
Traffic Analysis of Web Browsers

Sami Zhioua∗ and Mahjoub Langar∗∗

∗Information and Computer Sciences Department, KFUPM
P.O. Box 958, Dhahran 31261, KSA

zhioua@kfupm.edu.sa
∗∗Ecole Nationale des Ingenieurs de Tunis

B.P. 37, Belveder, Tunis
mahjoub.langar@gmail.com

Abstract. Tor network is currently the most commonly used anonymity
system with more than 300,000 users and almost 3000 relays. Attacks
against Tor are typically confirmation attacks where the adversary injects
easily discernible traffic pattern and observes which clients and/or relays
exhibit such patterns. The main limitation of these attacks is that they
require a “powerful” adversary. Website fingerprinting is a new breed of
attacks that identifies which websites are visited by a Tor client by learn-
ing the traffic pattern for each suspected website. Recent works showed
that some classifiers can successfully identify 80% of visited websites. In
this paper we use a classic classifier, namely, decision trees (C4.5 algo-
rithm) and we study to which extent popular web browsers can resist to
website fingerprinting attacks. Among four studied web browsers, Google
Chrome offers the best resistance to website fingerprinting (5 times bet-
ter than the other web browsers). Since most of existing fingerprinting
techniques have been evaluated using Firefox web browser, we expect the
accuracy results of existing works to be reduced in case Chrome browser
is used.

1 Introduction

Anonymity systems, such as Tor [1] and Jap [2] are designed primarily to pro-
vide privacy and anonymity to Internet users living in oppressive regimes giving
them the opportunity to evade censorship. These systems achieve anonymity by
embedding user data inside several layers of encryption and by forwarding the
traffic through a set of relay nodes/proxies. This makes the job of an eavesdrop-
ping adversary much more challenging since by just observing the traffic she
cannot deduce who is communicating with whom and what is the type of traffic
exchanged.

Tor [1] represents the current state-of-the-art in low-latency anonymity sys-
tems. The Tor network is currently the largest deployed anonymity network ever,
consisting of almost 3000 relays and more than an estimated 300,000 users.

Most of attacks against Tor anonymity system were traffic confirmation at-
tacks where the idea was to inject easily discernable traffic pattern and observe
which potential clients are exhibiting such patterns [3–7]. Most of these attacks



require a “powerful” adversary which is assumed to observe the traffic of a sig-
nificant number of Tor relays and in some attacks to inject malicious relays in
the Tor network. These assumptions are relatively strong and beyond the ca-
pabilities of most of attackers including totalitarian regimes. A more practical
attack on Tor which does not require strong assumptions is passive traffic anal-

ysis. Traffic analysis consists in intercepting and analyzing the traffic messages
(usually encrypted) in order to reveal information about the communication (e.g.
the identities of the communicating entities, the type of data exchanged, etc.).
To carry out the attack, the adversary is assumed to observe the traffic of only
one side of the communication (usually the Tor client). This threat model is very
common and holds particularly in presence of censorship.

Website fingerprinting [8] is a variant of passive traffic analysis that can be
carried out by a local eavesdropper or by any entity observing Tor client traffic. In
this attack the adversary analyzes the traffic to extract patterns that can reveal
the identity of the website accessed by the client. Patterns are constructed from
certain features in the traffic such as the size of transferred data, the timing, the
order of packets, etc.

Website fingerprinting was first used to analyze encrypted HTTP traffic [8–
11]. Most of these attacks were based on tracking the size the objects fetched
by the main web page. With the migration to HTTP/1.1 which makes use of
persistent connections and pipelining, it is no longer possible to easily distin-
guish between single objects fetching. Only few works focused on implementing
website fingerprinting on anonymity systems [12–15]. It turned out that website
fingerprinting is much challenging when applied on anonymity systems in partic-
ular Tor. The reason is that Tor protocol performs some structural modifications
in the traffic: restructuring the traffic into fixed size cells, merging small packets
together, multiplexing TCP streams, etc. However, despite these challenges, re-
cent works showed that the precision of website fingerprinting could be as high
as 80% when applied on Tor [15].

Tor protocol might be used with different web browsers1. Since web browsers
use different user agents and process data packets differently, the choice of the
web browser should have an impact on the efficiency of website fingerprinting. In
this paper we study the impact of the choice the web browser on the anonymity
of Tor clients with respect to website fingerprinting attacks. We consider a repre-
sentative set of four popular web browsers, namely, Firefox, Chrome, Konqueror,
and Internet Explorer, and we empirically analyze to which extent they resist
to website fingerprinting. This is the first work in the literature that studies
the efficiency of website fingerprinting while using different web browsers. All
existing works were focusing on a single web browser, mainly Firefox.

The contributions of this paper are two-fold:

1. A detailed and complete survey of existing website fingerprinting approaches
in particular targeting anonymity systems.

2. A comparative analysis of the most popular web browsers according to their
resistance to website fingerprinting.

1 Provided that the web browser allows to configure the socket proxy



2 Related Work

Early website fingerprinting techniques were focusing on analyzing simple en-
crypted HTTP traffic. Hintz [8], which is the first to use the term “fingerprint-
ing” to refer to this type of attack, implemented a simple website fingerprinting
attack targeting the SafeWeb encrypting web proxy [16]. The attack was based
on tracking the size of objects fetched by a visited website. This was possible
because the author did a strong assumption that every web object (image, ads,
etc.) is fetched through a separate TCP connection using a different port. His
experiment was a simple proof of concept distingushing only 5 websites. He
achieved a detection rate between 45 and 75%.

Similarly, Sun et al. [9] based their approach on the size of fetched objects.
Objects are isolated in the encrypted traffic by counting the number of packets
between blocks of requests. The fingerprint is expressed as a multiset of object
lengths. An unknown traffic sequence is then evaluated against website finger-
prints using a measure of similarity (Jaccard’s Similarity [17]). A similarity value
more than a threshold c indicates a matching. In their empirical analysis, Sun
et al. constructed a database of 2000 website fingerprints and then tried to dis-
tinguish these same 2000 websites out of a set of 100,000 websites. The optimal
accuracy was obtained with the threshold c equal to 0.7 where 75% of the 2000
websites were correctly identified with a false positive rate of 1.5%.

The strong assumption that web objects can be distinguished by observing
the different TCP connections does not hold anymore since with the migration
to HTTP/1.1, no TCP connection is opened for each object as was the case in
HTTP/1.0.

Bissias et al. [10] were the first to use IP packet sizes and Inter-Packet-Time
(IPT) instead of the size of fetched objects to fingerprint websites. From every
website visit they extract two traces: one size trace and one time trace. The size
trace is the sequence of packet sizes while the time trace is the sequence of IPT
times. Then all traces corresponding to a given website are merged into a web-
site profile2 by computing the arithmetic mean at every time step. Once a bank
of profiles is constructed, an unknown network traffic is matched with each one
of the constructed profiles using Cross Correlation [18]. The empirical analysis
was based on the 100 websites most visited in the authors’s department (Uni-
versity of Massachusetts) and showed that size profiles are much more efficient
in identifying visited websites than time profiles. With size profiles, 20% of the
analyzed traces are correctly identified after one guess and 65% after 10 guesses
while with time profiles 8% of websites were correctly identified after one guess
and 27% after 10 guesses. The analysis showed also that the time gap between
the training phase (constructing the profiles) and the testing phase has only a
small impact on the accuracy: a one hour gap is only 5% better than a 168 hours
gap.

Liberatore et al. [11] obtained much better results by focusing only on packet
sizes. In their work, they represented a traffic trace as a vector of packet size

2 Actually two profiles: a size profile and a time profile



frequencies: each visit will result in a histogram of packet size frequencies.
They tried two classification techniques: Jaccard’s Similarity [17]3 and Naive
Bayes [19]. The empirical analysis was also performed using the University of
Massachusetts’s typical traffic by filtering the top 2000 visited websites. Jac-
card’s based classification was slightly better than Naive based one with 73% of
website visits correctly identified. Experiments showed also that the training set
need not be very large since a training set of size 4 resulted in almost the same
accuracy of training set of size 12.

All above works focused on website fingerprinting typical encrypted HTTP
traffic. As anonymity systems became popular, recent website fingerprinting con-
tributions focused on attacking those systems, in particular Tor [12–15].

Shi et al. [13] detailed a website fingerprinting attack on Tor. They adapted
Hintz [8] and Sun et al. [9] techniques for Tor since instead of tracking the size
of fetched objects (which is not possible in Tor), they tracked the number of
packets sent or received in every interval4. A traffic trace is then represented
by a vector specifying the number of intervals with 2 packets, the number of
intervals with 3 packets, etc. Once a profile is built for a website (after several
visits), the similarity between a profile and a traffic trace is computed using
cosine similarity. The technique was evaluated using the traffic from the top 20
websites in Japan. They could identify successfully 50% of the visited websites.

Federrath et al. [12] used a Multinomial Naive Bayes (MNB) classifier to
website fingerprint 6 anonymity systems: 4 single-hop proxy VPNs and 2 multi-
hop systems: Tor and JonDonym [2]. As in Liberatore et al. [11] a traffic trace is
represented as a histogram of packet size frequencies distribution without taking
into consideration the packet ordering nor packet timing. They improved the
efficiency of the MNB classifier by using text mining optimizations [19] such as
Term Frequency Transformation, Inverse Document Frequency, etc. The evalua-
tion was based on the top 2000 websites extracted from the log files of medium-
range proxy server used by 50 schools. These 2000 websites has been filtered
to 775 websites. The accuracy of their technique was very good for single-hop
anonymity systems where 94% of website visits were correctly identified while
it was relatively poor for multi-hop anonymity systems: 20% for JonDonym and
only 3% for Tor. This shows once again that website fingerprinting is much more
challenging with anonymity systems than with typical encrypted HTTP traffic.

Panchenko et al. [14] focused only on Tor and JonDonym and used SVMs
(Support Vector Machines) for classification. They represented a traffic trace as
a sequence of packet lengths where input and output packets are distinguished
by using negative and positive values. In addition, they inject some features in
these sequences to help in the classification such as size markers (whenever flow
direction changes, insert the size of packets in the interval), number markers

3 To use Jaccard’s Similarity as a classifier, they turned the metric value into a class
membership probability by dividing it by the sum of all metric values in the traininig
set.

4 An interval refers to the time period without packet flow change. Moving from one
interval to the other happens when the direction of the flow changes.



(number of packets in every interval), total transmitted bytes, etc. They used
Weka tool [20] to fine-tune the SVM parameters. The proposed technique has
been evaluated using two experiments: Closed-world and Open-world. In the
closed-world experiment, the same set of 775 websites of Federrath et al. [12]
as well as ten-fold cross validation have been used to estimate the accuracy.
As of open-world experiment, 5000 websites have been randomly chosen among
the top one million websites according to Alexa [21] in addition to 5 censored
websites. The closed-world experiment showed that the SVM technique resulted
in an accuracy of 30% for the basic variant and 54% when all features are used5.
The open-world experiment showed that, censored websites were successfully
identified with a true positives rate between 56 and 73% while the false positives
rate was less than 1%.

The most recent contribution was by Cai et al. [15]. As in Panchenko et
al. [14], they represented a traffic trace as a sequence of (negative and positive)
packet lengths. The training and testing is based on an SVM with a distance-
based kernel. They tried several variants of parameters and distances and ob-
tained the best accuracy with a Damerau-Levenshtein edit distance [22, 23]. The
use of this distance is motivated by the fact that it is the length of the short-
est sequence of character insertions, deletions, substitutions, and transpositions
required to transform a trace t to t′. These operations correspond to discarding
and reordering of packets in a stream. In order to compute the distance between
two traces of different lengths, the Damerau-Levenshtein distance is normalized
with respect to the length of the shortest trace between the two. For evaluation
they used the top 1000 websites according to Alexa which are then filtered to 800
websites. Using the basic version of Tor, they could successfully identify 80% of
visited websites. However, when random cover packets are added to the traffic,
the accuracy falls to 50%. Decreasing the size of the training set from 36 to 4
samples decreased the accuracy with 20%.

In all aformentioned works, without exception, the website fingerprinting ap-
proaches have been evaluated using only one web browser, mainly, Firefox. Since
web browser use different browser engines and user agents and consequentely
fetch pages differently, we strongly think that the chosen web browser has an
impact on the estimated accuracy. In this paper, we consider a representative
set of popular web browsers and repeat the data collection and experiments for
every one of them. Our aim is to compare the resistance of web browsers to
website fingerprinting attacks.

3 Threat Model

The typical threat model for anonymity systems is a global passive adversary
that can observe all the traffic of the network. However, since Tor is a low-
latency anonymity system, it has been designed to protect against a weaker
form of adversary. Indeed, it is assumed that the adversary can observe only

5 The feature with the highest contribution was the total number of packets in the
traffic trace.



some fraction of the network traffic; who can generate, modify, delete, or delay
traffic; who can operate onion routers of his own; and who can compromise some
fraction of the onion routers [1]. In this paper we assume a weaker threat model
where the attacker can only access the encrypted traffic between the client and
the first Tor relay. The attacker does not generate, modify, delete or delay any
traffic which makes the attack completely stealth. Except the attacker own Tor
node, no other Tor relay or server is compromised which makes the attack easily
deployable in practice.

4 Tor Traffic Capture

Fig. 1. Tor Traffic Capture

Traffic analysis typically starts by intercepting the traffic packets. In a typ-
ical scenario, only the victim and the gateway can capture the data flowing
between them. In practice, however, several entities might have access to the
traffic packets. The administrator of the LAN has access to the traffic of all
endpoints in the network. The ISP (Internet Service Provider) can monitor the
traffic of any of its subscribers. A Law Enforcement Agency, after approval from
the ISP, can observe and record the traffic of any internet user which is referred
to as lawful intercept. A censoring entity can observe the traffic of any user in its
“juridiction”. In addition to these entities, a malicious user in the LAN can carry
out a MITM (Man-In-The-Middle) attack between the victim and the gateway
and make all the traffic pass through her. The MITM attack can be easily per-
formed using ARP spoofing/poisoning. Cain & Abel [24] and Ettercap [25] are
two popular tools for ARP Spoofing/Poisoning.

Assuming that the attacker can intercept the Tor traffic packets using one of
the above scenarios, the Tor traffic capture goes through three stages as shown in
Figure 1. First the traffic is dumped in a file using a simple tool like tcpdump6.

6 Alternative tools like Wireshark/tshark or Omnipeek can be used as well.



Then the raw traffic is filtered to keep only Tor related traffic. Finally, the traffic
is classified into streams.

Since the list of Tor relays is public, we use it to filter Tor traffic from the rest
of the traffic. The list of Tor relays can be extracted from the Tor status files,
in particular the cached-consensus file. These files can be downloaded manually
from one of the authorities or they can be accessed directly in the Tor status
local folder. Tor automatically updates those files once they are no more fresh.
In our setting, the attacker, which is also a Tor client, uses her own Tor status
files to extract the list of Tor relays.

The next step in the Tor traffic capture is to classify the packets into streams
at the TCP protocol level7. Every stream is then tracked using IP addresses,
ports, TCP flag bits, Sequence and Acknowledgment numbers. The stream is
closed after a TCP connection termination (FIN, ACK-FIN and ACK).

Typically, Tor creates two types of streams: short living streams and long
living streams. Short living streams are streams to download either router de-
scriptors or directory consenus. They last around 3 minutes because the down-
load takes a couple of seconds and then the stream stays idle until it hits the
maximum stream idle period which is set to 3 minutes in Tor. Typically, only
one circuit is established during a short livinig stream which is a single-hop cir-
cuit. The long living streams are for data communications and typically several
3-hop circuits are established during the lifetime of such streams. Besides, since
all Tor communications are encrypted, all Tor streams initiate a TLS handshake
just after the TCP three-way handshake.

Fig. 2. Tor stream initial packets generated by Wireshark

7 It is important to note that the classified streams at this stage are streams on top of
which Tor communications are conveyed. These are different from the TCP streams
tunneled through Tor. Hence, there are two levels of TCP streams: one level below
the Tor protocol and one level on top of Tor protocol.



Figure 2 shows the initial packets in a Tor stream. The three first packets
are for establishing the TCP connection then a TLS handshake follows. The
illustrated stream is a short-living stream whose goal is to download a set of
routers descriptors. Therefore, it creates a single hop circuit with the directory
server which is performed using a CREATE and CREATED cells as shown in
the Figure.

5 Data Collection

In order to evaluate the accuracy of the website fingerprinting for each web
browser, 100 websites have been used. The set of 100 websites is composed
of 90 randomly chosen websites from the top 1000 visited websites worldwide
according to Alexa [21] and 10 censored websites in some countries of the Mid-
dle East. All censored websites are related to anonymizers and proxy services8.
Website traffic traces are collected in 24 hours sessions. In each session, web-
sites are fetched several times in a round-robin fashion. For visiting websites,
we used two lab machines running Ubuntu Linux. Another Windows 7 machine
is used to fetch websites through Internet Explorer. Traffic packets are dumped
using tcpdump version 4.1.1 and libpcap version 1.1.1. Only packet headers are
dumped in the dump file9. The experiments were performed using Tor version
0.2.2.39.

We wrote a python script to automate the fetching of websites. For each
website, the script proceeds as follows: (1) it records the system time, (2) requests
the website url, (3) waits for 50 seconds (the time to load the website10, (4) stops
the website connection, (5) records the system time, (6) waits for 10 seconds (to
have a time gap between every two visits). Time snapshots are taken just before
and after a website visit so that they can be intersected with the dump file in
order to isolate the traffic for every website visit.

Once isolated, the taffic corresponding to each visit is represented as a se-
quence of packet sizes where a positive value refers to an inbound packet while a
negative value refers to an outbound packet. This representation captures three
features about the trace, namely, the size and direction of each packet and the
order of packets11. The traffic representation is the same as recent works [14,
15]. For every visit, we keep only the first 500 packets of the traffic so that all
obtained sequences have the same length12.

Interestingly, parsing Tor traffic during a website visit shows that packets are
flowing through several TCP streams not just one. One reason is that Tor needs
to update the Tor relays status regularly by fetching fresh data from the directory
servers and also to send dummy cells to keep some circuits open. TCP streams

8 Examples of these websites include: torpoject.org, unblock-proxy.net, etc.
9 tcpdump is launched with options -n -tttt.

10 If a website takes more than 50 seconds to load, the sample sequence will be incom-
plete.

11 As in most of related work, acknowledgement packets are ignored.
12 This is a requirement for the classification algorithm.



used for fetching directory servers data can be easily distinguished from TCP
streams used for data communication since the number of packets exchanged
does not exceed 100 packets. Interestingly, ruling out these short TCP streams,
the traffic resulting from visiting some websites is carried through two TCP
streams with more than 200 packets each. This shows that Tor does not always
multiplex the traffic of a website in a single stream. For those website visits, the
corresponding traffic sequence is obtained by merging both streams into one.
Similarly to normal visits, only the first 500 packets of the merged stream are
kept.

In order to avoid the noise introduced by active content (Flash, etc.) and the
browser cache, active content and caching are disabled. For instance, Chrome
internet browser is used with the “incognito“ mode while firefox is used with the
”private“ mode.

Four Web browsers have been used for fetching websites, namely, Chrome
18.0, Firefox 15.0.1, Internet Explorer 9.0 and Konqueror 4.8.5.

The same experiment is performed four times, each with a different browser.
The experiment consists in 10 iterations. Every iteration consists in visiting all
100 websites once. Hence, every website is visited 10 times using the same web
browser yielding a maximum of 10 samples for very website13.

6 Classification Algorithm

The goal of this paper is to compare popular web browsers with respect to their
capabilities to resist to web site fingerprinting. To this end, we use a classical
classifier, namely, decision trees. It is important to mention that recent related
work showed that better fingerprinting results can be obtained using other clas-
sifiers in particular Support Vector Machine (SVM) based. The next paragraphs
give an overview of the decision tree classifier and the techniques used to evaluate
the accuracy of the classifier for every web browser.

6.1 Decision Tree Classifier

Decision tree learning is a well known and classic classification technique [26]. It
is very popular because it is self-explanatory, easy to understand and to use since
it requires few parameter settings. It has been successfully used for classification
in several diverse areas. Overall, it is well suited for exploratory knowledge dis-
covery. In this paper we use a decision tree known as C4.5 [27] to classify website
visits traffic sequences.

A decision tree can be learned typically using a top-down approach where
each node corresponds to one of the input variables, each edge corresponds to
possible values of each variable, and each leaf correspond to a class label. Every
data set is split into subsets based on attributed values. This process is repeated

13 Some website visits resulted in less than 500 packets. These sequences are discarded
from the data set.



recursively and is called recursive patitioning. The recursion is completed when
splitting adds nothing to the prediction. Inducing a decision tree using a top-
down approach requires dealing with three other issues apart from selecting the
best attribute to use at each node in the tree. Firstly, one has to choose a splitting
threshold to form the two children for each node. Second, one needs a criterion
to determine when to stop growing the tree. Thirdly, the final issue is how to
decide what class label to assign for the terminal (leaf) node.

Classic strategies for splitting mainly focus on the use of impurity criteria,
e.g., information gain, gain ratio and gini index. C4.5 decision tree uses gain
ratio to select the best attribute and choose the optimal splitting threshold. In
this approach, the attribute value that provides the best gain ratio is chosen as
splitting threshold. To address the second issue discussed above, i.e., to avoid
difficulties in choosing a stopping rule, most decision tree induction algorithms
grow the tree to its maximum size where the terminal nodes are pure or almost
pure, and then selectively prune the tree. The class label of each of the terminal
nodes are typically decided based on the majority voting, i.e. the class label of
data instances that are major in terms of counting compared to the other classes
that contain in the respective terminal node.

6.2 Cross-Validation

To achieve a generalized performance of the decision tree used in this paper
a cross-validation (CV) scheme is applied. CV is a well known method to test
the performance of a classifier by varying training and test datasets [28]. CV is
a standard test commonly used to test the ability of the classification system
using various combinations of the testing and training data sets [29, 28, 30]. In
this method, classification is measured by systematically excluding some data
instances during the training process and testing the trained model using the
excluded instances [31]. The process is repeated to cover all the dataset as testing
dataset. In this paper, we have chosen 10-fold CV scheme where each time data
in 1 fold are applied as test data and the rest 9 folds are used to train the model.

6.3 Performance Metric

Classification accuracy is one of the widely used performance metric to evaluate
a classifier. Classification accuracy (ACC) is defined as the ratio of the number
of all samples that are classified correctly over the total number of samples
available (N).

ACC = (TP + TN)/N (1)

where, TP (True Positives) = the total data instances from positive class that
are classified as positive by the classifier; TN (True Negatives) = the total data
instances from negative class that are classified as negative by the classifier.



7 Web Browser Resistance to Fingerprinting

Popular web browsers differ in several aspects, in particular, they use different
web browser engines. The engine does most of the work of a web browser since it
retrieves the document corresponding to a given URL and handles links, cookies,
scripting, plug-ins loading, etc. The type of the web browser engine has an impact
on the shape of the observed (encrypted) traffic. For example, some web browser
engines may wait until all data is received before rendering a page while others
may begin rendering before all data is received.

In order to compare the resistance of popular web browsers to website fin-
gerprinting attacks, data is collected using different web browsers and then a
C4.5 decision tree classifier is used to evaluate the accuracy of the website fin-
gerprinting. More precisely, once the data about website visits is collected, we
evaluated the accuracy of website fingerprinting in four scenarios:

– Basic Packets Sequence: The traffic trace is the first 500 packets of the
TCP stream with the largest number of packets.

– Merged Streams: The traffic trace is the first 500 packets obtained by
merging all TCP streams with more than 200 packets. If only one TCP
stream has more than 200 packets, this scenario is the same as the first one.

– Rounded Packet Sizes: The same as the first scenario but the packet size
values are rounded to multiples of 600. For instance, a packet size of 512 is
rounded to 600 while a packet size of 743 is rounded to 1200.

– Merged Streams and Rounded Packet Sizes: This scenario is the com-
bination of the two previous scenarios.

 0

 2

 4

 6

 8

 10

 12

 14

Chrome Firefox IExplorer Konqueror

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Basic Packets Sequence
Merged Streams

Rounded Packet Sizes
Merged Streams and Rounded Packet Sizes

Fig. 3. Website Fingerprinting Accuracy for Common Web Browsers



Figure 3 shows the accuracy of the C4.5 classifier for each browser and for
each scenario. Using Firefox, Internet Explorer and Konqueror, more than 9% of
websites have been correctly identified by the classifier. With Chrome, however,
only 2% of websites have been successfully identified. The histogram shows also
that Rounding packet size values improves the efficiency of our classifier for all
browsers. Merging TCP streams, on the other hand, improved the efficiency of
the classifier only for Firefox and Konqueror. Merging streams resulted in lower
accuracy than the basic scenario for Chrome and Internet Explorer. The most
important result illustrated by the histogram is that Chrome browser offers a
better resistance to website fingerprinting than the other studied browsers. The
advantage Chrome browser has on the other studied browsers is expected to be
preserved in case a more efficient classifier (e.g. [15]) is used.

8 Conclusion

Website fingerprinting is a new attack on Tor anonymity system that tries to
reveal the identities of visited websites by recognizing patterns in the Tor traf-
fic. Compared to previous attacks on Tor, in particular confirmation attacks,
website fingerprinting does not require an attacker with extended capabilities.
Only the ability to sniff the Tor client encryted traffic is required. In this pa-
per we presented a detailed survey on website fingerprinting techniques which
recently reached high accuracy rates (80%) [15] on Tor anonymity system. The
main contribution of this paper, however, is an empirical analysis of how much
resistance popular web browsers provide against website fingerprinting. Four
notable web browsers have been considered, namely, Firefox, Chrome, Internet
Explorer, and Konqueror. The analysis showed that the resistance of Chrome
to website fingerprinting is five times better than the remaining web browsers.
Since most of existing fingerprinting techniques have been evaluated using Fire-
fox web browser [12, 14, 15], we expect the accuracy results to be reduced in case
Chrome browser is used.

There are two main mitigation approaches for the website fingerprinting at-
tack. The first and the most commonly used approach is padding where the
sender appends some random (dummy) bits to the actual data to obtain, for
instance, fixed size packets. It has been shown that padding reduces the accu-
racy of fingerprinting techniques only slightly [14, 15]. The second mitigation
approach is traffic camouflage which can be implemented in two ways. The first
variant is to obfuscate the actual traffic by loading several pages simultaneously.
Panchenko et al. [14] load a randomly chosen page whenever an actual website is
to be visited. The second variant is to disguise the actual traffic within a typical
encrypted cover protocol such as Skype voice over IP. The StegoTorus proxy [32]
constructs a database of pre-recorded packet traces from real sessions of a given
cover protocol. Then, when a Tor client visits a website, it choses randomly a
pre-recorded trace from the database which is used as a template to reshape the
actual traffic. The packet sizes of the pre-recorded trace are matched exactly
and the packet timings are matched “to the nearest millisecond”.



References

1. Dingledine, R., Mathewson, N., Syverson, P.: Tor : the second-generation onion
router. In: Proceedings of the 13th Usenix Security Symposium. (August 2004)

2. Berthold, O., Federrath, H., Köpsell, S.: Web MIXes: A system for anonymous
and unobservable Internet access. In: Proceedings of Designing Privacy Enhancing
Technologies, Springer-Verlag, LNCS 2009 (July 2000) 115–129

3. Murdoch, S., Danezis, G.: Low-cost traffic analysis of Tor. In: Proceedings of the
2005 IEEE Symposium on Security and Privacy, IEEE CS (May 2005)

4. Murdoch, S.: Hot or not: Revealing hidden services by their clock skew. In:
Proceedings of CCS 2006. (October 2006)

5. Hopper, N., Vasserman, E., Chan-Tin, E.: How much anonymity does network la-
tency leak? ACM Transactions on Information and System Security 13(2) (Febru-
ary 2010)

6. Evans, N., Dingledine, R., Grothoff, C.: A practical congestion attack on tor using
long paths. In: Proceedings of the 18th USENIX Security Symposium. (August
2009)

7. Mittal, P., Khurshid, A., Juen, J., Caesar, M., Borisov, N.: Stealthy traffic analy-
sis of low-latency anonymous communication using throughput fingerprinting. In:
Proceedings of the 18th ACM conference on Computer and communications secu-
rity. CCS ’11, New York, NY, USA, ACM (2011) 215–226

8. Hintz, A.: Fingerprinting websites using traffic analysis. In: Privacy Enhancing
Technologies (PETS),LNCS. Volume 2482., Springer (2002) 171–178

9. Sun, Q., Simon, D.R., Wang, Y.M., Russell, W., Padmanabhan, V.N., Qiu, L.:
Statistical identification of encrypted web browsing traffic. In: Proceedings of the
2002 IEEE Symposium on Security and Privacy. SP ’02, Washington, DC, USA,
IEEE Computer Society (2002) 19–

10. Bissias, G.D., Liberatore, M., Jensen, D., Levine, B.N.: Privacy vulnerabilities
in encrypted http streams. In: Proceedings of the 5th international conference
on Privacy Enhancing Technologies. PET’05, Berlin, Heidelberg, Springer-Verlag
(2006) 1–11

11. Liberatore, M., Levine, B.N.: Inferring the source of encrypted http connections.
In: Proceedings of the 13th ACM conference on Computer and communications
security. CCS ’06, New York, NY, USA, ACM (2006) 255–263

12. Herrmann, D., Wendolsky, R., Federrath, H.: Website fingerprinting: attacking
popular privacy enhancing technologies with the multinomial na&#239;ve-bayes
classifier. In: Proceedings of the 2009 ACM workshop on Cloud computing security.
CCSW ’09, New York, NY, USA, ACM (2009) 31–42

13. Shi, Y., Matsuura, K.: Fingerprinting attack on the tor anonymity system. In
Qing, S., Mitchell, C., Wang, G., eds.: Information and Communications Security.
Volume 5927 of Lecture Notes in Computer Science., Springer Berlin Heidelberg
(2009) 425–438

14. Panchenko, A., Niessen, L., Zinnen, A., Engel, T.: Website fingerprinting in onion
routing based anonymization networks. In: Proceedings of the 10th annual ACM
workshop on Privacy in the electronic society. WPES ’11, New York, NY, USA,
ACM (2011) 103–114

15. Cai, X., Zhang, X.C., Joshi, B., Johnson, R.: Touching from a distance: website
fingerprinting attacks and defenses. In: Proceedings of the 2012 ACM conference
on Computer and communications security. CCS ’12, New York, NY, USA, ACM
(2012) 605–616



16. Safe Web: Safeweb proxy. ”http://www.safeweb.com”
17. Rijsbergen, C.J.V.: Information Retrieval. 2nd edn. Butterworth-Heinemann, New-

ton, MA, USA (1979)
18. Bracewell, R.: Pentagram Notation for Cross Correlation. The Fourier Transform

and Its Application. McGraw-Hill, New York, USA (1965)
19. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques. Second edn. Morgan Kaufmann (June 2005)
20. Weka Tool: Weka: Data mining software in java. ”www.cs.waikato.ac.nz/ml/

weka”
21. Alexa Website: Alexa: The web information company. ”www.alexa.com”
22. Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and re-

versals. Soviet Physics Doklay (1966)
23. Navarro, G.: A guided tour to approximate string matching. ACM Computing

Surveys 33 (1999) 2001
24. Massimiliano Montoro: Cain & abel. ”http://www.oxid.it/cain.htm”
25. ALor and NaGA: Ettercap. ”http://ettercap.sourceforge.net”
26. Kotsiantis, S.B.: Supervised machine learning: A review of classification techniques.

Informatica 31 (2007) 249–268
27. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA (1993)
28. Barton, J., Lees, A.: An application of neural networks for distinguishing gait

patterns on the basis of hip-knee joint angle diagrams. Gait & Posture 5(1) (1997)
28 – 33

29. Ding, C.H.Q., Dubchak, I.: Multi-class protein fold recognition using support
vector machines and neural networks. Bioinformatics 17 (2001) 349–358

30. Hassan, M.R., Begg, R., Taylor, S., Kumar, D.K.: Hmm-fuzzy model for recognition
of gait changes due to trip-related falls. In: Proceeding of the IEEE Eng Med Biol
Soc., Springer Berlin Heidelberg (2006) 1216–1219

31. Begg, R.K., Palaniswami, M., Owen, B.: Support vector machines for automated
gait classification. IEEE Transactions on Biomedical Engineering 52 (2005) 828–
838

32. Weinberg, Z., Wang, J., Yegneswaran, V., Briesemeister, L., Cheung, S., Wang,
F., Boneh, D.: Stegotorus: a camouflage proxy for the tor anonymity system.
In: Proceedings of the 2012 ACM conference on Computer and communications
security, New York, NY, USA, ACM (2012) 109–120


