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Abstract 
In the medical image annotation task we have mainly explored ways to use different image features to 
achieve robust classification performance, including both global features and regional blob features. 
Experimental results show that using a combination of the blob region feature and three low resolution 
pixel maps (gray level, texture and contrast) can achieve the highest recognition accuracy. All these 
features are normalized and stacked to form a one-dimension feature vector as inputs of classifiers. In 
our experiments Supporting Vector Machines (SVM) with RBF (radial basis functions) kernels are used 
for the classification task, trained over a subset of 9000 given medical training images. Our proposed 
method has achieved a recognition rate of 89% over a subset of the training images which were not 
used in the SVM training. According to the evaluation result from the imageCLEF05 organizers, our 
method has achieved a recognition rate of about 80% over the 1000 testing images. 
 
Categories and Subject Descriptors 
H.3 [Information Storage and Retrieval]: H3.1 Content Analysis and Indexing; H3.3 Information 
Search and Retrieval;  
 
General Terms 
Measurement, Performance, Experimentation 
 
Keywords: automatic medical image annotation, SVM, low resolution map, multi-class classification, 
unbalance, over-fitting 
 

1. Introduction 
With the fast development of modern medical devices, more and more medical images are generated, 
so that the demand becomes more and more urgent for automatically indexing, comparing, analyzing 
and annotating the huge volume of medical images. As a benchmark work, ImageCLEFmed gets more 
and more well-known owing to its open data platform.  

Two tasks are published in ImageCLEFmed 2005: retrieval and annotation. We target at the 
automatic annotation task, which is the first time to be published. In this task, 9,000 radiographs are 
classified into 57 classes (see Figure 1), which can be taken as training datasets; and 1,000 unlabeled 
radiographs are taken as the test dataset. As the first stage, the annotation task is very simple: automatic 
labeling the 1,000 images is the whole object of the annotation system. Evaluation of the system will 
base on the ‘error rate’, which means the percent of how many images are wrongly classified. 

Medical image annotation can be regarded as an interpretation to medical evidence, while in this 
research, evidences are images. Generally it is a doctor who uses the specialist vocabulary and natural 
language phrases to interpret those medical evidences, and relates them to some specific cases. For 
automatic machine-based reasoning based on the evidence gathered, additional interpretive semantics 
must be attached to the data. Some methods have been explored in special domains, like the diagnosis 
of breast cancer [1]. In the annotation task of ImageCLEFmed 2005, the annotation has been simplified 
to mark a class label for each medical image as one of 57 given classes. But in fact the images have 
been annotated with complete IRMA codes (both in English and in German), which are multi-axial 
codes for image annotation. In future the results of current annotation task will be used for further 
textual image retrieval tasks. 
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So by now, the annotation task can be taken as a multi-class classification problem, which is a 
great challenge for medical images with 57 classes. Compared with other classification problems, there 
are some particular difficulties for medical images: 

 Great unbalance between 57 classes; 
 See Figure 2. In 57 training sets, class 6 has more than 500 samples (images), class 12 has more 

than 2,500 samples, class 34 has near 1,000 samples, while all the others are much less. 20 classes 
occupies near 80% of the whole training sets. This unbalance causes many common classification 
methods unavailable. 

 Visual similarities between some classes; 
 See Figure 3. For people who are not experts of radiographs, it is impossible to find the differences 

between some classes visually. 
 Variety in one class and difficulty in defining visual features. 

See Figure 4. Too many modalities vary in one class. To find a general visual feature for one class is 
often very difficult. 
It’s more like an experimental work, where many features and methods have been tested based on 

simulation experiments. 
In Section 2 feature extraction techniques are described; Section 3 overviews SVM; Section 4 

gives the results of experiments; at last Section 5 gives the conclusion and future direction. 
 
2. Feature sets 
Feature extraction is a basic problem in image processing field. In [2] there are 56 CBIR (content-based 
image retrieval) systems reviewed, and a summary of low-level features are listed in 3 main categories: 
color, texture, and shape, plus 2 single features: layout, face detection. In [3][4] there are some similar 
classifications of features. 

‘Color’ includes dominant colors, region histogram, color coherence vector, color moments, 
correlation histogram, global/ sub-image histogram, eigen image, etc. 

‘Texture’ includes edge statistics (edge image histogram, edge orientation histogram), local binary 
patterns, random field decomposition, atomic texture features (contrast, anisotropy, density, 
randomness, directionality, softness, uniformity, often variations of Tamura features, and often derived 
from a concurrence matrix of pixel values). The results of wavelet decomposition, Gabor filter and 
Fourier filters, etc., are also taken as texture features in [2]. 

‘Shape’ includes elementary descriptors (centroid, area, orientation, length of major and minor 
axes, eccentricity, circularity, and features derived from algebraic moments), bounding box/ellipse, 
curvatures scale space, elastic models, Fourier descriptors, template matching, edge direction histogram, 
etc. 

The feature ‘layout’ is the absolute or relative spatial position of the pixels. It may include 
low-resolution-pixel-map (LRPM), which is used in our method. 

In the annotation task of ImageCLEFmed 2005, all provided images are black and white. So 
texture seems to be a more powerful feature than color. To judge the influence of noises, texture maps 
are calculated on both initial images and filtered images. Moreover, texture histogram is calculated on 
those texture maps. In Table 1, three texture features are considered: contrast, anisotropy, and polarity, 
where ‘h’ means the height of an image and ‘w’ means its width. A~F gives different sets of features. In 
Figure 5, there is a small example of textures and LRPM. 

As we can see from Table 1, if images’ sizes are different, the lengths of the feature vectors will 
also be different. In this case, LRPMs are used to unify all the images to the size 16x16. On the other 
hand, LRPMs can reduce the feature vectors’ length. We didn’t try other sizes except 16x16 because in 
[3] it shows that the sizes of LRPM have no obvious influence to the results. 

Table 1. Texture feature sets 
 contrast anisotropy polarity 

Original Image (A) h x w h x w h x w 
Filtered Image (B) h x w h x w h x w 
Histogram of A (C) 256 x 1 256 x 1 256 x 1 
Histogram of B (D) 256 x 1 256 x 1 256 x 1 

Filtered C (E) 256 x 1 256 x 1 256 x 1 
Filtered D (F) 256 x 1 256 x 1 256 x 1 



Besides of texture, regional features are also considered, such as Blob [6]. A Blob’s parameters 
include: color, texture, area, length of long axis and short axis, rotation angle, Fourier decomposition 
parameters, etc. It has been applied successfully in medical image retrieval in our past work [7]. 

Facing all kinds of features, it is really very difficult to find out which is more valuable than the 
others. And it is impossible to use all the features at the same time. So feature selection becomes a key 
problem. The ‘best’ features should be the most distinguishing features, and be invariant to different 
transformations of the input. To choose the best features is a very difficult theoretical problem. A 
practical way is to do simulation experiments, so as to select suitable features from the best result of 
classification. 

Through simulation experiments, three kinds of LRPMs are finally chosen as features used in our 
work. One is from the initial images; the other two are from the maps of texture features: contrast and 
anisotropy. 
 
3. Classification methods 
According to [8], roughly speaking, classification methods can be divided into the parametric and the 
nonparametric. Parametric methods include Bayesian estimation (Maximum-Likelihood, Hidden 
Markov models, Expectation-Maximization, Fisher Linear Discriminant, Multiple Discriminant 
Analysis, etc), Linear Discriminant functions (Perceptron Criterion Function, Relaxation Procedures, 
Minimum Squared-Error Procedures, Principle Component Analysis, Support Vector Machines, 
Ho-Kashyap Procedures, etc), Multi-layer Neural Networks, Stochastic methods (Simulated Annealing, 
Boltzmann learning, Evolutionary methods, etc).  

SVM is chosen in our program. It is a method widely used for statistical learning, and classifiers 
and regression models designing. Primarily SVM tackles the binary classification problem. The 
objective is to find an optimal separating hyper-plane (OSH) that correctly classifies feature data points 
as much as possible and separates the points of two classes as far as possible. The approach is to map 
the training data into a higher dimensional (possibly infinite) space and formulate a constrained 
quadratic programming for the optimization. Different mappings construct different SVMs [9]. 

SVM for multiple-classes classification is still under development. Generally there are two types 
of approaches. One type has been to incorporate multiple class labels directly into the quadratic solving 
algorithm. Another more popular type is to combine several binary classifiers. We used SVMTorch, 
which belongs to the latter. 

Kernel selection is a crucial issue for SVM. Kernels introduce different nonlinearities into the 
SVM problem by mapping input data into Hilbert space via a mapping function where it may then be 
linearly separable. Different kernels will accommodate different nonlinear mappings and the 
performance of the resulting SVM will often hinge on the appropriate choice of the kernel [10]. 
Generally it is impossible to judge in advance which kernel is the best for classification, and 
trial-and-error method is a common way to select kernels. There are 4 kernels in SVMTorch: linear, 
polynomial, radial basis function (RBF), sigmoid tanh. 

( , ) ( 1) pK = +x y x yi         (1) 

2 2/ 2( , )K e σ− −= x yx y         (2) 

( , ) tanh( )K κ δ= −x y x yi        (3) 
Eq. (1) results in a classifier that is a polynomial of degree p in the data; Eq. (2) gives a Gaussian 

radial basis function classifier, and Eq. (3) gives a particular kind of two-layer sigmoidal neural 
network. For the RBF case, the number of centers, the centers themselves, the weights, and the 
threshold are all produced automatically by the SVM training and give excellent results compared to 
classical RBFs, for the case of Gaussian RBFs. For the neural network case, the first layer consists of N 
sets of weights, each set consisting of dL (the dimension of the data) weights, and the second layer 
consists of N weights, so that an evaluation simply requires taking a weighted sum of sigmoids, 
themselves evaluated on dot products of the test data with the support vectors. Thus for the neural 
network case, the architecture (number of weights) is determined by SVM training. Note that the 
hyperbolic tangent kernel only satisfies Mercer’s condition for certain values of its parameters [11]. 

RBF is chosen in our program, and the standard variance σ is its parameter. Another parameter c is 
the trade-off between training error and the margin. 

PCA (Principle Component Analysis) [5] is also tried in our experiments. But owing to the serious 
unbalance of the training dataset, it can not overcome the over-fitting problem. In Section 4 more 



details about this will be shown. 
 

4. Experiments and result analysis 
Starting from 9,000 labeled training images (see Figure 2 and Table 2), the goal is to classify the 1,000 
given unlabeled images. In this process, there are 3 key points: feature selection, method selection, 
parameter selection. All of these can be decided by simulation experiments. 

• What is the simulation experiment? 

In ‘simulation experiments’, both the training images and test images are coming from the given 
training dataset. In this case, the ground-truth of the test dataset is known. Then it is possible to 
evaluate the result of an experiment. From the feedback of simulation experiments, we can choose the 
best features, suitable method, and best parameters. 

Of course different partitions of the 9,000 training images will cause different results. Thus the 
simulation experiments should be preceded under various partitions, various features, various methods, 
and various parameters. Some ratios are assigned to the partitions. Each ratio is applied in each of 57 
training sets separately. For example, if defined the ratio to 4:1, in each of 57 training sets, 80% images 
will be taken as training data and the left 20% will be regarded as test data. Ensuring each class has 
some training data and corresponding test data, is obviously better than dividing the whole training 
dataset randomly, in which way, the effect of the classification method cannot be seen clearly because 
there may be some classes disappearing at the training stage. 

• Simulation experiments with PCA 

First of all, the PCA method is tested in simulation experiments. This is owing to in our past work 
[5], PCA plus Blob features made a good result in image retrieval. In Figure 6, it is shown the best 
result of the simulated experiment on PCA plus Blob. The average accuracy (AA) of the classification 
is 0.5026.  

The AA mentioned here is equal to correctness rate, which is calculated according to the 
following formula: 

_ _ _ _
_ _ _

number of images classified correctlyAA
size of test dataset

=       (4) 

For example, in our case, the size of test dataset is 3,512, and there are 1,765 images classified 
correctly, so the AA is 0.5026. 

Figure 7 shows the best result of the simulation experiment on PCA plus texture features. The AA 
is 0.6977. But using either Blob or texture features, PCA results in almost all the images trapped into a 
few ‘attractive’ classes, like 6, 12, 34. This is owing to their big sizes of corresponding training dataset, 
which are 576, 2563, 880 separately (see Table 2), and the 3 highest peaks in Figure 2. They occupy 
44.65% of all the 9,000 training images. This obvious unbalanced distribution between different classes 
in training dataset can explain why the AA is not so low even in such a bad classification distribution 
(nearly all of the images are classified into the 3 classes). 

If purely from the viewpoint of AA to evaluate the result of PCA for annotation, it’s not too bad. 
But in Figure 6 and Figure 7, PCA is proved to be inoperative in solving such a seriously unbalanced 
problem, because there are too many empty classes. Like in Figure 7, only 3 classes have some 
classified samples but all the other classes have none.  

• Simulation experiment with SVM 

Too much training data existing in class 6, 12, 34 cause the risk of over-fitting. However, this risk 
can be controlled at least for simple noise models, e.g. models with constant noise levels, using soft 
margin SVM with specific sequences of regularization parameters [12]. In SVMTorch, the parameter for 
the soft margin is C, and the parameter for the standard variance is std. 

In our experiment, SVM plus different features is tested: 
SVM+ Blob (Figure 8) 
SVM+ LRPM (Figure 9) 
SVM+ texture (Figure 10) 
SVM+ LRPM + texture (Figure 11) 
SVM+ Blob + LRPM + texture (Figure 12) 

As shown in the above figures as well as Figure 14, ‘SVM + all (=Blob+LRPM+texture)’ reaches 
the highest AA (0.8890).  



 Comparison between methods: 
From those figures we can see that SVM are better than PCA because SVM can ‘recognize’ more 

classes. Further more, SVM can reach higher AA compared with PCA. 
 Comparison between features: 

Both by SVM, LRPM features (AA: 0.7725) seems to be better than Blob features (AA: 0.6311). 
This shows that in this task low-level features are more powerful than middle-level features, although 
Blob plays well in image retrieval field. Besides texture feature seems to be the best among the three 
with its AA 0.8318. Further more, the combination of the three kinds of features can reach a highest 
AA=0.8890. This is owing to different features reflecting different attributes of images, so that their 
combination can make a better result.  

 Influence of training dataset 
Generally speaking, different training datasets will cause different classification results, and the 

larger the training dataset is, the better the result will be. But in our case, larger training dataset may 
make the result worse owing to over-fitting problem. E.g., Figure 12 uses only 600 samples out of 2563 
samples from the training dataset of class 12, and its AA is 0.8890; if using 1000 samples to train the 
classifier, its AA only can reach 0.8727; when using 1500 samples, the AA lowers down to 0.8413. 

• The real experiments and results 

With the conclusions from above simulation experiments, the ‘SVM+Blob+LRPM +texture’ 
method is chosen at last, which seems to be the best combination of method and features. But 
unfortunately, in our submission result to ImageCLEFmed 2005, Blob hasn’t been included, which 
resulted in an AA 0.7940. 

Our latest result is 0.8070 (Figure 13), in which, AAs of 11 classes are higher than 0.9, containing 
505 correctly classified images in all 515 images; AAs of 23 classes are from 0.5 to 0.9, containing 270 
right classified images in all 356 images; in the last 23 classes with the AAs below 0.5, there are 129 
images in total, and only 32 images are right classified. This shows that, with the features above, SVM 
is not good at classifying small classes with few samples. 

In the following we discuss some factors influencing the AAs. 
 Threshold of sizes of training datasets 

According to Figure 2 and Table 2, there is a serious unbalance among the training datasets. The 
largest class contains 2563 samples (class 12), while the smallest class has only 9 samples (class 51, 
52). In many cases, too many training samples will cause the over-fitting problem. One of the solutions 
is to define a threshold to limit the numbers of training samples. For example, the threshold is set to 
300. Then each of 57 training datasets is to be limited to 300 training samples.  

But as shown in Figure 15, using soft margin SVM, when the threshold increases from 500, it will 
do little influence to AA. If using PCA, the threshold will do great influence to AA. So on this point, 
the performance of SVM is much better than PCA. 

 Parameters selection of SVM 
For SVM’s kernel RBF, there are two parameters: variance std and margin C. 
In Figure 16, (a) shows the influence of std, and (b) shows the influence of C. It can be seen that 

std does more influence to AA while C does little. 

• Error analysis 

In the information retrieval field, the most common used item to evaluate the retrieval results is 
PR curve (precision recall curve). Though in our case it is a classification problem, we keep on using 
them as evaluation figures. The difference is there will be no curves but graphs. A ‘curve’ is used to 
describe the effect of different parameters of a retrieval method, and one curve only corresponds to one 
class. A ‘graph’ can show all the classes’ position in the same coordinates simultaneously, and describe 
the effect of the classification method. It is more suitable to illustrate the results of a multi-class 
classifier. 

An example of this kind of graph is shown in Figure 17: G is the best region because the points in 
this region have high recall and precision; B is the worst region because its points have low recall and 
precision. For a multi-class problem, a convincible result should let its most classes fall in region G. As 
for ours, related to Figure 13, in Figure 17 there are more than half of the classes (around 53%) falling 
in G. 

 



5. Conclusions and future work 
SVM plus some texture features and blob features reaches an AA of 80.7%, while according to the 
published results of the annotation task in a link to ImageCLEF’s website, the highest AA of 
ImageCLEFmed is 87.4%. It means 67 right-classified samples more than ours. 

For SVM’s parameter’s tuning, it is proven in our experiments that only std makes sense for better 
result. Other kernels except RBF are tried but no better. 

PR graph is helpful to judge the effects of classification algorithms. 
As we can see in our work, features are the most important factor for image classification. In the 

future, new features should be mined. As for methods, neural network like HMM should be tried. 
  

References 
[1] B.Hu, S.Dasmahapatra, P.Lewis, and N.Shadbolt, Ontology-based Medical Image Annotation with 

Description Logics, Proceedings of The 15th IEEE International Conference on Tools with Artificial 
Intelligence, pp. 77-82, Sacramento, CA, USA. 

[2] Remco C. Veltkamp, Mirela Tanase, Content-Based Image Retrieval Systems: A Survey, Technical Report 
UU-CS-2000-34, Oct. 2000, http://give-lab.cs.uu.nl/cbirsurvey/. 

[3] T. Lehmann, M. Güld, T. Deselaers, D. Keysers, H. Schubert, K. Spitzer, H. Ney, and B. Wein. Automatic 
Categorization of Medical Images for Content-based Retrieval and Data Mining, Computerized Medical 
Imaging and Graphics, vol. 29, pp. 143-155, 2005. 

[4] Björn Johansson, A Survey on: Contents Based Search in Image Databases, LiTH-ISY-R-2215, Technical 
Reports from the Computer Vision Laboratory, Dept. of Electrical Engineering, Linköping University, 
SWEDEN, Feb., 2000,  http://www.cvl.isy.liu.se/ScOut/TechRep/. 

[5] Wei Xiong, Bo Qiu, Qi Tian, Changsheng Xu, Sim Heng Ong, Kelvin Foong, Content-based Medical Image 
Retrieval Using Dynamically Optimized Regional Features, ICIP 2005. 

[6] C. Carson, M. Thomas, S. Belongie, J. M. Hellerstein, and J. Malik, Blobworld: A system for region-based 
image indexingand retrieval, Proceeding of Third International Conference Visual Information Systems, 
1999. 

[7] Wei Xiong, Bo Qiu, Qi Tian, Henning Müller, Changsheng Xu, A novel content-based medical image 
retrieval method based on query topic dependent image features (QTDIF), SPIE Medical Imaging, San 
Diego, CA, USA, 2005. 

[8] Richard O.Duda, Peter E.Hart, David G.Stork, Pattern Classification, A Wiley-Interscience Publication, 2nd 
ed., ISBN 0-471-05669-3, 2000. 

[9] K.-S. Goh, E. Chang, K.-T. Cheng, Support vector machine pairwise classifiers with error reduction for 
image classification, Proceedings of the ACM Multimedia Workshop on Multimedia Information Retrieval 
(ACM MIR 2001), The Association for Computing Machinery, Ottawa, Canada, pp. 32-37, 2001. 

[10] Tony Jebara, Multi-task feature and kernel selection for SVMs, Proceedings of the twenty-first international 
conference on Machine learning ICML '04, July 2004. 

[11] C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining Knowledge 
Discovery, 2:121—167, 1998. 

[12] Ingo Steinwart, On the Influence of the Kernel on the Consistency of Support Vector Machines, Journal of 
Machine Learning Research, 2:67-93, 2001. 

http://give-lab.cs.uu.nl/cbirsurvey/
http://www.elsevier.com/wps/product/cws_home/292
http://www.elsevier.com/wps/product/cws_home/292
http://www.cvl.isy.liu.se/ScOut/TechRep/PaperInfo/bj2000.html
http://www.cvl.isy.liu.se/ScOut/TechRep/
http://portal.acm.org/citation.cfm?id=1015426&coll=GUIDE&dl=ACM&CFID=50881057&CFTOKEN=59027241


Appendix 

Figure 1. 57 Given classes in annotation task 
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Figure 2. Great unbalance between 57 classes (training sets) 

 
 



 
 
 

Figure 3. Visual similarities between some classes 

Figure 4. Variety in one class and difficulty to define visual features 

Initial : contrast : anisotropy : polarity : LRPM 

Figure 5. An image and its feature maps 

 
Figure 6. Classification result of PCA using Blob features 

 

Figure 7. Classification result of PCA using texture features 



 

Figure 8. Classification result of SVM using Blob features  

 
Figure 9. Classification result of SVM using texture features 

 
Figure 10. Classification result of SVM using LRPM features 

 

Figure 11. Classification result of SVM using LRPM + texture  



 
Figure 12. Classification result of SVM using LRPM + texture + Blob 

 

Figure 13. Last classification result for 1000 test images 
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Figure 16. Influence of SVM parameters to AA 
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Figure 17. PR graph (G: good; B: bad) 

Table 2. Sample numbers of 57 given classes (training datasets) 

Class 1 2 3 4 5 6 7 8 9 
number 336 32 215 102 225 576 77 48 69 
Class 10 11 12 13 14 15 16 17 18 
number 32 108 2563 93 152 15 23 217 205 
Class 19 20 21 22 23 24 25 26 27 
number 137 31 194 48 79 17 284 170 109 
Class 28 29 30 31 32 33 34 35 36 
number 228 86 59 60 78 62 880 18 94 
Class 37 38 39 40 41 42 43 44 45 
number 22 116 38 51 65 74 98 193 35 
Class 46 47 48 49 50 51 52 53 54 
number 30 147 79 78 91 9 9 15 46 
Class 55 56 57       
number 10 15 57       
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