Yuehui Chen, Bo Yang, and Ajith Abraham. Flexible neural trees ensemble for
stock index modeling. Neurocomputing, 70(4-6):697–703, 2007.

9. Yuehui Chen, Bo Yang, and Jiwen Dong. Nonlinear System Modelling Via Optimal
Design of Neural Trees. International Journal of Neural Systems, 14(02):125–137,
2004.

10. Yuehui Chen, Bo Yang, Jiwen Dong, and Ajith Abraham. Time-series forecasting
using flexible neural tree model. Inf. Sci., 174(3-4):219–235, August 2005.

11. Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Mach. Learn.,
20(3):273–297, September 1995.

12. P. Cortez, M. Rio, M. Rocha, and P. Sousa. Multiscale Internet traffic forecasting
using Neural Networks and time series methods. Expert Systems, 2012.

13. J. Kennedy and R. Eberhart. Particle Swarm Optimization. In Neural Networks,
1995. Proceedings., IEEE International Conference on, volume 4, pages 1942–1948,
1995.

14. Teuvo Kohonen. Self-Organizing Maps. Springer Series in Information Sciences,
third edition, 2001.

15. John R. Koza, Forrest H. Bennett III, and Oscar Stiffelman. Genetic Programming
as a Darwinian Invention Machine. In Riccardo Poli, Peter Nordin, WilliamB.
Langdon, and TerenceC. Fogarty, editors, Genetic Programming, volume 1598 of
Lecture Notes in Computer Science, pages 93–108. Springer Berlin Heidelberg,
1999.

16. Kenneth Price, Rainer M. Storn, and Jouni A. Lampinen. Differential Evolution: A
Practical Approach to Global Optimization (Natural Computing Series). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2005.

17. Rafal Salustowicz and Jürgen Schmidhuber. Probabilistic incremental program
evolution. Evolutionary Computation, 5(2):123–141, 1997.

18. Yuhui Shi and R. Eberhart. A modified particle swarm optimizer. In Evolutionary
Computation Proceedings, 1998. IEEE World Congress on Computational Intelli-
gence., The 1998 IEEE International Conference on, pages 69–73, 1998.

19. Yuhui Shi and RussellC. Eberhart. Parameter Selection in Particle Swarm Op-
timization. In V.W. Porto, N. Saravanan, D. Waagen, and A.E. Eiben, editors,
Evolutionary Programming VII, volume 1447 of Lecture Notes in Computer Sci-
ence, pages 591–600. Springer Berlin Heidelberg, 1998.

20. Rainer Storn and Kenneth Price. Differential Evolution – A Simple and Efficient
Heuristic for global Optimization over Continuous Spaces. Journal of Global Op-
timization, 11(4):341–359, 1997.

Ternary Tree Optimalization for n-gram
Indexing

Daniel Robenek, Jan Platoš, Václav Snášel

Department of Computer Science, FEI, VSB – Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic
{daniel.robenek, jan.platos, vaclav.snasel}@vsb.cz

Ternary Tree Optimalization for n-gram Indexing

Daniel Robenek, Jan Platoš, Václav Snášel

Department of Computer Science, FEI, VSB – Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic

{daniel.robenek, jan.platos, vaclav.snasel}@vsb.cz

Abstract. N-gram indexing is used in many practical applications. Spam
detection, plagiarism detection or comparison of DNA reads. There are many
data structures that can be used for this purpose, each with different
characteristics. In this article the ternary search tree data structure is used. One
improvement of ternary tree that can save up to 43% of required memory is
introduced. In the second part new data structure, named ternary forest, is
proposed. Efficiency of ternary forest is tested and compared to ternary search
tree and two-level indexing ternary search tree.

Keywords: n-gram, ternary tree, ternary forest, inverted index

1 Introduction

Efficient indexing and searching in huge amount of data is big issue in computer
science. For example finding plagiarisms, spam detection or comparison of DNA
sequences are topics, where efficient indexing is a key element of fast software.

The piece of data in these problems can be called n-gram. For DNA sequences n-
grams are nucleotides in the sequence read. For plagiarism and spam detection n-
grams are words in sentences or characters in the words.

First problem is to efficiently extract these n-grams. There are many specific and
optimized algorithms for this purpose. Next is necessary to perform the indexing.

Many data structures for this purpose, with different efficiency in search, insertion
or memory requirements are known. Indexing can be divided into two main
categories, depending on available memory or amount of data. First, when amount of
the data exceeds available memory, the data are stored on hard drive. Data structures
like B+ tree are optimized for this purpose.

Second category is in-memory based indexing, which expects sufficient amount
of memory for this purpose. The article is mainly focused to second category,
specifically to ternary tree optimization for n-gram indexing.

J. Pokorný, K. Richta, V. Snášel (Eds.): Dateso 2014, pp. 47–58, ISBN 978-80-01-05482-6.

48 Daniel Robenek, Jan Platoš, Václav Snášel2 Daniel Robenek, Jan Platoš, Václav Snášel

2 Related Work

The path from plain text documents to ready-made search engine is long and difficult.
The first problem is to extract required n-grams out of documents into required
format. In case of spam detection or plagiarism detection we are interested in n-grams
that occur at last m-times [8]. It is because we are comparing similarity of documents,
respectively the most repeated parts of them.

In case of extremely large amount of documents the common data structures like
hash tables or trees are not suitable, because they would probably not fit in the
memory. Therefore another approach is inevitable. By using sophisticated algorithms
and hard drive as a temporary storage high efficiency can be achieved without
necessity of having large amount of RAM [4]. For smaller sets of data the utilized
data structures can be used [6].

A number of data structures have been proposed for text search and inverted index
is the most used one [1]. For example inverted index is used to evaluate queries in
many search engines [7]. The optimization and compression can be used on inverted
index data structures in order to speed up the search and reduce memory requirements
[10,5].

There are many data structures that can do n-gram indexing in memory [9]. One
opportunity how to create in memory inverted index is to use ternary search tree in
which every node stores information about one n-gram character. As it was shown by
tests on collections Google WebIT and English Gigaword corpus, the data structure is
fast enough [3].

However storing the whole n-gram into single data structure as-is may not be
optimal. Repeated words should not be stored many times. Redundant presence of
words causes excessive memory consumption. The idea is to create two data
structures where the words in n-grams are at first converted to unique numbers and
only after that the numbers are processed by data structure [6,7].

Using two-level inverted index can considerably decrease memory consumption
[9,2].

One of the requirements for these types of data structures is the opportunity to use
wildcard placeholders. This is used when is necessary to look for particular similarity.
When using two-level inverted index it is necessary to find range of words on the first
index. However this is only efficient when indexes are sorted with the words. When
this request is fulfilled, it is easy to look up for these words using data structures like
B+ tree [2].

3 Tree Compression

When using general binary or ternary tree, every unigram is contained in separate part
of tree named node. The node contains necessary tree parts, parts that are specific for
different kinds of each type of the tree and the unigram key and n-gram value.

Unigram key can be represented by char data type in case of indexing words. The
pointer can be also used when needed. Situation is similar for n-gram value. When we

Ternary Tree Optimalization for n-gram Indexing 49Ternary Tree Optimalization for n-gram Indexing 3

are not interested in value, for example when use tree as a data set structure, the value
can be omitted.

Data are partly specific to different tree implementations. Red-black tree needs to
contain color value and each node of AVL tree should contain depth information.
These information are necessary for self-balancing efficiency.

Last parts of tree node are references to next tree nodes. For binary tree, two
pointers are needed. For ternary tree, one more pointer is needed. The question is, if
these references are necessary. Binary tree nodes can be divided into two types -
internal nodes and external nodes (leaf nodes). Internal nodes are those having at last
one child. On the other hand, external nodes have no children.

In following sections, the ternary red-black tree will be used. New method for
unused ternary tree references removal will be introduced and results of test will be
shown.

3.1. Binary Tree

For memory saving computation is necessary to exactly define how both internal and
external node should look like. Comparison is shown in Table 1. For computations the
key variable is 8-bit character type and the value is 32-bit integer. References are also
32-bit integers.

Table 1. Composition of binary tree nodes

Variable Internal node External node
Left reference 4 bytes 0 bytes
Right reference 4 bytes 0 bytes
Color of node 1 byte 0 bytes
Key 1 byte 1 byte
Value 4 bytes 4 bytes
Sum of size 14 bytes 5 bytes
Real size 16 bytes 8 bytes

The size of external node in extreme case is only ~36% of internal node. The real

test showed different values. Because of memory alignment, size of internal node is
16 bytes and external node size is 8 bytes. But the 50% is still large difference. The
real size may vary, depending on the Key and Value variable sizes.

To compute memory saves of tree is necessary to know amount of internal and
external nodes. Lets think about ideal binary tree, where every node has zero or two
child nodes. The relative number of internal is:

cne = 2h-1

cni = 2h-1 - 1

cne = cni + 1

50 Daniel Robenek, Jan Platoš, Václav Snášel4 Daniel Robenek, Jan Platoš, Václav Snášel

Where cne is amount of external nodes, cni is amount of internal nodes and h is height
of tree. If we consider only large trees, we can assume that

cne = cni

with negligible error. Now, for this type of tree and sizes of nodes mentioned in Table
1, we can compute memory saving for whole tree. Without optimization, the size of
the node is 14 bytes. With optimization, the size of average node is ~9.5 bytes. It
means ~32% of saved memory.

If we consider also memory alignment, the results are little different. Node size is
16 bytes and with optimization, average node size is 12 bytes. It results in 25% less
memory usage.

This was one, ideal type of binary tree. But we can generalize these results for
every binary tree. The amount of used references in binary tree is always same, no
matter of tree arrangement. This amount is exactly same as number of nodes minus
one, because root node has no reference to its parent node.

If we remove every unnecessary reference in the tree, the real saved memory
would be about 25%, depending on Key and Value data type.

3.2. Ternary Tree

On Table 2 we can see node sizes of ternary search tree.

Table 2. Composition of ternary tree nodes

Variable Internal node External node
Left reference 4 bytes 0 bytes
Right reference 4 bytes 0 bytes
Middle reference 0 / 4 bytes 0 / 4 bytes
Color of node 1 byte 0 bytes
Key 1 byte 1 byte
Value 4 bytes 4 bytes
Sum of size 14 / 18 bytes 5 / 9 bytes
Real size 16 / 20 bytes 8 / 12 bytes

The difference is middle reference, which can enlarge node size of 4 bytes. Therefore
minimum size of node is 5 bytes for leaf with no middle reference, and maximum is
16 bytes for internal node with middle reference or 8 bytes and 20 bytes for real
allocated size.

If root node reference is omitted, there are 4 bytes per node for reference and 6
bytes for data. Therefore average amount of memory for one node of ternary tree is 10
bytes. This is ~44% less memory usage compared to tree created of nodes with
complete references.

The memory saving can be increased by removing unused value variable.

Ternary Tree Optimalization for n-gram Indexing 51Ternary Tree Optimalization for n-gram Indexing 5

3.3. Ternary Tree Tests

To prove these computations and to get time requirements of this optimization the
tests were performed. The tests were performed on two data structures, which are
previously mentioned compressed red-black ternary tree and ordinary red-black
ternary tree. Every data structure was tested with predefined set of n-grams, from
1,000,000 to 100,000,000 each. These n-grams have average length of 11 characters.
Moreover the efficiency of these structures was tested on different size of n-grams.
The tests were performed on computer with 84xE5-4610@2,4GHz processor with
1 Tb of RAM. N-grams were extracted from Web 1T 5-gram, 10 European Languages
Version 1 collection.

To simplify implementation and not to slow down search and insertion too much
the implementation for tests counts only with two types of nodes. They were
performed with common internal node and with external node without left and right
reference. Each of these nodes has its own type definition in code and the resolution
of the node type is done by the node index. As an alternative, one bit identifier may be
also used. Transformation from red-black tree into compressed red-black tree is made
by post processing.

3.3.1. Search Time
On the Figure 1, there is comparison between search times of compressed red-black
tree and common red-black tree. Graph shows slightly decreasing trend with average
slowdown of 3% amount. This slowdown is caused by type check of node on access.
This amount of slowdown seems to be acceptable in comparison of theoretical
memory saving.

Note that amount of n-grams on Figure 1 do not increase linearly.

Figure 1. Search time comparison

52 Daniel Robenek, Jan Platoš, Václav Snášel6 Daniel Robenek, Jan Platoš, Václav Snášel

3.3.2. Insertion Time
Comparison of insertion time is shown on Figure 2. This graph shows also slightly
decreasing trend. The average slowdown is 16%. This number may be too high, but
for many applications is more relevant search time or memory usage.

Figure 2. Insertion time comparison

3.3.3. Memory Usage
The Figure 3 shows memory usage of compared tree structures. Memory savings
seems to be stable, about 35%. This amount of saved memory is high when we
consider that the implementation does not remove middle reference, single left,
or single right reference.

Ternary Tree Optimalization for n-gram Indexing 53Ternary Tree Optimalization for n-gram Indexing 7

Figure 3. Memory consumption comparison

To explain this behavior is necessary to count amount of internal and external nodes
of tested tree. Results show that almost 90% of all nodes are external nodes, nodes
with no left or right child. The amount of nodes without middle reference is about
17%. This seems to be negligible for removal.

The amount of nodes with value reference is about 82%. Therefore removal of this
type of reference can improve memory saving even more, especially when variable
size is larger than 4 bytes. By modifying external node implementation to have no left
reference, right reference and value variable the memory saving raises to approx. 43%
without substantial slowdown.

3.4. Tests with n-gram Size

In previous chapters the behavior of compressed red-black tree depending on amount
of n-grams was tested. The question is how the size of n-grams affects compressed n-
gram tree performance.

Figure 4 shows search time with different size of n-grams from ~12 to ~24
characters. The amount of n-grams is 25,000,000. Results shows only small
differences compared with common red-black ternary tree, with better results on
greater n-gram size.

54 Daniel Robenek, Jan Platoš, Václav Snášel8 Daniel Robenek, Jan Platoš, Václav Snášel

Figure 4. Search time comparison

Differences in insertion time show Figure 5. The time necessary to create and fill
compressed ternary tree rises with n-gram size. This behavior may be caused by
recursive algorithm used in tree compression.

Figure 5. Insertion time comparison

Figure 6 shows memory requirements. Compressed red-black ternary tree has
greater memory saving on longer n-grams. Increasing amount of single node binary
trees in ternary tree causes this.

Ternary Tree Optimalization for n-gram Indexing 55Ternary Tree Optimalization for n-gram Indexing 9

Figure 6. Memory consumption comparison

4 Ternary Forest

For sentence indexing is appropriate to use two-level (double) indexing. This
approach saves a lot of computer memory, because words in all sentences are many
times repeated.

Common ternary tree n-gram indexing and n-gram double indexing using ternary
trees are two borderline cases. Single ternary tree is much faster in search and
insertion time. This is mainly caused by low height of binary trees deeper in the
ternary tree. Unfortunately this approach requires lot of computer memory.

Double indexing can save large amount of required memory, because it reduces
duplicities in the tree. Disadvantage of this approach is slowdown in both search and
insertion time, because deeper binary trees takes more time to be searched. But can
we combine both approaches to get more balanced data structure?

One approach can be ternary forest. Ternary forest is created from two types
of ternary search trees. First, word tree is indexing characters of words and second, n-
gram tree is indexing whole words. Every of the second trees are connected to the last
node of the first tree.

On Figure 7 is shown how three words “AB AC AB” can be indexed. In the word
tree, node A is first binary tree. Second binary tree consists of nodes B and C. Second
part of structure n-gram tree consists of two more single node binary trees, these are
with keys 3 and 2.

56 Daniel Robenek, Jan Platoš, Václav Snášel10 Daniel Robenek, Jan Platoš, Václav Snášel

Figure 7. Ternary forest example

To search words “AB AC AB” is necessary to find first word in first part of data
structure named word tree. When the first word is found, reference to the second part
of the data structure n-gram tree is stored. Then the second word “AC” is found in the
word tree with result 3. The stored root index of n-gram tree is used to found node
with index 3. Search is done again in the word tree with index 2 and the last node in
the n-gram tree is found.

Advantage of this approach is that indexing trees are not separated, but second n-
gram tree is directly connected to first word tree. This little difference from common
double indexing may look negligibly.

The test was performed to show depth of binary trees in n-gram tree. The set of
10,000,000 5-grams was used. The results shown that over 90% of trees are single
node trees. But more important is, that root tree has depth of size 32. Using ternary
forest instead of double indexing can rapidly reduce this size.

Moreover, sequence amount of words in the word tree can differ. On Figure 7 word
tree covers single word. But this may not be optimal for all purposes.

4.1. Ternary Forest Tests

Figure 8 shows behavior of insertion time, search time and memory requirements of
data structures. First data structure is double indexing ternary search tree. Second is
ternary forest, and the last one is common red-black ternary tree.
Data used for tests was 5-grams with average length of 24 characters. Ternary forest
is used in four tests. In each test the ternary forest has different amount of words
sequentially stored in the word tree in a row.

Ternary Tree Optimalization for n-gram Indexing 57Ternary Tree Optimalization for n-gram Indexing 11

Figure 8. Relative comparison of double indexing ternary search tree (left), ternary

forest and ternary search tree (right)

The results have shown that ternary forest using 1 word indexing in word tree has
greatly improved performance. Insertion time speedup is ~30% and search time is
~20% faster than double indexing. The memory requirements show only negligible
increase, less than 1%.

5 Conclusion

This paper described two improvements on ternary tree for efficient n-gram indexing.
First, ternary tree compression showed how to save up to 43% of computer memory
by removing unused references, without major slowdown.

Second improvement was more focused on n-gram indexing as such. By using
ternary forest instead of common two-level indexing search time has decreased ~20%
and insertion time ~30% with negligible increase of memory requirements.

Acknowledgement: This work was partially supported by the Grant of SGS No.
SP2014/110, VŠB - Technical University of Ostrava, Czech Republic, and was
supported by the European Regional Development Fund in the IT4Innovations Centre
of Excellence project (CZ.1.05/1.1.00/02.0070) and by the Bio-Inspired Methods:
research, development and knowledge transfer project, reg. no.
CZ.1.07/2.3.00/20.0073 funded by Operational Programme Education for
Competitiveness, co-financed by ESF and state budget of the Czech Republic.

58 Daniel Robenek, Jan Platoš, Václav Snášel12 Daniel Robenek, Jan Platoš, Václav Snášel

6 References

1. Baeza-Yates, Ricardo, and Berthier Ribeiro-Neto. Modern information retrieval. Vol.
463. New York: ACM press, 1999.

2. Ceylan, Hakan, and Rada Mihalcea. "An Efficient Indexer for Large N-Gram
Corpora." ACL (System Demonstrations). 2011.

3. Flor, Michael. "Systems and Methods for Optimizing Very Large N-Gram
Collections for Speed and Memory." U.S. Patent Application 13/168,338, 2011.

4. Huston, Samuel, Alistair Moffat, and W. Bruce Croft. "Efficient indexing of repeated
n-grams." Proceedings of the fourth ACM international conference on Web search
and data mining. ACM, 2011.

5. Kim, Min-Soo, et al. "n-gram/2l: A space and time efficient two-level n-gram
inverted index structure." Proceedings of the 31st international conference on Very
large data bases. VLDB Endowment, 2005.

6. Kratky, M., et al. "Index-based n-gram extraction from large document
collections." Digital Information Management (ICDIM), 2011 Sixth International
Conference on. IEEE, 2011.

7. MOFFAT, ALISTAIR AUTOR, and Timothy C. Bell. Managing gigabytes:
compressing and indexing documents and images. Morgan Kaufmann, 1999.

8. Pomikálek, Jan, and Pavel Rychlý. "Detecting Co-Derivative Documents in Large
Text Collections." LREC. 2008.

9. Robenek, Daniel, Jan Platoš, and Václav Snášel. "Efficient in-memory data structures
for n-grams indexing."

10. Scholer, Falk, et al. "Compression of inverted indexes for fast query
evaluation."Proceedings of the 25th annual international ACM SIGIR conference on
Research and development in information retrieval. ACM, 2002.

EEG signals similarity based on compression

Michal Pŕılepok, Jan Platoš, and Václav Snášel

Department of Computer Science, FEECS
IT4 Innovations, European Center of Excellence

VSB-Technical University of Ostrava
Ostrava, Czech Republic

{michal.prilepok, jan.platos, vaclav.snasel}@vsb.cz

EEG signals similarity based on compression

Michal Prilepok, Jan Platos, and Vaclav Snasel

Department of Computer Science, FEECS
IT4 Innovations, European Center of Excellence

VSB-Technical University of Ostrava
Ostrava, Czech Republic

{michal.prilepok, jan.platos, vaclav.snasel}@vsb.cz

Abstract. The electrical activity of brain or EEG signal is very com-
plex data system that may be used to many different applications such
as device control using mind. It is not easy to understand and detect
useful signals in continuous EEG data stream. In this paper, we are de-
scribing an application of data compression which is able to recognize
important patterns in this data. The proposed algorithm uses Lempel-
Ziv complexity for complexity measurement and it is able to successfully
detect patterns in EEG signal.

Keywords: Electroencephalography; EEG; BCI; EEG waves group; EEG data; LZ

Complexity

1 Introduction

The Electroencephalography (EEG) plays a big role in diagnosis of brain dis-
eases, and, also, in Brain Computer Interface (BCI) system applications that
helps disabled people to use their mind to control external devices. Both re-
search areas are growing today.

The EEG records the electrical activity of the brain using several sensors
placed on a scalp . Different mental tasks produce indiscernible recordings but
they are different. Different brain actions activate different parts of the brain.
The most difficult part is the definition of an efficient method or algorithm for
detection of the differences in recordings belonging to the different mental tasks.
When we define such algorithm we are able to translate these signals into control
commands of an external device, e.g. prosthesis, wheelchair, computer terminal,
etc.

2 The Electroencephalography

The Electroencephalography (EEG) measures the electrical activity of human
brain, by placing set of sensors on a scalp, according to 10/20 EEG International
electrode placement, as is depicted on Figure 1. The measuring of EEG signal
records can be done between two active electrodes (bipolar recording), or be-
tween an active electrode and a reference electrode (mono-polar recording) [16].

J. Pokorný, K. Richta, V. Snášel (Eds.): Dateso 2014, pp. 59–70, ISBN 978-80-01-05482-6.

60 Michal Pŕılepok, Jan Platoš, Václav Snášel

Fig. 1. 10/20 International Electrode Placement

2.1 EEG Waves Types

The types of brain waves distinguished by their different frequency ranges are
recognized as follows.

– Delta (δ) waves lie within the range from approximately 0.5 up to 4 Hz. The
amplitude of this waves is varying and have been associated with deep sleep
and present in the waking state.

– Theta (θ) waves lie within the range from 4 to 7.5 Hz. The amplitude varies
about 20 µV. Theta waves have been associated with access to unconscious
material, creative inspiration and deep meditation.

– The frequency of the Alpha (α) waves lies within the range from 8 to 13
Hz, the amplitude varies between 30 and 50 µV. It is reduced or eliminated
by opening the eyes, by hearing unfamiliar sounds, by anxiety, or mental
concentration or attention.

– Beta (β) waves are the electrical activities of the brain varying within the
frequency range from 14 to 26 Hz. The amplitude is about 5 up to 30 µV.
Beta waves has been associated with active thinking, active attention, focus
on the outside world, or solving concrete problems. A high-level beta wave
may be acquired when a human is in a panic state.

– Gamma (γ) waves have frequency range above 30 Hz, can be used to demon-
strate the locus for right and left index finger movement, right toes, and the
rather broad and bilateral area for tongue movement [19, 18].

– Mu (µ) waves will be same Alpha frequency range 8 to 13 Hz, but Alpha
waves are recorded on occipital cortex area, and Mu waves are recorded on
motor cortex area. Mu waves are related to spontaneous nature of the brain
such motor activities [18].

2.2 History of EEG

Carlo Matteucci and Emil Du Bois-Reymond, were first people who register the
electrical signals emitted from muscle nerves using a galvanometer and estab-
lished the concept of neurophysiology. The first brain activity in the form of

EEG signals similarity based on compression 61

electrical signals was recorded in 1875, by Richard Caton (1842–1926), a scien-
tist from Liverpool, England, using a galvanometer and two electrodes placed
over the scalp of a human. From here EEG stand to, Electro that referring to reg-
istration of brain electrical activities, Encephalon that referring to emitting the
signals from a brain, and gram or graphy, which means drawing. Then the term
EEG was henceforth used to denote electrical neural activity of the brain [19].

In 1920, Hans Berger, the discoverer of the existence of human EEG signals,
began his study of human EEG. In 1910, Berger started working with a string
galvanometer and later he used a smaller Edelmann model. After the year 1924,
he used larger Edelmann model. Berger started to use the more powerful Siemens
double coil galvanometer (attaining a sensitivity of 130 µ V/cm) in 1926. In 1929
Berger made the first report of human EEG recordings with duration from one to
three minutes on photographic paper and, in the same year, he also found some
correlation between mental activities and the changes in the EEG signals [19].

The first biological amplifier for the recording of brain potentials was built
by Toennies (1902–1970). In 1932 the differential amplifier for EEG recording
was later produced by the Rockefeller foundation. The potential of a multichan-
nel recordings and a large number of electrodes to cover a wider brain region
was recognized by Kornmuller. Berger assisted by Dietch (1932) applied Fourier
analysis to EEG sequences, which was developed during the 1950s [19].

After that the EEG analysis and classification take grow and development
every day. The application of the EEG signals to diagnosis of the brain diseases
and to control external devices for disabled people such as wheel chair, prosthesis,
etc. Today, several techniques for analysis and classification the EEG signal
exists, by using EEG multichannel recording according to 10/20 International
electrodes standard, which is used in Brain Computer Interface (BCI).

3 Related works

In this section we present some of related works for EEG data analysis using
different techniques such as Non-negative Matrix Factorization (NMF), Normal-
ized Compression Distance (NCD), and Lempel-Ziv (LZ) complexity measure,
and Curve Fitting (CF).

Lee et al. presented a Semi-supervised version of NMF (SSNMF) which
jointly exploited both (partial) labeled and unlabeled data to extract more
discriminative features than the standard NMF. Their experiments on EEG
datasets in BCI competition confirm that SSNMF improves clustering as well as
classification performance, compared to the standard NMF [10].

Shin et al. have proposed new generative model of a group EEG analysis,
based on appropriate kernel assumptions on EEG data. Their proposed model
finds common patterns for a specific task class across all subjects as well as
individual patterns that capture intra-subject variability. The validity of the
proposed method have been tested on the BCI competition EEG dataset [20].

Dohnalek et al. have proposed method for signal pattern matching based on
NMF, also they used short-time Fourier transform to preprocess EEG data and

62 Michal Pŕılepok, Jan Platoš, Václav Snášel

Cosine Similarity Measure to perform query-based classification. This method
of creating a BCI capable of real-time pattern recognition in brainwaves using
a low cost hardware, with very cost efficient way of solving the problem [5]. In
this context, Gajdos et al. implemented the well-performing Common Tensor
Discriminant Analysis method [6] using massive parallelism [7].

Mehmood, and Damarla applied kernel Non-negative Matrix Factorization
to separate between the human and horse footsteps, and compared KNMF with
standard NMF, their result conclude that KNMF work better than standard
NMF [14].

Sousa Silva, et al. verified that the Lempel and Ziv complexity measurement
of EEG signals using wavelets transforms is independent on the electrode position
and dependent on the cognitive tasks and brain activity. Their results show that
the complexity measurement is dependent on the changes of the pattern of brain
dynamics and not dependent on electrode position [4].

Noshadi et al. have applied Empirical mode decomposition (EMD) and im-
proved Lempel-Ziv (LZ) complexity measure for discrimination of mental tasks,
their results reached 92.46% in precision, and also they concluded that EMD-LZ
is getting better performance for mental tasks classification than some of other
techniques [15].

Li Ling, and Wang Ruiping calculated complexity of sleeping stages of EEG
signals, using Lempel-Ziv complexity. Their results showed that nonlinear feature
can reflect sleeping stage adequately, and it is useful in automatic recognition of
sleep stages [13].

Krishna, et al. proposed an algorithm for classification of the wrist movement
in four directions from Magnetoencephalography (MEG) signals. The proposed
method includes signal smoothing, design of a class-specific Unique Identifier
Signal (UIS) and curve fitting to identify the direction in a given test signal.
The method was tested on data set of the BCI competition, and the best result
of the prediction accuracy reached to 88.84 % [9].

Klawonn, et al. have applied Curve Fitting for Short Time Series biological
data to remove noise from measured data and correct measurement errors or
deviations caused by biological variation in terms of a time shift etc. [8]

4 Similarity

The main property in the similarity is a measurement of the distance between two
objects. The ideal situation is when this distance is a metric [21]. The distance
is formally defined as a function over Cartesian product over set S with non-
negative real value (see [3, 12]). The metric is a distance which satisfy three
conditions for all:

Definition 1. A mapping D : U → R+ is said to be a distance on the universe
U if the following properties hold:

D1 Non-negativity: D(x, y) ≥ 0 for any x, y ∈ U ;
D2 Symmetry: D(x, y) = D(y, x) for any x, y ∈ U ;

EEG signals similarity based on compression 63

D3 Identity of indiscernibles: D(x, y) = 0 if and only if x = y;
D4 Triangular inequality: D(x, y) ≤ D(x, z) +D(z, y) for any x, y, z ∈ U .

4.1 Lempel-Ziv Complexity

The Lempel-Ziv (LZ) complexity for sequences of finite length was suggested
by Lempel and Ziv [11]. It is a non-parametric, simple-to-calculate measure of
complexity in a one-dimensional data. LZ complexity is related to the number
of distinct substrings and the rate of their recurrence along the given sequence
[17], with larger values corresponding to more complexity in the data. It has been
applied to study the brain function, detect ventricular tachycardia, fibrillation
and EEG [22]. It has been applied to extract complexity from mutual information
time series of EEGs in order to predict response during isoflurane anesthesia with
artificial neural networks [2]. LZ complexity analysis is based on a coarse-graining
of the measurements, so before calculating the complexity measure c(n), the
signal must be transformed into a finite symbol sequence. In this study, we have
used turtle graphic for conversion of measured data into finite symbol sequence
P . The sequence P is scanned from left to right and the complexity counter c(n)
is increased by one unit every time a new subsequence of consecutive characters
is encountered. The complexity measure can be estimated using the algorithm
described in [11, 2].

In our experiment we do not deal with the measure of the complexity. We
create a list of the LZ sequences from the individual subsequence. One list is
created for each data file with turtle commands of the compared files.

The comparison of the LZ sequence lists is the main task. The lists are com-
pared to each other. The main property for comparison is the number of common
sequences in the lists. This number is represented by the sc parameter in the
following formula, which is a metric of similarity between two turtle commands
lists.

SM =
sc

min(c1, c2)
(1)

Where

– sc – count of common string sequences in both dictionaries.
– c1, c2 – count of string sequences in dictionary of the first or the second data

trial.

The SM value is in the interval between 0 and 1. The two documents are
equal if SM = 1 and they have the highest difference when the result value of
SM = 0.

5 Dataset

The data for our experiments was recorded in our laboratory. We have used 7
channels from recorded data. The signal data contains records of the movement

64 Michal Pŕılepok, Jan Platoš, Václav Snášel

of one finger from four different subjects. Every subject performed a press of a
button with left index finger. The sampling rate was set to 256 Hz. The signals
were band pass filtered from 0.5 Hz to 60 Hz to remove unwanted lower and
higher frequencies and noise. The data was then processed, that we extract each
movement from the data as well as 0.3s before the movement and 0.3s after the
movement.

The pre-processed data contains 4606 data trials – 2303 data trails with
finger movement and 2303 trails without finger movement. We divided it into
seven groups, one group for each sensor. In our experiment we are using 75% of
data for training and 25% for testing. Each group contains part of training and
testing data part. The training part for one sensor contains 492 trials – 246 data
trails with finger movement and 246 trails without finger movement. The testing
part contains 166 trails – 83 trails with finger movement and 83 trails without
finger movement. The we have used for further model validation.

5.1 Interpolation of the EEG data

After recording and filtering of the EEG data we apply polynomial curve fitting
for data smoothing. The fitting will remove noise from the data and fit the data
trend.

Consider the general form for a polynomial fitting curve of order j:

f(x) = a0 + a1x+ a2x
2 + a3x

3 + . . .+ ajx
j =

j∑
k=1

akx
k (2)

We minimized the total error of polynomial fitting curve with least square
approach. The general expression for any error using the least squares approach
is:

err =
∑

(dj)
2 (3)

err = (y1 − f(x1))2 + (y2 − f(x2))2 + . . .+ (yj − f(xj))
2 (4)

err =

n∑
i=1

(
yi −

(
a0 +

j∑
k=1

akx
k

))2

(5)

where:

– n is count of data points in one move,

– i is the current data point being summed,

– j is the polynomial order.

EEG signals similarity based on compression 65

0 20 40 60 80 100 120 140 160
−40

−30

−20

−10

0

10

20

30
Sensor1 data part1

Fig. 2. EGG trail before (blue line) and after smoothing (red line) with 15th order
polynomial curve fitting.

5.2 Turtle Graphics

Consider we have control on a turtle on computer screen, this turtle must be
respond on a sequence of commands. These commands: forward command, is
moving the turtle in front direction a few number of units, right command ro-
tate turtle in clockwise direction a few number of degrees, Back command and
Left command are cause same movement but in opposite way. The number of
commands to determine, how much to move is called input commands, depend-
ing on the application. When moving the turtle under input commands it leave
trace, this trace represent the desired object, as in Figure 3. represent simple
example for drawing on screen by steering the turtle with four commands for-
ward, right, left, and back command [1]. By this way can represent and drawing
the objects, from simple to complex objects.

6 EEG Experiment

The recorded data trail were filtered with band pass filter and divided into
individual sensor trails. For each trial we calculated polynomial fitting curve
with 15th order and total error minimization with least square approach. The
15th order is enough flexible to smooth data, remove unwanted noise, and to keep
the trend of data. After smoothing data we converted calculated curve values
into text using Turtle graphics. For the turtle we used 128 commands in two
right quadrants – first and fourth. Each command represents one angle – a data

66 Michal Pŕılepok, Jan Platoš, Václav Snášel

Fig. 3. Simple sequence of Turtle Commands

trend direction. We used only two quadrants – the first and fourth, because the
time line goes from left to right and the signal does not go backwards into past.

6.1 Lempel-Ziv Complexity

After this steps, were prepared a LZ subsequences list from turtle graphics com-
mands list from previous step using LZ complexity for each test EEG trial.
Similarities to all train trails using Eq. 1 were calculated for every test trail.
Then we selected a group of training trails with similarity S satisfying following
condition S ≥ Tmin ∧ S ≤ Tmax for every test trail. The condition threshold
values are depicted in Table 1 for all sensors. This selected group of trials is used
for calculation in which category belongs the tested trial. This was calculated as
a ratio of trials with movement to total count of selected trials in group, using
the formula:

C =
mt

ct

Where:

– mt is a count of trails, which are marked as trail with movement,
– ct is a count of trials in selected group, which satisfy condition.

The tested trail is marked as trail, which belongs to category with movement
trails if C ≥ 0.5 and as a trail without movement otherwise. These steps were
performed separately for all categories of data – with movement and without
movement – and all sensors.

The values of Tmin and Tmax represent the shortest range R in which classifier
has correctly identified maximum trials of both categories, with movement and
without movement, with emphasis to maximum correctly identified trial with
movement, where Tmin ∈ [0, 1] and Tmax ∈ [0, 1] and Tmin < Tmax, for example:

R(Tmin, Tmax) ∈ [0.15, 0.2]

EEG signals similarity based on compression 67

Figure 4 shows a distribution of individual similarities for a trail with (blue
bars) and without movement (orange bars). We can see that each data category
can be divided into one group. This two groups have with a small intersection
between Tmin and Tmax value.

Fig. 4. Histogram of the similarities for trial with and without movement of one sensor

6.2 Experiment Result

Our experiment is focused on successful detection of both data categories, data
with movement and data trial without movement. Our data was divided into
seven data parts. Each part contains trails from one sensor. Each data parts
has two subparts. The first data subpart contains training data – 75% of trials
with movement and without movement. The other part is used as testing data
sub part. This is used for our model validation. It contains 25% of trials with
movement and without movement.

In our experiment we are able to detect movement of index finger with suc-
cess detection rate between 56.02% and 58.78%. The best results we reach up
on sensor S5 (58.78%) and S2, S4 (58.43%). The worst result is for sensor S7
(56.02%). The detection results and their corresponding threshold values for all
sensor are in Table 1.

Detection rate in trials with movement varies between 36.14% (S6) and
72.28% (S7). Detection rate in trials with no movement varies between 39.75%
(S7) and 77.10% (S6).

Most of the values taken by minThreshold are around 0.30 and maxThreshold
values are situated around value 0.50.

68 Michal Pŕılepok, Jan Platoš, Václav Snášel

Table 1. Table of Results

Sensor Tmin Tmax
Detection rate

Total detection rate
Movement No movement

S1 0.40 0.65 61.44% 51.80% 56.62%

S2 0.35 0.45 60.24% 56.62% 58.43%

S3 0.30 0.45 59.03% 55.42% 57.22%

S4 0.30 0.60 66.26% 50.60% 58.43%

S5 0.30 0.40 49.39% 68.29% 58.78%

S6 0.60 0.65 36.14% 77.10% 56.62%

S7 0.25 0.50 72.28% 39.75% 56.02%

7 Conclusion

We made our experiments on our EEG data recorded in our laboratory from four
different subjects performing the same task – pressing a button with index finger.
The EEG data was recorded using 7 channels recording machine with sampling
frequency 256 Hz. The signals were band pass filtered from 0.5 Hz to 60 Hz
to remove unwanted frequencies and noise. The signals record the movement of
one finger. After removing unwanted frequencies and noise we preprocessed data
with polynomial curve fitting with 15th order, turtle graphic – conversion from
number into text and Lempel-Ziv complexity – similarity measurement.

In this paper we applied a successful approach for index finger movement
detection. Our suggested approach use polynomial fitting curve for smooth-
ing recorded data and Lempel-Ziv complexity for measuring similarity between
trails. Our approach is able to correctly detect EEG trail of index finger with
success rate between 56.02% and 58.78%. The best results we reach up on sen-
sor 58.78% and 58.43%. The worst result is for sensor 56.02%. Detection rate
in trials with movement varies between 36.14% and 72.28%. Detection rate in
trials with no movement varies between 39.75% and 77.10% .

The method proposed in this work seems to be able to detect trails with
and without movement with overall successful rate more than 56.02%. It can be
applied to the use on real data.

Acknowledgment

This work was partially supported by the Grant of SGS No. SP2014/110, VŠB-
Technical University of Ostrava, Czech Republic, and was supported by the Eu-
ropean Regional Development Fund in the IT4Innovations Centre of Excellence
project (CZ.1.05/1.1.00/02.0070) and by the Bio-Inspired Methods: research,
development and knowledge transfer project, reg. no. CZ.1.07/2.3.00/20.0073
funded by Operational Programme Education for Competitiveness, co-financed
by ESF and state budget of the Czech Republic.

EEG signals similarity based on compression 69

References

1. H. Abelson and A. diSessa. Turtle Geometry: The Computer as a Medium for
Exploring Mathematics. The MIT Press, July 1986.

2. D. Abásolo, R. Hornero, C. Gómez, M. Garćıa, and M. López. Analysis of EEG
background activity in alzheimer’s disease patients with lempel–ziv complexity and
central tendency measure. Medical Engineering & Physics, 28(4):315 – 322, 2006.

3. R. Cilibrasi and P. M. B. Vitányi. Clustering by compression. IEEE Transactions
on Information Theory, 51(4):1523–1545, 2005.

4. A. de Sousa Silva, A. Arce, A. Tech, and E. Costa. Quantifying electrode position
effects in eeg data with lempel-ziv complexity. In Engineering in Medicine and Bi-
ology Society (EMBC), 2010 Annual International Conference of the IEEE, pages
4002–4005, 2010.

5. P. Dohnálek, P. Gajdoš, T. Peterek, and M. Penhaker. Pattern recognition in
EEG cognitive signals accelerated by GPU. volume 189 AISC, pages 477–485.
2013. cited By (since 1996)1.

6. A. Frolov, D. Husek, and P. Bobrov. Brain-computer interface: Common ten-
sor discriminant analysis classifier evaluation. In Nature and Biologically Inspired
Computing (NaBIC), 2011 Third World Congress on, pages 614–620, 2011.

7. P. Gajdos, P. Dohnalek, and P. Bobrov. Common tensor discriminant analysis
for human brainwave recognition accelerated by massive parallelism. In Nature
and Biologically Inspired Computing (NaBIC), 2013 World Congress on, pages
189–193, 2013.

8. F. Klawonn, N. Abidi, E. Berger, and L. Jänsch. Curve fitting for short time series
data from high throughput experiments with correction for biological variation.
In J. Hollmén, F. Klawonn, and A. Tucker, editors, IDA, volume 7619 of Lecture
Notes in Computer Science, pages 150–160. Springer, 2012.

9. S. Krishna, K. Vinay, and K. B. Raja. Efficient meg signal decoding of direction
in wrist movement using curve fitting (emdc). In Image Information Processing
(ICIIP), 2011 International Conference on, pages 1–6, 2011.

10. H. Lee, J. Yoo, and S. Choi. Semi-supervised nonnegative matrix factorization.
Signal Processing Letters, IEEE, 17(1):4–7, 2010.

11. A. Lempel and J. Ziv. On the complexity of finite sequences. Information Theory,
IEEE Transactions on, 22(1):75–81, 1976.

12. M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitányi. The similarity metric. IEEE
Transactions on Information Theory, 50(12):3250–3264, 2004.

13. L. Ling and W. Ruiping. Complexity analysis of sleep eeg signal. In Bioinformatics
and Biomedical Engineering (iCBBE), 2010 4th International Conference on, pages
1–3, 2010.

14. A. Mehmood and T. Damarla. Kernel non-negative matrix factorization for seismic
signature separation. Journal of Pattern Recognition Research, 8(1):13–25, 2013.

15. S. Noshadi, V. Abootalebi, and M. Sadeghi. A new method based on emd and lz
complexity algorithms for discrimination of mental tasks. In Biomedical Engineer-
ing (ICBME), 2011 18th Iranian Conference of, pages 115–118, 2011.

16. R. Q. Quiroga. Quantitative analysis of EEG signals: Time-Frequency methods
and Chaos Theory. PhD thesis, Institute of Signal Processing and Institute of
Physiology, Medical University of Lubeck, Germany, 1998.

17. N. Radhakrishnan and B. Gangadhar. Estimating regularity in epileptic seizure
time-series data. Engineering in Medicine and Biology Magazine, IEEE, 17(3):89–
94, 1998.

70 Michal Pŕılepok, Jan Platoš, Václav Snášel

18. T. K. Rao, M. R. Lakshmi, and T. V. Prasad. An exploration on brain computer
interface and its recent trends. International Journal of Advanced Research in
Artificial Intelligence, 1(8):17 – 22, 2012.

19. S. Sanei and J. Chambers. EEG Signal Processing. John Wiley & Sons Ltd., The
Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 2007.

20. B. Shin and A. Oh. Bayesian group nonnegative matrix factorization for eeg anal-
ysis. CoRR, abs/1212.4347:1–8, 2012.

21. A. Tversky. Features of similarity. Psychological Review, 84(4):327–352, 1977. cited
By (since 1996)1968.

22. X.-S. Zhang, R. Roy, and E. Jensen. Eeg complexity as a measure of depth of anes-
thesia for patients. IEEE Transactions on Biomedical Engineering, 48(12):1424–
1433, 2001. cited By (since 1996)165.

Exploiting HTML5 Technologies for Distributed
Parasitic Web Storge?

Martin Krulǐs, Zbyněk Falt, Filip Zavoral

Parallel Architectures/Applications/Algorithms Research Group
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské nám. 25, Prague, Czech Republic
{krulis,falt,zavoral}@ksi.mff.cuni.cz

Exploiting HTML5 Technologies for Distributed
Parasitic Web Storge

Martin Krulǐs, Zbyněk Falt, Filip Zavoral?

Parallel Architectures/Applications/Algorithms Research Group
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské nám. 25, Prague, Czech Republic
{krulis,falt,zavoral}@ksi.mff.cuni.cz

Abstract. Current web technologies have been leaping forward, espe-
cially since the introduction of HTML5. The web browsers of the day
implement various APIs for the client-side scripts, such as elaborate data
storage or advanced network connectivity. We propose, how to combine
these technologies to create distributed data storage using the web en-
vironment. We have implemented a prototype framework as a proof of
concept and explored the most problematic issues which require to be
researched further. Systems that would use this storage may benefit from
the fact that the users do not need to install or configure any type of client
application, since the only thing required is the web browser. Web-based
distributed data storage can be used as an extension of server storage,
for data caching, and in various other applications.

Key words: html5,web storage,distributed,data,parasitic

1 Introduction

World wide web played a role of open interactive platform for information ex-
change, business, or entertainment for over twenty years. It begun as a simple
technology for presenting text documents, but it has evolved significantly in the
past decades. In the last few years, its technologies leaped forward as HTML5
[1] emerged, which is not only a new version of the HTML language, but it also
integrates specifications for client side scripting and APIs for advanced browser
features. It shifted the web browsers from simple web page presenters into an ap-
plication platform, which even become basis for lightweight operating systems [2].

The ability of executing scripts in the browser raises many security issues,
since the user have virtually no way how to verify that these scripts do not
perform malicious routines and will not pose a threat. The client scripting en-
vironments in the browsers must find a very fine balance between security and
provided functionality, which is required by complex client-server applications.
Furthermore, the browsers must implement these specifications correctly to en-
sure at least some level of protection.

? This paper was supported by Czech Science Foundation (GAČR) projects
P103/14/14292P and P103/13/08195 and by specific research SVV-2014-260100.

J. Pokorný, K. Richta, V. Snášel (Eds.): Dateso 2014, pp. 71–80, ISBN 978-80-01-05482-6.

72 Martin Krulǐs, Zbyněk Falt, Filip Zavoral

The HTML5 technologies are designed to support more complex client-side
scripts for more elaborated client-server web applications. Particularly, HTML5
advanced these browsers capabilities:

• GUI design, graphics, and multimedia support,
• communication capabilities (Server-sent events, WebSockets, WebRTC),
• client-side data and file management (File API, Web Storage, Indexed DB),
• client-side computations (Web Workers, WebCL).

The line between legitimate resource utilization and their exploitation is quite
thin and not formally defined. Therefore, it is reasonable to assume that these
technologies will remain in the browsers for the perceivable future time, despite
the possibility they might be misused by parasitic applications.

1.1 Contributions and Outline

Our particular interest turns towards data storage capabilities and communica-
tion capabilities of the browsers. Many current users of the web have a lot of
free disk space in their computers and sufficient connectivity. This space may be
utilized to store or cache data of the web applications they use. It may also be
exploited by a web application, or its embedded component such as ad banner,
to secretly infest the users hard drive with their own data.

This paper explores the limitations of current HTML5 technologies and pro-
pose a way how these technologies may be used or misused to create a distributed
data storage. We have implemented a prototype framework that tests the feasi-
bility of this idea. The prototype let us identify the most problematic areas of
this domain and outline possible solutions for them. We have also proposed pos-
sible applications which may use these technologies for legitimate reasons and
in a parasitic way – i.e., stealing the disk space from the users.

The paper is organized as follows. Section 2 revises related work. The HTML5
technologies relevant to our work are presented in Section 3. Section 4 proposes
a design of distributed data storage and outlines possible problems that will
require further research. Possible applications are presented in Section 5 and
Section 6 concludes the paper.

2 Related Work

Utilizing unused resources from desktop computers is not a new idea. Many
systems, such as Entropia [3] or SETI@home [4], have successfully used idle
CPU in the past. With new HTML5 technologies, this task become even easier.
For instance a WeevilScout framework [5] was built to utilize computational
power of the web browsers [6] for bioinformatic tasks.

In this work, we focus on utilizing the spare storage capacities of ordinary
computers to form a distributed data storage. Distributed storage systems of the
day have evolved from providing basic means of remote data, to offering services
like high availability, anonymity, redundancy, and archival [7, 8].

HTML5 Distributed Web Storge 73

Several projects already looked into scavenging unused storage on desktop
computers. Farsite [9] is a replication-based serverless distributed file system
built on Windows desktops that uses the Byzatine-fault protocol to manage file
and directory metadata. Freeloader [10] framework aggregates unused desktop
storage space into a shared cache space for hosting large scientific datasets.
It utilizes file stripping across a set of machines in order to provide high data
throughput. Storage@home [11] is a distributed storage infrastructure developed
to solve the problem of backing up and sharing large data using a distributed
model of volunteer managed hosts.

As a peer-to-peer storage system, CFS [12] stores data blocks reliably using
distributed hash tables. It arranges blocks over a number of nodes to provide
fault tolerance, high scalability, and load balancing. Ivy [13] is a file system using
logs to saving both data and meta-data. The logs are saved in the distributed
hash table across the unreliable peers. The Freenet [14] file sharing network stores
anonymized documents and allows them to be retrieved later by an associated
key. Files on Freenet are split into multiple small blocks, with additional blocks
added to provide redundancy. Also peer-to-peer file sharing networks such as
BitTorrent [15] or DC++ [16] can be considered as representants of such a class
of distributed storage systems. Using decentralized network, the users share their
files with other members.

Although all these storage systems proved their usability and applicability,
they suffer from one substantial drawback from a user’s point of view: they
require to install a client software. To our best knowledge, no distributed storage
system operates without the need of such additional client component.

3 HTML5 and New Web Technologies

In this section, we will briefly introduce the HTML5 technologies, which have
emerged in the past few years and which may be used to create distributed
data storage using web browsers of common users. These technologies are im-
plemented in the leading desktop browsers, thus available for most web users.

3.1 Persistent Data Storage

The HTTP was designed as strictly stateless protocol, with no user session sup-
port. This flaw was partially remedied by introducing cookies – a simple mech-
anism, that allows server to register session data at client side, which are resent
automatically with each request. Cookies do not satisfy complex needs of modern
web applications, thus more elaborate solutions were devised in HTML5.

Web Storage. The web storage [17] was originally designed with the same
motivation as cookies – to store structured data at client side. Unlike cookies,
the web storage is completely maintained by JavaScript, so the programmer may
use it in different ways. There are two types of web storage interfaces for two
different scenarios – the session storage and the local storage.

74 Martin Krulǐs, Zbyněk Falt, Filip Zavoral

The session storage is designed for scenarios when the application needs to
store session data, but the user may run multiple sessions in different windows.
Therefore, the storage is tied to a specific site and specific opened window/tab.

The local storage is designed for scenarios when the application needs to store
data at the client side, but these data span throughout the opened windows. It is
also particularly useful when the data needs to overlive the current user session.
The storage is tied to a specific site and the data are persistent.

Both storages use simple API that allows saving key-value pairs, where both
the key and the value are simple strings. The keys are treated as unique iden-
tifiers and the API allows the application to iterate over all stored keys. The
specification also includes some security restriction. The most important restric-
tion in our case is the disk quotas for the stored data, i.e., the browser does not
permit the script to store more data then specified by the quota.

Indexed Database. More complex data management problems require more
elaborate solutions. For this purpose, the W3 consortium presented the Index
Database API [18], which provide basic database functionality for the client
scripts. The IndexDB API replaces Web SQL Database API, which was depre-
cated by W3C, yet some implementations exist.

The indexed database API allows the JavaScript at client side to create in-
dexed data stores and operate them in a transaction-safe way. The data are
usually stored in efficient persistent data structures (such as B-trees), which
support efficient insertion, deletion, key-based searching, and deterministic (or-
dered) enumeration.

3.2 Communication Capabilities

The first direct communication capabilities were introduced into client-side web
scripting with the asynchronous HTTP API (XMLHttpRequest). This API al-
lowed the client code to perform its own requests on the background, thus
synchronize client and server application status without explicit user actions.
However, the communication must still be initiated from the client side, which
complicates situations when the server needs to notify clients.

One of the first techniques designed for server-initiated notifications (also
denoted AJAX-push or reverse AJAX) was Comet [19]. This technique uses
long-held HTTP requests that allow the server to initiate the transfer over a
connection created by the client. The client sends an asynchronous HTTP re-
quest to the server demanding a status update. If no updates are available, the
server postpones the response whilst the connection remains open. When the
status changes, the server notifies all clients by sending the responses to all
pending requests. Unfortunately, the long-held HTTP requests are not managed
very well by current HTTP servers (e.g., Apache or Microsoft IIS).

An extension of the Comet approach was presented by the Server-sent events
API. This API uses also long-held HTTP connections, but it allows multiple
events to be sent over an opened HTTP request and standardizes both the
message format and the client-side API that process these messages.

HTML5 Distributed Web Storge 75

WebSocket. The WebSocket protocol is a HTTP-compatible protocol, which
allows upgrading regular HTTP connections into a WebSocket connections. The
WebSocket connection reuses underlying TCP (or SSL/TLS) channel of the orig-
inal connection to transfer data frames in either direction. Both sides (former
HTTP client and server) become equal communication partners, i.e., they can
send a message over to their peer at any time.

The WebSocket client API [20] is quite simple. It handles only the creation
and the destruction of the communication channel and sending/receiving mes-
sages. The protocol supports both textual and binary data, thus the JavaScript
may send or receive strings, Blob objects, and ArrayBuffer objects.

WebRTC. The HTTP protocol and the WebSockets are designed for client-
server communication. In some cases, a direct communication between clients
may be required. WebRTC [21] is a technology, which was designed for real-
time peer-to-peer communication between web browsers. The technology was
originally intended for multimedial transfers (e.g., video phone calls), but it
handles data transfers as well.

The browsers first create a RTCPeerConnection, which is a logical representa-
tion of the connection. This connection is usually routed using ICE technologies
for NAT traversal, since most browsers are connected to the internet from a pri-
vate network. The RTC connection allows the transfer of one or multiple streams.
A stream may be either media stream, which can be directly captured from a
web camera and directly displayed in an appropriate HTML5 element, or a data
stream, which has the same behaviour and API as a WebSocket connection.

4 Web Browser as Distributed Storage Platform

A distributed data storage system (as almost any database system) usually em-
ploys layered architecture. Lower layers are responsible for raw data operations
while upper layers add user-friendly functionality, such as transparent format
transcoding, management of logical data entities, integrity constraints, trans-
action support, or security. These high-level features are quite well understood
and beyond the scope of this work. Hence, we focus on the lowest level – the
utilization of HTML5 technologies for raw data storage and transfer.

4.1 Infrastructure

The data storage infrastructure can be divided into three logical components:

• the master (running mostly on a server or on multiple servers),
• the clients (the connected web browsers),
• and the communication protocol they use.

The master controls the entire storage. It integrates all data distribution
logic and initiates all data transactions. It can be implemented as one centralized

76 Martin Krulǐs, Zbyněk Falt, Filip Zavoral

server, as a small cluster of servers located in one server room, or even as a large
distributed system. Theoretically, some parts of the master functionality can be
performed in the browsers; however, these details are not important from the
data storage point of view. Hence, we will present the master as a single server.

The most important role of the clients is to provide their storage space for
the system. Some of these clients may also use the system functions (i.e., re-
trieve/store user data); however, we primarily focus on the data management.
The clients require to execute only a minimalist script which connects to the
master and waits for commands. All operations are issued from the master and
the client simply process them. There are three basic kinds of operations:

• metadata operations (client identification, capabilities assessment),
• data retrieval (list, read),
• and data modifications (insert, update, delete).

The protocol is designed to work as a simple RPC for the client operations.
The data transfers are bidirectional and server-initiated, thus we selected the
WebSockets as the underlying protocol. Each operation has its own request mes-
sage and response message. The client process the messages sequentially and for
each incoming request generates one response. Figure 1 illustrates this model.

Fig. 1. Data storage with centralized data transfers

Optimizing Data Transfers. Even though the basic concept may suggest
that the major data flow will be between master and clients, there are many
situations, when the data needs to be transferred between clients directly. For
instance, when a data block needs to be replicated from one nodes to another
or when a client requests data, which are stored on adjacent nodes.

The WebRTC peer-to-peer connections may be used to optimize data trans-
fers between the clients (browsers). The WebRTC creates data streams, which
are operated by the same API as the WebSockets. Hence, it will be easy to
adapt the implementation to accomodate this feature. Even though the We-
bRTC may reduce the master-client communication, the uplink to the master is
still required, since the master controls the performed operations.

Figure 2 depicts the augmentation of centralized data storage where peer-
to-peer data channels are used to optimize the data traffic between clients. The
peer-to-peer channels are created on demand only between those clients that
need to communicate and they may be closed when no longer needed.

HTML5 Distributed Web Storge 77

Fig. 2. Distributed data storage with peer-to-peer channels

4.2 Practical Observations

We have implemented the prototype of the data storage layer. The client was
implemented as a simple web page which connects to the master using Web-
Socket [20] channel and handle commands sent by the server. Both web stor-
age [17] and Indexed DB API [18] were tested for the client-side data manage-
ment. The master was implemented as Node.js application that distributed data
to the connected clients and verified the accessibility of the data.

Addressing all technical details is way beyond the scope of this work, but we
have identified the most problematic issues and proposed solutions for them.

Resource Limitations. One of the key issues is the the limitation of user re-
sources, especially the disk space. Current browser use the default quota of 5 MB
per site for local storage [17]. This limit is to low to create large distributed data
storage even if millions of users are participating. The quota can be configured
in all major browsers, however, changing this setting is not very convenient. The
IndexedDB API [18] is designed for significantly larger data, but it still apply
some form of quotas. Fortunately, the IndexedDB apply only soft quotas and the
browser interactively prompts the user when the limit is to be exceeded. Fur-
thermore, a Quota API [22] is currently being specified by the W3 consortium,
which should provide even more convenient way to manage the quotas.

Another resource that might limit the system is the network connectivity. The
desktop computers are usually connected by some form of wired connection, such
as xDSL (phone lines) or FTTx (dedicated metallic or optical lines). According
to various resources, the average connection speeds are oscillating between 1
and 100 MBps depending on the location. Furthermore, we have to consider
that many technologies (like the ADSL) use asymmetric connections, where the
upload is several times slower than the download.

The storage and the data transfer issues are even more serious if we consider
portable devices such as tablets or smartphones. Regular user hardly notices
if we allocate one gigabyte on a desktop computer, but the same amount of
data cannot be easily taken from a smartphone. Furthermore, mobile devices
are usually connected via cellular networks which are much slower and often
limit the data transfers by fair user policies.

78 Martin Krulǐs, Zbyněk Falt, Filip Zavoral

Volatility of the Clients. Most of the distributed systems expect that the
participating nodes are devoting their efforts to fulfill the objectives of the sys-
tem. Although there are methods of dealing with many forms of failures, the
system usually expects that the nodes are available most of the time. The web
users, on the other hand, connect to the system at their own discretion without
any regards to the system requirements.

The system must employ specific measures to ensure data availability. Pre-
haps the most straightforward solution is to select sufficient data replication
level. More elaborate approach would be to study individual behaviour of the
users and data requests. These strategies will require intensive future research.

Security. The system must provide some guarantees regarding the stored data,
such as persistence, integrity, or privacy. Our distributed data store does not
fulfill any of these requirements, since the clients do not provide any guarantees.
The data may be easily corrupted, erased, or accessed by unauthorized users.
Some of the security requirements may be fulfilled by employing check sums,
security hashes, cryptography, and data replication. However, this topic is too
broad and beyond the scope of this paper.

5 Web Storage Applications

We have projected initial estimates concerning the web storage capacity based
on existing web application and outlined a few possible use cases to illustrate
the applicability of the storage.

5.1 Capacity Analysis

We have based our analysis on the statistical data of Facebook [23], which is
probably the largest web application as it has the most active users. At the
beginning of year 2014, the Facebook had 1.31 billion active users, from which
51.9% used mobile or handheld devices to access the application. The number
of users is expected to grow in the future as it has in the past (e.g., the annual
growth between 2012-2013 was 22%). If we utilize 1 GB on average of each active
desktop user, we could get approximately 600 PB of raw capacity.

Utilizing this raw capacity effectively will be quite a challenging task. Even
the users of such popular application as the Facebook exhibit very irregular
behaviour in visiting the web page. The active users spend about 640 million
minutes each month, which is only one minute per user in average. On the other
hand, 48% of all users connect to the web page on a daily basis.

These statistics suggest that the matter of data replication cannot be solved
by a simple random approach, but careful study of user behaviour has to be
conducted. Furthermore, the application may employ additional methods like
benefits to encourage the users connect and stay on the web page.

HTML5 Distributed Web Storge 79

5.2 Legitimate Usage

The data storage and sharing systems usually require some form of a client
application. If such systems are built on the top of web technologies, they may
provide clients which can be directly used in the web browser without explicit
installation or configuration.

Existing applications, in which the users share some content, can use the dis-
tributed storage as a cache to reduce the data transfers of their internal servers.
For instance, Facebook can use this cache for photographs, Google Doc for doc-
uments, etc. When the data are requested by a user, they may be downloaded
from a peer who is online instead of downloading them from a server.

A different approach can be used by applications which have many users,
but do not require storing or caching large amounts of data. These applications
may offer the capacity of the distributed storage to third parties. The concept
is similar to web advertisement where a web page shows ad banners, however in
this case, the users support the application by donating their own disk space.

5.3 Parasitic Usage

The data storage can be also misused by malicious applications to steal the
disk space from the users. For instance, the idea of acquiring the data storage
at clients by the means of ad banners can be used both legitimately and par-
asitically, depending on whether the user is informed about the intent or not.
However, when used parasitically, the application needs to use quite elaborate
way of user targeting in order to create at least somewhat persistent data storage.

To acquire even more clients, the parasitic storage malware may resort to
exploit vulnerabilities of other web applications. When a victim application is not
correctly protected against script injection attacks [24], the parasitic application
may inject the client code. The users of the victim application then become also
clients of the parasitic distributed storage without realizing it.

6 Conclusions

We have proposed a novel idea how existing HTML5 technologies may be used
or even misused for a distributed data storage. The storage clients require only
modern web browser, which is a piece of software that is present on virtually
every desktop computer. We have implemented prototype framework as a proof
of concept and outlined additional problems that require our attention.

In the future work, we would like to address the remaining problem, especially
analyze the user behaviour. If we are able to predict client up times based on
behavioural models, we will be able to distribute data among the client nodes in
more efficient way. Furthermore, we would like to explore possibilities of creating
distributed database system, that will also distribute the query evaluation plans
and execute them partially on the client nodes.

80 Martin Krulǐs, Zbyněk Falt, Filip Zavoral

References

1. Hickson, I., Hyatt, D.: Html5. W3C Working Draft, May (2011)
2. Pichai, S., Upson, L.: Introducing the Google Chrome OS. The Official Google

Blog (2009)
3. Chien, A., Calder, B., Elbert, S., Bhatia, K.: Entropia: architecture and per-

formance of an enterprise desktop grid system. Journal of Parallel Distributed
Computing 65 (2003) 597–610

4. Univ. of Berkeley: SETI@Home. http://setiathome.ssl.berkeley.edu/ (2006)
5. Reginald, C., Putra, G., Belloum, A., Koulouzis, S., Bubak, M., de Laat, C.: Dis-

tributed Computing on an Ensemble of Browsers. (2013)
6. W3C: Web Workers. http://www.w3.org/TR/workers/
7. Thanh, T., Mohan, S., Choi, E., Kim, P.: A taxonomy and survey on distributed

file systems. NCM 08, Fourth International Conference on Networked Computing
and Advanced Information Management (2008)

8. Hasan, R., Anwar, Z., Yurcik, W., Brumbaugh, L., Campbell, R.: A survey of peer-
to-peer storage techniques for distributed file systems. International Conference
on Information Technology: Coding and Computing, ITCC 2005 2 (2005)

9. Adya, A., Bolosky, W., Castro, M., Cermak, G., Chaiken, R., Douceur, J., Howell,
J., Lorch, J., Theimer, M., Wattenhofer, R.: Farsite: Federated, available, and
reliable storage for an incompletely trusted environment. Proceedings of the 5th
Symposium on Operating Systems Design and Implementation (2002)

10. Ma, X., Vazhkudai, S.S., Zhang, Z.: Improving data availability for better access
performance: A study on caching scientific data on distributed desktop worksta-
tions. Journal of Grid Computing (2009)

11. Beberg, A.L., Pande, V.S.: Storage@home: Petascale Distributed Storage. Parallel
and Distributed Processing Symposium (2007)

12. Dabek, F., Kaashoek, M., Karger, D., Morris, R., Stoica, I.: Wide-area cooperative
storage with cfs. Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP 01) (2001)

13. Muthitacharoen, A., Morris, R., Gil, T., Chen, B.: Ivy: A read/write peer-to-peer
file system. Proceedings of 5th Symposium on Operating Systems Design and
Implementation (2002)

14. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A Distributed Anony-
mous Information Storage and Retrieval System. Designing Privacy Enhancing
Technologies. Lecture Notes in Computer Science (2001)

15. Pouwelse, J.e.a.: The bittorrent p2p file-sharing system: Measurements and anal-
ysis. Peer-to-Peer Systems (2008) 205–216

16. : DC++. http://dcplusplus.sourceforge.net/ (2013)
17. W3C: Web Storage. http://www.w3.org/TR/webstorage/
18. W3C: Indexed Database API. http://www.w3.org/TR/IndexedDB/
19. McCarthy, P., Crane, D.: Comet and Reverse Ajax: The Next-Generation Ajax

2.0. Apress (2008)
20. W3C: The WebSocket API. http://dev.w3.org/html5/websockets/
21. W3C: WebRTC 1.0: Real-time Communication Between Browsers.

http://dev.w3.org/2011/webrtc/editor/webrtc.html
22. W3C: Quota Management API. https://dvcs.w3.org/hg/quota/raw-

file/tip/Overview.html
23. Statistic Brain Research Institute: Facebook Statistics from 1.1.2014.

http://www.statisticbrain.com/facebook-statistics/
24. Spett, K.: Cross-site scripting. SPI Labs (2005)

An Application of Process Mining by Sequence
Alignment Methods to the SAP Invoice Process

Example

Jakub Štolfa1, Svatopluk Štolfa1, Kateřina Slaninová1,2, Jan Martinovič1,2

1 Department of Computer Science, FEI, VŠB - Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic
2 IT4Innovations, VŠB - Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic
{jakub.stolfa, svatopluk.stolfa, katerina.slaninova,

jan.martinovic}@vsb.cz

An Application of Process Mining by Sequence
Alignment Methods to the SAP Invoice Process

Example

Jakub Štolfa1, Svatopluk Štolfa1, Kateřina Slaninová1,2, Jan Martinovič1,2

1 Department of Computer Science, FEI, VŠB - Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic
2 IT4Innovations, VŠB - Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic

{jakub.stolfa, svatopluk.stolfa, katerina.slaninova,

jan.martinovic}@vsb.cz

Abstract. Process mining started to be a very useful tool how to check
processes in companies. The only thing that has to be done is to have
at least some log about the activities performed by the software system.
There are many methods that can be used then to analyze this data
obtained from the log. Every usage of yet not used or rarely used method
opens up new perspectives in process mining and reveals the unknown
potential of its application to the practice. In this paper we have applied
sequence alignment methods to the real process example and examined
what results and benefits could be obtained from such usage. The main
purpose of this paper is to adjust methods for sequence alignment to be
able to determine similarity between the business processes.

Keywords: Sequence Alignment, Process Mining, SAP

1 Introduction

Generally, information systems support business processes. Enactments of the
processes are partly managed by the systems, partly managed by users decisions
and activities. It is not easy to understand whether the specific process runs
efficiently, because usually various activities are processed in parallel and process
definition allows plenty of process enactment variations. Our task was to analyze
specific process with request to suggest steps for its simplification, curtailment
and enact the process cheaper.

The research described in this paper is based on our previous work that in-
cluded process reconstruction and path analysis [15]. According to this previous
research we were able to adjust the process, recognize the false usage of the
process, analyze malfunctions in the reality etc. Other previous research closely
related to this paper has been done It was focused on the analysis of the pro-
cess data that involved usage of the sequence alignment methods [9]. The aim
of this paper is focused on adjusting of our approach presented in mentioned

J. Pokorný, K. Richta, V. Snášel (Eds.): Dateso 2014, pp. 81–90, ISBN 978-80-01-05482-6.

82 Jakub Štolfa, Svatopluk Štolfa, Kateřina Slaninová, Jan Martinovič

previous work to the business process area with the consideration to its spe-
cific characteristics, especially to adjust methods for sequence alignment to be
able to determine similarity between the business processes. The approach was
tested and used in other research areas yet, for example in e-learning area [12],
in analysis of behavior of agents during the simulation [14] and in analysis of
user behavior on the web [13].

The paper is organized as follows: Section 2 introduces the state of the art;
Section 3 describes the process that is analyzed and log obtained from the com-
pany, Section 4 depicts the experiment that we have performed, describes the
preparation of data that we have obtained, shows the usage of our process mining
method and explains obtained results; concluding Section 5 provides a summary
and discusses the planned future research.

2 State of the art

Business process definitions are sometimes quite complex and allow many varia-
tions. All of these variations are then implemented to supportive systems. If you
want to follow some business process in a system, you have many decisions and
process is sometimes lost in variations. Modeling and simulations can help you
to adjust the process, find weaknesses and bottlenecks during the design phase
of the process.

The idea of process mining was introduced by Aalst in 2004 [1, 2]. This area
of the research has been developing during the years, lot of methods were in-
troduced to this topic. In 2005, ProM tool was introduces [3]. ProM aggregates
methods and approaches in this area of study. There are a lot of papers that
describe new ways or improvements of methods, techniques and algorithms used
in the process mining, but only several papers are focused on the case studies
[8].

In the area of process mining the methods of the sequence alignment were in-
troduced by Esign and Karagoz [4] in 2013. Focus of their work was quantitative
approach for performing process diagnostics. The approach uses sequence align-
ment methods for delta analysis. It is comparison of actually performed process
and prescriptive reference model [1]. Our paper provides another usage of the
sequence alignment methods. We use these methods for comparison of extracted
processes to find similarity in the process executions, i.e. some patterns of the
process.

The basic approach to the comparison of two sequences, where the order of
elements is important, is The longest common substring method (LCS). This is
used in exact matching problems [6]. It is obvious from the name of the method
that its main principle is to find the length of the common longest substring. The
LCS method respects the order of elements within a sequence. However, the main
disadvantage of this method is that it can only find the identical subsequences,
which meet the characteristics of substrings.

Unlike substrings, the objects in a subsequence might be intermingled with
other objects that are not in the sequence. The longest common subsequence

An Application of Process Mining by Sequence Alignment Methods . . . 83

method (LCSS) allows us to find the common subsequence [7]. Contrary to the
LCS method, the LCSS method allows (or ignores) these extra elements in the
sequence and, therefore, it is immune to slight distortions.

The third selected method was The time-warped longest common subse-
quence (TWLCS) [5]. This method combines the advantages of the LCSS method
with dynamic time warping [10]. Dynamic time warping is used for finding the
optimal visualization of elements in two sequences to match them as much as
possible. This method is immune to minor distortions and to time non-linearity.
It is able to compare sequences, which are for standard metrics, evidently not
comparable.

The methods LCS and LCSS used for the comparison of sequences find the
longest common subsequence z of compared sequences x and y, where (z ⊆
x) ∧ (z ⊆ y). The relation weight wseq(x, y) between the sequences x and y was
counted by Equation 1:

wseq(x, y) =
l(z)2

l(x)l(y)

Min(l(x), l(y))2

Max(l(x), l(y))2
, (1)

where l(x) and l(y) are lengths of the compared sequences x and y, and l(z) is
a length of a subsequence z. Equation 1 takes account of the possible difference
between l(x) and l(y). Due to this reason, z is adapted so that wseq(x, y) is
strengthened in the case of similar lengths of sequences x and y, and analogically
weakened in the case of higher difference of l(x) and l(y). For the methods LCS
and LCSS, wseq meets all the similarity conditions: wseq ≥ 0, wseq(x, x) = 1,
wseq(x, x) > wseq(x, y) and wseq(x, y) = wseq(y, x).

The output z is only the sequence which characterizes the relation between
the sequences x and y for T-WLCS method. Therefore, wseq(x, y) does not meet
all the similarity conditions due to its characteristics. Respectively, it is possible
that wseq(x, y) > wseq(x, x). Although we know that wseq(x, y) is not a similarity
for T-WLCS method, due to a simplification, the ’sequence similarity’ will be
used as a relation weight wseq(x, y) between the sequences x and y for all the
methods of sequence comparison in the following text.

As a complementary method for comparison of sequences we have used com-
mon method used in informational retrieval, Leventhtein distance [11].

3 Process Context

The analyzed company runs SAP system in five countries and process approx.
30,000 supplier invoices per year. Examined business process of the invoice verifi-
cation is implemented in SAP ERP and SAP DMS, user activities are controlled
by SAP business workflow. Users participate in the invoice verification workflow
in several different roles (creator, accountant completion, approver, and accoun-
tant decision and posting). Generally, it is process where the accountant should
create the invoice, verify it, send to the approvers and finally when he gets it
back he does invoice posting.

84 Jakub Štolfa, Svatopluk Štolfa, Kateřina Slaninová, Jan Martinovič

We have loaded the log of the process between 1/1/2012 and 6/30/2012, to-
tally we loaded 37,991 records for adjusting. Detailed description of the obtaining
log and data preprocessing is described in our previous work [15].

4 An Application of the Sequence Alignment

The main purpose of this paper is to adjust methods for sequence alignment to
be able to determine similarity between the business processes. The first step
of the experiments was focused on one characteristic of the business processes:
the duration of the events. In sequence alignment area, this problem is not
common. That is the main reason for adjustment of the methods to this area. We
have performed an experiment where we made decision about the categorization
of the duration of events, prepared four types of sequences from the different
viewpoints, analyzed the prepared sequences and applied the sequence alignment
methods to determine the similarities of the sequences. Finally, we have selected
the right method for our purposes and analyzed the applicability of our approach
on the example. The following subsections describe the particular steps in detail.

4.1 Data Preparation and Categorization - Duration Category

When we look at the histogram of all events that is depictured at Fig. 1, we
can see that there are cases that where completed in one day, then cases that
last two days etc. We can see interesting distribution of the process duration on
this histogram that looks like the waves. The waves are caused by the fact that
all events of this process are performed in window of approximately 8 working
hours each day. Then there is a 16 hours delay till the next working day window
appears.

We needed to categorize the duration of the events. After the consultation
with the company, we have decided to set three categories for the event duration.
First category is the process that last up to the 168 hours. It means that they
were started in the window of one working week and ended the same week or
the week after. Next, the second category is the category of processes that last
from one week to one month. The last category is the category of all processes
that last more than one month. Since there are four events in the process, one
process should last up to 36 hours so all four together last up to one week.
Similar categorization principle works for other categories too.

We set up aliases for the type of the events in the sequence. It means that
Verification event is in the sequence like V, Creation event is C, Approval is A,
and Posting is P.

4.2 Types of Event Sequences

According to information from the data log we could analyze information in
detail and from different points of view. We have defined four types of points of
view, or we can say type of event cases:

An Application of Process Mining by Sequence Alignment Methods . . . 85

Fig. 1. Histogram of all events

– Type A - Events without Time and Users,
– Type B - Events with Time and without Users,
– Type C - Events without Time and with Users,
– Type D - Events with Time and Users.

Case type A focuses on the topological structure of the process only and does
not care about meta-information of the events like time, or duration of the event,
or user that performs particular event.

Example of the sequence for the case type A: 0,C;V;A;A;S;, where sequence
is defined by the following structure CaseID, event1;event2;event3;...;eventn

Case type B focuses on the topological structure of the process and combines
it with the information about time, or duration, of the events. That can bring
us another point of view to the process. Thanks to this we can see duration of
the whole process, or its events. Tagging of the duration of the events is made
by repeating the symbol of the event in the sequence. How much is the symbol
repeated depends on the duration category of the particular event. If the event
fits in the category three than the symbol is repeated three times, if the event fits
in the category two than the symbol is repeated two times and for the category
one is symbol repeated one time.

Example of the sequence for the case type B: 0,C;C;V;A;A;S;, where sequence
is defined by the following structure: CaseID, event1; event1 (repetition

according to the duration cat.); event2; ...; eventn.
Case type C combines topological structure of the process and metainfor-

mation about the users. It brings us interesting view to the users involved in
particular process.

Example of the sequence for the case type C: 0,C USER068; V USER068;

A USER272; S USER068;, where sequence is defined by the following structure:
CaseID, event1 originator of the event1; event2 originator of the event2;

event3 originator of the event3;...; eventn originator of the eventn.
Case type D combines all possible views to the process - topological, time

view and users view. It can bring us superb and surprising view to the process
that is not possible to see at the first glance.

Example of the sequence for the case type D: 0,C USER260;

C USER260;V USER260;A USER074;A USER202;S USER260;, where sequence is

86 Jakub Štolfa, Svatopluk Štolfa, Kateřina Slaninová, Jan Martinovič

defined by the following structure: CaseID, event1 originator of the

event1(repetition according to the duration category); event2 originator

of the event2; event3 originator of the event3;...; eventn originator of

the eventn.
Thanks to the different case types we can discover processes that take least

time, most time to accomplish it, or we can find deviations in the process execu-
tion that is not possible to see only in the topological view. We can see if some
users take more time to execute event, or if some users communicate more or
less, etc.

4.3 Information about sequence types sequence distribution

We have made sequence distribution diagrams for four case types. Some basic
interesting information about particular process can be identified here.

Fig. 2 on the left side shows histogram of the most frequented sequences. His-
togram nicely shows distribution of the frequency of the particular sequences. It
is focused to the case type A. We can see that most frequented sequence in the ex-
amined process is sequence C,V,A,A,S. Second most frequented is C,V,A,A,A,A,S,
etc. We can also discover the least frequented sequences that can be identified
as some deviations in the process.

Right side of the Fig. 2 shows histogram which is focused to the case type
B. There we can see that time (duration of events) influences the amount of
different sequences.

Fig. 3 depictures on the left side histogram of case type C and on the right side
case type D the sequences with and without time, but with the identification of
users (performers of the events). This information also influences the difference
between the sequences.

Fig. 2. Left side - histogram Type A, right side - histogram Type B

4.4 Application of sequence alignment methods

We have used four methods to determine the similarity of sequences. Similar-
ity was determined by the equation 1. The main purpose for determining the
sequence similarity is that we would like to find similar types of sequences (set

An Application of Process Mining by Sequence Alignment Methods . . . 87

Fig. 3. Left side - histogram Type C, right side - histogram Type D

business processes) as well as the deviations. The four different types of sequences
allow us a whole new insight into the performed processes that cannot be done
by conventional approaches.

Similarity between sequences was determined by several selected methods.
The aim was to find the score, which can show us how similar the event sequences
in the case are. The weight distribution in Fig. 4 and Fig. 5 shows us that each
method has its specific behavior and due to this the score which determines the
similarity between the sequences is different for each method. The advantages
and disadvantages describes the following text.

Levenstein distance method does not respect the order of events within the
sequences. It only represents amount of necessary steps to change one sequence
to another. LCS method respects the events order within the sequences. How-
ever, it is suitable, when we can find identical sequences. If the sequences have
even a small difference, the similarity weight changes significantly. LCSS method
is more tolerant to slight distortions inside the sequences. Of course, it respects
the order of events within the sequences. In comparison with LCS, if we add one
more event into the sequence, we can find the change of weight similarity, but
not as significant then using LCS method. T-WLCS method has as similar be-
havior as LCSS method. Besides the event order in sequences, T-WLCS method
emphasizes the event recurrence within the sequence. However, we must remind
that the sequence weight is not similarity for T-WLCS method, it is only a score.

Histograms at Fig. 4 and Fig. 5 show us a distribution of weights for all
four case types. These histograms show in fact the applicability of used methods
to our example. We can see that the Levensthein and LCS methods are not
very suitable for our purposes, because the distribution for these methods does
not show much variability, weight distribution is closely concentrated. LCSS
and T-WLCS methods seemed to be more promising and we have analyzed the
similarities between the sequences in more detail.

Analysis of the result showed that T-WLCS is seems to be more appropriate
for our purpose. We have based our decision also on our previous researches that
showed suitability of these methods [29, 30].

88 Jakub Štolfa, Svatopluk Štolfa, Kateřina Slaninová, Jan Martinovič

Fig. 4. Histogram - comparison of the methods - Type A(left side), Type B(right side)

Fig. 5. Histogram - comparison of the methods - Type C(left side), Type D(right side)

4.5 Results

Left side of Fig. 6 visualizes similarity between particular sequences of case
type A. Similarity was analyzed by T-WLCS method which we choose like the
best representative of the tested methods according to our research that was
mentioned in the section 4.4 The structure of the graph show us that where we
are able to discover which sequences are more similar than others and what are
the connections between them. In the future work we will analyze these parts and
we will try to find why is it happening and what it means in the real business.

Right side of Fig. 6 visualizes similarity between particular sequences of case
type B. That means there is involved time parameter. We can see that there are
some differences according graph on the left side of the Fig. 6. In any case the
result is that time parameter have some impact to the examined structure and
can show us another dependencies and clusters. That is the interesting result
which is in one hand essential and expectable but in the other hand bring us
to another view to the examined process that we are not able to see at the
beginning of analysis. There are a lot of possibilities to future work that we can
do.

An Application of Process Mining by Sequence Alignment Methods . . . 89

Fig. 6. Left figure shows graph similarity of sequences of sequence distribution Type
A (T-WLCS method), Right figure shows Graph similarity of sequences of sequence
distribution Type B (T-WLCS method)

5 Conclusion and Future Work

Obtained results show that the proposed approach can be successfully used for
the data mining. We can relatively easily reach many types of findings that have
to be analyzed then by the customer and the reasons why something is made
differently or some process is made in two different ways has to be found.

Our approach allowed us to involve time and user metadata to the examina-
tion and we were able to found many interesting results. For example the concrete
person behavior can be showed and analyzed what are her/his process instances
and the behavior pattern. The goal of our paper was to find out whether we can
use the proposed approach to this application domain and how. We have found
that the application is possible after the described adjustment and brings us an
opportunity to obtain interesting results from the data logs that could not have
been seen before by other methods or their execution is difficult.

We would like to continue with the extension of this approach in the future.
We want to find out what types of results we can obtain by the usage of different
methods, examine the methods and accustom them for the usage on different
real examples. Detailed interpretation of different case studies will help us then
to determine which method and what views will be used then for data mining
and real process examination. The idea is to have a very good control of the
process by the usage of the data about already performed process instances.

Acknowledgments.

This work was supported by the project (CZ.1.05/1.1.00/02.0070), funded by
the European Regional Development Fund and the national budget of the Czech
Republic via the Research and Development for Innovations Operational Pro-
gramme, by the project New creative teams in priorities of scientific research, reg.
no. CZ.1.07/2.3.00/30.0055, supported by Operational Programme Education
for Competitiveness and co-financed by the European Social Fund and the state
budget of the Czech Republic and by the internal grant agency of VŠB – Tech-
nical University of Ostrava, Czech Republic, under the projects no. SP2014/157

90 Jakub Štolfa, Svatopluk Štolfa, Kateřina Slaninová, Jan Martinovič

”Knowledge modeling, simulation and design of processes” and no. SP2014/154
”Complex network analysis and prediction of network object behavior”.

References

1. W.M.P. Van der Aalst, A.J.M.M. Weijters, L. Maruster: Workflow Mining: Dis-
covering Process Models from Event Logs. Transaction on Knowledge and Data
Engineering 16(9), 11281142, 2004.

2. W.M.P. Van der Aalst, A.J.M.M. Weijters, Workflow Mining: Process mining: A
research agenda Computers in Industry, 231-244, 2004.

3. Van Dongen, B.F., De Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
Van Der Aalst, W.M.P. 2005, ”The ProM framework: A new era in process mining
tool support”, Lecture Notes in Computer Science, pp. 444.

4. E. Esgin, P. Karagoz. Sequence alignment adaptation for process diagnostics and
delta analysis, 8th International Conference HAIS, 191-201, 2013.

5. A. Guo and H. Siegelmann. Time-Warped Longest Common Subsequence Algo-
rithm for Music Retrieval. In 5th International Conference on Music Information
Retrieval ISMIR, 258261, 2004.

6. D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 2008.

7. D. S. Hirschberg. Algorithms for the Longest Common Subsequence Problem. J.,
ACM, 24:664675, October 1977.

8. Jochen De Weerdt, Annelies Schupp, An Vanderloock, Bart Baesens, Process Min-
ing for the multi-faceted analysis of business processesA case study in a financial
services organization, Computers in Industry, Volume 64, Issue 1, January 2013,
Pages 57-67, 2012

9. T. Kocyan, J. Martinovič, P. Dráždilová, K. Slaninová, Searching Time Series
Based On Pattern Extraction Using Dynamic Time Warping. In Dateso, Pisek,
Czech Republic, 129-138, 2013.

10. M. Muller. Information Retrieval for Music and Motion. Springer, 2007.
11. X. Shi and C. C. Yang. Mining Related Queries from Search Engine Query Logs.

In 15th International Conference on World Wide Web, 943944, NY, USA, 2006.
12. K. Slaninová, T. Kocyan, J. Martinovič, P. Dráždilová, V. Snášel. Dynamic Time

Warping in Analysis of Student Behavioral Patterns. In Dateso 2012, Zernov,
Czech Republic, Vol. 837, 49-59, 2012.

13. K. Slaninová, J. Martinovič, T. Novosad, P. Dráždilová, L. Vojáček, V. Snášel.
Web Site Community Analysis Based on Suffix Tree and Clustering Algorithm. In
IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intel-
ligent Agent Technology - Workshops, WI-IAT, IEEE Computer Society, 110-113,
2011.

14. K. Slaninová, J. Martinovič, R. Šperka, P. Dráždilová. Extraction of Agent Groups
with Similar Behaviour Based on Agent Profiles. In 12th IFIP TC8 Interna-
tional Conference on Computer Information Systems and Industrial Management,
CISIM, Springer-Verlag, Vol. 8104, 348-357, 2013.

15. J. Štolfa, M. Kopka, S. Štolfa, O. Koberský, V. Snášel. An Application of Process
Mining to Invoice Verification Process in SAP, In 4th International Conference
on Innovations in Bio-Inspired Computing and Applications, IBICA 2013, 61-74,
2014.

QuickDB – Yet Another Database Management
System??

Radim Bača, Peter Chovanec, Michal Krátký, and Petr Lukáš

Department of Computer Science, FEECS, VŠB – Technical University of Ostrava
17. listopadu 15, Ostrava, 708 33, Czech Republic

{radim.baca,peter.chovanec,michal.kratky,petr.lukas}@vsb.cz

QuickDB – Yet Another Database Management
System??

Radim Bača, Peter Chovanec, Michal Krátký, and Petr Lukáš

Department of Computer Science, FEECS, VŠB – Technical University of Ostrava
17. listopadu 15, Ostrava, 708 33, Czech Republic

{radim.baca,peter.chovanec,michal.kratky,petr.lukas}@vsb.cz

Abstract. Although DBMS (Database Management Systems) are of-
ten hidden for a user, they are a part of many applications utilized in
day-by-day life. In general, we can suppose two main types of DBMS:
OLTP (On-Line Transaction Processing) and OLAP (On-Line Analytical
Processing). We can also distinguish another classification related to the
connection of a client and DBMS: client-server and embedded DBMS.
The embedded DBMS enable to achieve the maximum performance since
an often slow network connection is not used. As a result, they are uti-
lized by in-memory computations where the maximum throughput is
required. Although it seems that a lot of high quality DBMS exist and
another DBMS are not required, there is not a system to meet all de-
mands of the real world. In this paper, we introduce our prototype of
embedded database system called QuickDB. We show that it includes a
wide variety of data structures and it provides more efficient performance
in many cases compared to up-to-date (embedded) DBMS.

1 Introduction

Although DBMS (Database Management Systems) [9, 6] are often hidden for a
user, they are a part of many applications used in day-by-day life. In general,
we can suppose two main types of DBMS different in the workload for which
they are designed: OLTP (On-Line Transaction Processing) and OLAP (On-Line
Analytical Processing). Whereas the first type is mainly used by information sys-
tems where a user requires a support of transaction processing [9], the second
type is used by, for example, business intelligence applications [15] or some com-
putations and analysis where data structures of DBMS are utilized to manage
data. We can also distinguish another classification related to the connection of
a client and DBMS: client-server and embedded DBMS. The embedded DBMS
enable to achieve the maximum performance since an often slow network con-
nection is not used, therefore, they can be utilized in the case of in-memory
computations where the maximum data throughput is required.

The major representatives of the client-server DBMS are the following sys-
tems: Oracle Database [18], Microsoft SQL Server [14], MySQL [16], PostgreSQL [21],

? This work is partially supported by SGS, VŠB – Technical University of Ostrava,
No. SP2014/211, Czech Republic.

J. Pokorný, K. Richta, V. Snášel (Eds.): Dateso 2014, pp. 91–99, ISBN 978-80-01-05482-6.

92 Radim Bača, Peter Chovanec, Michal Krátký, Petr Lukáš

Firebird [8] and others. The major representatives of the embedded DBMS are
the following systems: Microsoft Access1, SQLite [20], Berkeley DB [17], eX-
tremeDB2 and so on. When we consider only relational DBMS, many database
systems have appeared during 35 years of their development (see the genealogy
of relational DBMS [12]).

Although it seems that a lot of high quality DBMS exist and another DBMS
are not required, there is not a system to meet all demands of the real world.
For example, Berkeley DB provides the high performance of the B-tree and the
paged queue, but it does not support any multidimensional data structure. On
the other hand, in the case of libraries including an R-tree implementation (see
Table 1), they support especially in-memory implementations, which penalizes
them in the case of huge data. Moreover, they do not often support any other
data structures. In this paper, we introduce a long-time project of the Database
Research Group3, a prototype DBMS called QuickDB [5]. It includes a wide
variety of data structures and it provides more efficient performance in many
cases compared to up-to-date DBMS. In Table 1, we show a comparison of
individual features of selected DBMS and libraries. We can see that there are only
two DBMS supporting all features: QuickDB and SQLite. However, SQLite do
not use any cache buffer for data; only the operating system’s cache is used during
file operations. We must note that the table does not consider all features of
DBMS (a support of transaction processing, availability for more platforms, e.g.
UNIX and Windows, and so on). Since a performance comparison of embedded
and client-server DBMS is rather problematic, QuickDB is compared only with
embedded DBMS and libraries.

Table 1. Summary of supported features for all database systems and li-
braries compared in this article

DBS/Library B-tree Paged Queue R-tree 32 bit 64 bit In Memory/Disk
(Heap table) Only/Cache Buffer

QuickDB [5] X X X X X Cache Buffer

Berkley DB [17] X X × X X Cache Buffer

SQLite [20] X X X X X Disk Only

Boost [4] × X X X X In Memory

libSpatialIndex [11] × × X X X In Memory/
Disk Only

RTreeStar [19] × × X X X In Memory

Superliminal Rtree [7] × × X X X In Memory

1 http://office.microsoft.com/en-us/access/
2 http://www.mcobject.com/extremedbfamily.shtml
3 http://db.cs.vsb.cz/

QuickDB – Yet Another Database Management System? 93

This paper is organized as follows. In Section 2, we describe an architecture
of QuickDB. In Section 3, we put forward a comparison of QuickDB with other
DBMS. In the last section, the paper content is resumed and the possibility of
a future work is outlined.

2 QuickDB

In Figure 2, we see an architecture of QuickDB4. The cache buffer preserves
pages of data structures to prevent disk accesses when a page is required. The
overhead of the page size compared to the size on a disk is approximately 20%,
i.e. the in-memory page size is 9,830B in the case of the 8kB page size. When
a data structure operation returns a result, e.g. the range query, the result is
stored in a ResultSet and returned to a user. After the user closes the ResultSet,
it is returned to QuickDB.

Cache Buffer

QuickDB
Core

Disk

B+-tree

R-tree

ResultSet 0

ResultSet n

...

Paged Queue

Fig. 1. An architecture of QuickDB

There exists an implementation of the B-tree, R-tree, and paged queue uti-
lizing the core of QuickDB. The goal of QuickDB is to provide the maximum
performance instead of an implementation of rich functionalities like a support
of methods stored in a database and so on.

4 QuickDB is implemented in C++.

94 Radim Bača, Peter Chovanec, Michal Krátký, Petr Lukáš

3 Comparison of DBMS

3.1 Testing Environment

We perform a set of various tests where we compare our QuickDB with state-of-
the-art implementations in each area. By the term area we mean a data structure
type. Moreover, in Section 3.4, we show results of an application of QuickDB –
a native XML database.

All experiments are executed in a single thread on an Intel Xeon 2.9 GHz
CPU. We use a real data set of meteorological measurements of the Czech Hy-
drometeorological Institute5, where the dimension of each record is 5. The collec-
tion contains 57,852,305 records and the total size of its textual representation
is 1.12 GB. Queries used during the tests are randomly generated.

3.2 Comparison of Basic Data Structures

In this test, we compare the performance of two QuickDB basic data structures:
the B-tree and the heap table (paged queue). The B-tree is a traditional data
structure used by all relational DBMS [2]. The heap table is also supported by
all relational DBMS and we test just a sequential scan in the heap table using a
cursor.

B-tree We compare the QuickDB’s B-tree performance of the insert and point
query operations with the Berkeley DB and SQLite here. The performance of the
insert operation can be influenced by several different aspects where we consider
the following: (1) whether the data fit into the main memory cache or not, and
(2) whether the data are sorted before the insert or not. All combinations for
each B-tree are tested and the results are summarized in Table 2.

We can observe that SQLite performs worst in all cases. An overhead of
SQLite is probably induced by the SQL interface and lack of its own buffer
cache. Clearly, QuickDB and Berkeley DB have very similar performance on our
data set, however, QuickDB slightly outperforms Berkeley DB in all tests. The
only disadvantage of QuickDB is its a slightly bigger index.

Heap Table (Paged Queue) Now we compare the performance of the QuickDB’s
heap table with the Berkeley DB’s queue. We use the Berkeley DB’s queue since
it supports the insert and sequential scan operations. The insert operation is
preformed with limited memory, however, it is not very important here since
only a sequential write is utilized. Then we perform the sequential scan with
both cold and warm caches. The term warm cache means that all the data are
already stored in the main memory.

Results are shown in Table 3. QuickDB is twice faster during the insert than
Berkeley DB. Surprisingly, the performance of the Berkeley DB queue scan is

5 http://www.chmi.cz/

QuickDB – Yet Another Database Management System? 95

Table 2. The B-tree comparison

Operations QuickDB Berkeley DB SQLite

Sorted insertion
531 445 173

80% of data [thousands per second]
fit in the main Random insertion

289 264 21
memory [thousands per second]

Sorted insertion
674 526 173

All data [thousands per second]
fit in the main Random insertion

357 312 21
memory [thousands per second]

Queries [s] 0.35 0.38 0.64

Index size [GB] 3.5 3.39 2.57

the same no matter whether the cache is cold or not. It leads us to a conclusion
that Berkeley DB uses the OS file system cache which influences the results.
However, QuickDB significantly outperforms Berkeley DB during in-memory
sequential scan. On the other hand, the size of the Berkeley DB index file is
quarter of the data set size, whereas, the QuickDB index file is equal to the data
size.

Table 3. The heap table (page queue) comparison

QuickDB Berkeley DB

Inserting [thousands
2,244 1,468

per second]
Sequential scan (warm) [s] 4.64 21.1
Sequential scan (cold) [s] 27.11 21.15

Index size [GB] 1.12 0.25

3.3 Comparison of Multidimensional Data Structures

In this section, we compare a performance a multidimensional data structure
called the R-tree [10, 3] implemented in QuickDB with some other existing im-
plementations. We compare the performance of both insert and range query
operations. In the experiments, we use three collections of queries (a detail de-
scription is shown in Table 4).

The performance of inserting and query processing is compared with several
libraries, namely Boost [4], libSpatialIndex [11], RTreeStar [19], Superliminal
Rtree [7], and SQLite [20] as a representative of embedded database systems.
Relational DBMS based on a client-server architecture (Oracle, PostgreSQL,
MySQL, and so on) have not been taken into account since it is rather problem-
atic to compare embedded and client-server DBMS.

96 Radim Bača, Peter Chovanec, Michal Krátký, Petr Lukáš

Table 4. A basic characteristic of query groups

Query Group Result Size Avg. Result Size

1 1 1.0

2 〈2, 999〉 302.5

3 〈10000, 99,999〉 45,172

Since all tested libraries (except QuickDB and libSpatialIndex) support only
an in-memory storage, no secondary storage has been used during the exper-
iments and we do not measure the size of the indices. The page size is 8kB
in all cases. In Table 5, we see that QuickDB and Boost provide the highest
performance. While Boost is more efficient in the case of the insert operation,
QuickDB slightly outperforms it in the case of query processing. We see that
other implementations are outperformed by QuickDB and Boost.

Table 5. The R-tree comparison

Insert Time Query Processing Time
DBMS/Library [thousands of [thousands of quries/s]

inserts/s] QG1 QG2 QG3

QuickDB 68.3 38.9 19.8 1.7

Boost 97.2 33.3 20.0 1.40
libSpatialIndex 12.2 18.5 13.2 0.74
RTreeStar 56.53 20.8 14.7 0.43
Superliminal Rtree 70.2 10.0 6.60 1.30
SQLite 66.4 17.30 12.10 0.76

3.4 Comparison of QuickDB Application

In this section, we present an application of the QuickDB framework. It is a na-
tive XML database called QuickXDB introduced in [13]. We briefly discuss how
the QuickDB framework is exploited here and compare it with some other solu-
tions.

Data structures There are two indexes representing an XML data collection,
namely document index and partition index [1]. The document index serves as
a primary access path since it fully describes both tree structure and actual text
values of an XML collection6. We exploit two persistent data structures of the
QuickDB framework: the B-tree and the paged queue.

6 The reader is expected to understand the terms of the XML tree data model.

QuickDB – Yet Another Database Management System? 97

The B-tree of the document index has a node label as a key. There are two
fundamental purposes of the node label: (1) it uniquely identifies each XML
data node and (2) we are able to resolve a structural relationship of two nodes,
e.g., one is a parent of another. The leaf nodes of the B-tree contain tags (node
names) of XML nodes and pointers into the paged queue where text values are
stored. The records for XML nodes in the leaf nodes of the B-tree are stored in
the same order as in the original XML document or collection. Consequently,
we can profit from using range queries to obtain the whole subtree of an XML
node.

The partition index is the secondary access path. It is also a combination
of the B-tree and the paged queue. However, here a tag name serves as a key
and items of the B-tree leaf nodes include pointers to paged queues where cor-
responding node labels are stored in the document order.

Experimental evaluation We have performed a time comparison with 2 other
native XML databases: MonetDB7 and BaseX8. We have picked up 4 data col-
lections: XMark9 with factor f = 10 (1.1 GB), Swissprot (109 MB), TreeBank
(82 MB), and DBLP (127 MB)10.

For each collection, we have generated 3 sets of 50 distinct random XPath
queries oriented purely on searching structural relationships between XML nodes.
The sets differ in the upper range of their selectivity11: (1) selectivity up to 100%,
(2) selectivity up to 10%, and (3) selectivity up to 1%. Different query selectivity
can cause a different utilization of indexes. The complexity of queries vary for a
different number of location steps (from 2 to 11) and also for a different number
of branching predicates (from 0 to 4). Both ancestor-descendant and parent-child
tree axes are randomly used. Branching predicates contain either single XPath
subqueries or more subqueries connected by a logical conjunction.

Summarized results are presented in Figure 2. The values on the vertical
axis stand for the total processing time of a set of queries. Each single query was
evaluated 5 times, only arithmetic means of 3 times (without the best and the
worst case) are considered.

We can see that our QuickXDB outperforms BaseX on all query sets ex-
cept XMark with selectivity up to 1% and 10%. We also evaluate queries with
the higher selectivity (up to 1% and 10%) on DBLP, Swissprot, and TreeBank
collections faster than MonetDB. On the Swissprot query set with selectivity
up to 1%, QuickXDB is more than 20× faster than BaseX and 8× faster than
MonetDB. On the other hand, our QuickXDB is approximately 2.5× slower than
MonetDB on DBLP and XMark query sets with selectivity up to 100% and 3.3×
slower than BaseX on XMark with selectivity up to 10%.

7 http://www.monetdb.org/XQuery/
8 http://www.basex.org
9 http://www.xml-benchmark.org/

10 http://www.cs.washington.edu/research/xmldatasets/www/repository.html
11 If we for example have a query //a[./b]//c, selectivity can be computed as

count(//a[./b]//c) div count(//c)

98 Radim Bača, Peter Chovanec, Michal Krátký, Petr Lukáš

0

5

10

15

20

25

30

(1
0

0
%

)
D

B
LP

(1
0

%
)

D
B

LP

(1
%

)
D

B
LP

(1
0

0
%

)
Sw

is
sp

ro
t

(1
0

%
)

Sw
is

sp
ro

t

(1
%

)
Sw

is
sp

ro
t

(1
0

0
%

)
Tr

e
eB

an
k

(1
0

%
)

Tr
e

eB
an

k

(1
%

)
Tr

ee
B

an
k

(1
0

0
%

)
X

M
ar

k

(1
0

%
)

X
M

ar
k

[s]

MonetDB

BaseX

QuickXDB

Fig. 2. A comparison of native XML databases

4 Conclusion

In this paper, we introduced a comparison of our prototype of embedded database
system called QuickDB with other up-to-date embedded DBMS and libraries. As
mentioned, the main goal of QuickDB is to provide the maximum performance.
The results show that QuickDB outperforms these DBMS and libraries in a lot
of cases. In our future work, we want to compare other features of DBMS, for
example, scalability performance, transaction processing performance and so on.

References

1. R. Bača and M. Krátký. XML Query Processing Efficiency and Optimality. In
Proceeding IDEAS 12 Proceedings of the 16th International Database Engineering
& Applications Symposium, pages 8–13. ACM, 2012.

2. R. Bayer and E. M. McCreight. Organization and Maintenance of Large Ordered
Indices. Acta Inf., 1:173–189, 1972.

3. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-Tree: An Efficient
and Robust Access Method for Points and Rectangles. In Proceedings of the ACM
International Conference on Management of Data (SIGMOD 1990), 1990.

4. Boost.org. Boost C++ Libraries, http://www.boost.org/, 2014.
5. Database Reasearch Group. QuickDB, http://db.cs.vsb.cz/, 2014.
6. C. Date. An Introduction to Database Systems. Addison-Wesley, 8th edition, 2003.
7. G. Douglas. Superliminal Rtree, http://superliminal.com/sources/

sources.htm#C%20&%20C++%20Code, 2014.
8. Firebird Foundation Incorporated. Firebird, http://www.firebirdsql.org/,

2014.
9. H. Garcia-Molina, J. Ullman, and J. Widom. Database Systems: The Complete

Book. Prentice Hall, 2nd edition, 2008.
10. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In Pro-

ceedings of the ACM International Conference on Management of Data (SIGMOD
1984), pages 47–57. ACM Press, June 1984.

QuickDB – Yet Another Database Management System? 99

11. M. Hadjieleftheriou. libSpatialIndex, http://libspatialindex.github.io/, 2013.
12. Hasso-Plattner-Institut. The HPI Genealogy of Relational Database Man-

agement Systems, http://www.hpi.uni-potsdam.de/naumann/projekte/

rdbms_genealogy.html, 2014.
13. P. Lukáš, R. Bača, and M. Krátký. QuickXDB: A Prototype of a Native XML

DBMS. In Proceedings of the Dateso 2013 Annual International Workshop, pages
36–47, 2013.

14. Microsoft. Microsoft SQL Server 2012, http://www.microsoft.com/en-us/

sqlserver/default.aspx, 2014.
15. S. Negash. Business Intelligence. Communications of the Association for Informa-

tion Systems, 13, http://aisel.aisnet.org/cais/vol13/iss1/15, 2004.
16. Oracle. MySQL Community Edition, http://www.mysql.com/products/community/,

2014.
17. Oracle. Oracle Berkeley DB 12c, http://www.oracle.com/technetwork/database/

berkeleydb, 2014.
18. Oracle. Oracle Database 12c, http://www.oracle.com/us/products/database/

overview/index.html, 2014.
19. D. Spicuzza. R* Tree Implementation for C++,

http://www.virtualroadside.com/blog/index.php/2008/10/04/

r-tree-implementation-for-cpp/, 2014.
20. SQLite Consortium. Sqlite, http://www.sqlite.org/, 2014.
21. The PostgreSQL Global Development Group. PostgreSQL,

http://www.postgresql.org/, 2014.

Author Index

Bača, Radim, 91
Basterrech, Sebastián, 35
Buriánek, Tomáš, 35

Dvorský, Jǐŕı, 25

Falt, Zbyněk, 71

Holubová, Irena, 13

Chovanec, Peter, 91

Ilč́ık, Martin, 1

Knap, Tomáš, 13
Krátký, Michal, 91
Kŕıž, Vincent, 13
Krulǐs, Martin, 71

Lukáš, Petr, 91

Marek, Lukáš, 25
Marš́ık, Ladislav, 1

Martinovič, Jan, 81

Nečaský, Martin, 13

Pászto, Vı́t, 25
Platoš, Jan, 47, 59
Pokorný, Jaroslav, 1
Pŕılepok, Michal, 59

Robenek, Daniel, 47

Slaninová, Kateřina, 81
Snášel, Václav, 47, 59

Štolfa, Jakub, 81
Štolfa, Svatopluk, 81

Tuček, Pavel, 25

Vidová-Hladká, Barbora, 13

Zavoral, Filip, 71

