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Abstract

This paper reports on Language Computer Corporation’s natural language logic prover’s
performance for the English and Spanish subtasks of the Answer Validation Exercise.
CoGEX takes as input a pair of plain English text snippets, it transforms them into
highly semantic logic forms, automatically generates natural language axioms which
will be used during the search for a proof and, determines the degree of entailment
between the entailing text snippet and a possible relaxed version of the entailed text.
The system labels an input pair as true entailment if its proof score is above the
threshold learned during training. Our semantic logic-based approach achieves 43.93%
F-measure for the English data and 60.63% on Spanish.
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1 Introduction

While communicating, humans use different expressions to convey the same meaning. One of the
central challenges for natural language understanding systems is to determine whether different
text fragments have the same meaning or, more generally, if the meaning of one text can be
derived from the meaning of another. A module that recognizes the textual entailment between
two snippets can be employed by various NLP applications. For example, Question Answering
(QA) systems should identify texts that entail the expected answers. Alternatively, a subsystem
designed to identify semantic entailments can validate the correctness of the answers returned by
a QA system. This latter idea was promoted as the Answer Validation Exercise (AvE)! subtask

lhttp://nlp.uned.es/QA/ave/index.php



of the 2006 QA2 track at the Cross-Language Evaluation Forum (CLEF)3. Once an answer with
its supporting snippet was returned by a QA system, a hypothesis was build by reformulating
and transforming the question and its answer into a declarative statement. If the supportive text
semantically entails this hypothesis, then the answer given by the QA system is expected to be
correct.

In this paper, we describe a model to represent the knowledge encoded in text and a logical
setting suitable to a recognizing semantic entailment system. We cast the textual inference problem
as a logic implication between meanings. The entailing supportive text (T') semantically infers the
entailed hypothesis (H) if its meaning logically implies the meaning of H. Thus, our system, first,
transforms both text fragments into logic forms, captures their meaning by detecting the semantic
relations that hold between the constituents of T' and, subsequently, between the constituents of
H and loads these rich logic representations into a natural language logic prover to decide if the
entailment holds or not and to provide a justification for it. This approach [15] proved to be
highly effective at the Second PASCAL Recognizing Textual Entailment Challenge? [2]. Figure 1
illustrates our answer validation system’s architecture. We used this setup for the English dataset
and for the automatic translation (in English) of the Spanish data®. LCC’s machine translation
system implements a phrase-based statistical translation method [8]. It was trained using the
Europarl corpus [7]. The details of our translation solution is described in [14]. The following
sections of the paper shall detail the logic proving methodology, our logical representation of text
and the various types of axioms the prover uses.
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Figure 1: COGEX’s Architecture

To our knowledge, there are few logical approaches to textual entailment. [3] represents 7" and
H into a first-order logic translation of the DRS language used in Discourse Representation The-
ory [6] and uses a theorem prover and a model builder with some generic, lexical and geographical
background knowledge to prove the entailment between the two texts. [4] proposes a Description

thtp ://clef-qa.itc.it/CLEF-2006.html
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5 Any processing (automatic or manual) of the Spanish data was performed on its English translation.



Logic-based knowledge representation language used to induce the representations of 7" and H and
uses an extended subsumption algorithm to check if any of 7’s representations obtained through
equivalent transformations entails H.

2 Cogex - A Logic Prover for NLP

LCC’s entailment system uses COGEX [11], a natural language prover originating from OTTER [9].
The prover requires a list of clauses called the set of support which is used to initiate the search for
inferences. For this recognizing textual entailment task, the negated form of the hypothesis (—H)
as well as the predicates that make up the logic representation of the supporting text passage (T')
form the set of support. A second list, called the usable list, contains the axioms used to generate
inferences. We consider several types of axioms: eXtended WordNet, linguistic, semantic and
temporal axioms. Once the set of support and usable lists are created, the logic prover begins its
search for a proof. The clauses in the set of support list are weighted in the order in which they
should be chosen to participate in the search. The negated hypothesis is assigned the largest weight
to ensure that it is the last clause to participate in the search. The logic prover removes the clause
with the smallest weight from the set of support, and searches the usable list for new inferences.
Any newly inferred clause is assigned an appropriate weight depending on its parent-clauses as
well as on the axiom it was derived from and appended to the set of support list. The logic prover
continues in this fashion until the set of support list is empty. If a refutation is found, then the proof
is complete. If a refutation cannot be found, then predicate arguments are relaxed. If argument
relaxation fails to produce a refutation, predicates are dropped from the negated hypothesis until
a refutation is found. The purpose of this iterative relaxation process is to determine the prover
to output (partial) proofs when the background knowledge captured in the axioms is incomplete
and to compensate for parsing errors (for example, incorrect prepositional-phrase attachments).

Due to the logic prover’s relaxation techniques, it is always successful in producing a proof.
The determination of whether entailment exists is made by examining the penalties assessed by
the logic prover in the process of generating the proof. As more axioms are utilized and more
predicates are dropped, it becomes much less likely that entailment exists between T' and H. All
normalized prover scores that fall below a specified threshold are considered false entailment and
all scores that are above the threshold are considered true entailment. An appropriate threshold
is calculated by examining the scoring output of the development data set to determine what
threshold produces the highest F-measure for the positive entailment class.

2.1 Proof scoring algorithm

Once a proof by contradiction is found, its score is computed by starting with an initial perfect
score and deducting points for each axiom utilized in the proof, every relaxed argument, and
dropped predicate. The computed score is a measure of the kinds of axioms used in the proof and
the significance of the dropped arguments and predicates. If we assume that both text fragments
are existential, then T+ H if and only if T’s entities are a subset of H’s entities (Some smart
people read = Some people read) and penalizing a pair whose H contains predicates that cannot be
inferred is a correct way to ensure entailment (Some people read I/ Some smart people read). But, if
both T and H are universally quantified, then the groups mentioned in H must be a subset of the
ones from T (All people read b All smart people read and All smart people read t/ All people read).
Thus, the scoring module adds back the points for the modifiers dropped from H and subtracts
points for T"’s modifiers not present in H. The remaining two cases are summarized in Table 1.
Because (T, H) pairs with longer sentences can potentially drop more predicates and receive a
lower score, COGEX normalizes the proof scores by dividing the assessed penalty by the maximum
assessable penalty (all the predicates from H are dropped). If this final proof score is above a
threshold learned on the development data, then the pair is labeled as positive entailment.



(Y7, 3m) (3r,VH)
All people read = Some smart people read Some people read tf All smart people read
All smart people read = Some people read Some smart people read t/ All people read
Add the dropped points for H’s modifiers | Subtract points for modifiers not present in H

Table 1: The quantification of 7" and H influences the proof scoring algorithm

3 Knowledge Representation

For the textual entailment task, our logic prover uses a two-layered logical representation which
captures the syntactic and semantic propositions encoded in a text fragment.

3.1 Logic Form Transformation

In the first stage of our representation process, COGEX converts 7' and H into logic forms [13].
More specifically, a predicate is created for each noun, verb, adjective and adverb. The nouns
that form a noun compound are gathered under a nn NNC predicate. Named entities are included
in our representation with an NE predicate which shares its argument with the noun it modifies.
Predicates for prepositions and conjunctions are also added to link the text’s constituents. This
syntactic layer of the logic representation is automatically derived from a full parse tree and ac-
knowledges syntax-based relationships such as: syntactic subjects, syntactic objects, prepositional
attachments, complex nominals, and adjectival/adverbial adjuncts. These syntactic relations sig-
nal semantic relationships which will be captured by the second layer of our representation. If we
consider, for instance, the hypothesis Iraq invaded the country of Kuwait in 1990 ¢, iraq NN(x1) &
_country NE(x1) & invade VB(el,x1,x2) & country NN(x2) & of_IN(x2,x3) & kuwait NN(x3)
& _country NE(x3) & in IN(x3,x4) & 1990.NN(x4) & _date NE(x4) constitutes its first layer
of logic representation.

3.1.1 Negation

Exceptions to the one-predicate-per-open-class-word rule include the adverbs not and never. In
cases similar to the provisions of the convention do not affect in any way the exercise of naviga-
tional rights and freedoms, the system removes not RB(x3,e1) and negates the verb’s predicate
(-affect_VB(el,x1,x2)) unless the verb is modified by an adverb ( They don’t admit it in public is
represented as They PRP(x8) & admit_VB(el,x8,x9) & it PRP(x9) & -in public RB(x11,el)).
Similarly, for nouns whose determiner is no, for example, no science data was lost, the verb’s predi-
cate is negated (science NN(x1) & data NN(x2) & nn NNC(x3,x1,x2) & -lost_VB(el,x4,x3)).

3.2 Semantic Relations

The second layer of our logic representation adds the semantic relations, the underlying relation-
ships between concepts. They provide the semantic background for the text, which allows for
a denser connectivity between the concepts expressed in text. Our semantic parser takes free
English text or parsed sentences and extracts a rich set of semantic relations” between words or
concepts in each sentence. It focuses not only on the verb and its arguments, but also on semantic
relations encoded in syntactic patterns such as complex nominals, genitives, adjectival phrases,
and adjectival clauses. Our representation module maps each semantic relation identified by the
parser to a predicate whose arguments are the events and entities that participate in the relation
and it adds these semantic predicates to the logic form. For example, the logic form of Iraq invaded
the country of Kuwait in 1990 is augmented with the AGENT SR(x1,el) & THEME SR(x2,el) &

6The examples shown in this paper were extracted from the English and the English translated version of the
Spanish entailment corpora released as part of AVE 2006. The datasets will be described in Section 7.

"We consider relations such as AGENT, THEME, TIME, LOCATION, MANNER, CAUSE, INSTRUMENT, POSSESSION,
PURPOSE, MEASURE, KINSHIP, ATTRIBUTE, etc.



ISA SR(x3,x2) & TIME SR(x4,el) relations® (Iraq is the agent of the invade event, the country
of Kuwait is its theme and 1990 shows the time of the invasion).

3.3 Temporal Representation

In addition to semantic predicates, we represent every date/time into a normalized form time TMP (
BeginFn(date_event), beginning year, beginning month, beginning day, beginning hour,
beginning minute, beginning second) & time_TMP(EndFn(date_event), ending year,
ending month, ending day, ending hour, ending minute, ending second). Furthermore,
temporal reasoning predicates are derived from both the detected semantic relations as well as
from a module which utilizes a learning algorithm to detect temporally ordered events ((S, E1, E»),
where S is the temporal signal linking two events E;y and E;) [10]. From each triple, temporally
related suMO predicates are generated based on hand-coded rules for the signal classes ((S se-
quence, E;,E;) = earlier TMP(el,e2), (S contain, Ei, E;) = during TMP(el,e2), etc.). In
the above example, 1990 is normalized to the interval time TMP (BeginFn(e2),1990,0,0,0,0,0)
& time TMP(EndFn(e2),1990,12,31,23,59,59) and during TMP(el,e2) is added to the logical
representation to show the period of time when the invasion occurred.

4 Axioms on Demand

COGEX’s usable list consists of all the axioms generated either automatically or by hand. The
system generates axioms on demand for a given (T, H) pair whenever the semantic connectivity
between two concepts needs to be established in a proof. Axioms in our system are utilized to
provide external world knowledge, knowledge of syntactic equivalence between logic form predi-
cates, and lexical knowledge in the form of lexical chains. We are keen on the idea of axioms on
demand since it is not possible to derive apriori all axioms needed in an arbitrary proof. This
brings a considerable level of robustness to our entailment system.

4.1 eXtended WordNet lexical chains

For the semantic entailment task, the ability to recognize two semantically-related words is an
important requirement. Therefore, we automatically construct lexical chains of WordNet relations
from T’s constituents to H’s [12]. In order to avoid errors introduced by a Word Sense Disam-
biguation system, we used the first k senses for each word® unless the source and the target of the
chain are synonyms. If a chain exists'?, the system generates, on demand, an axiom with the pred-
icates of the source (from T') and the target (from H). For example, given the ISA relation between
murder7#1 and kill#1, the system generates, when needed, the axiom murder VB(el,x1,x2) —
kill VB(el,x1,x2). The remaining of this section details some of the requirements for creating
accurate lexical chains.

Because our extended version of WordNet has attached named entities to each noun synset, the
lexical chain axioms append the entity name of the target concept, whenever it exists. For example,
the logic prover uses the axiom Nicaraguan JJ(x1,x2) — Nicaragua NN(x1) & _country NE(x1)
when it tries to infer electoral campaign is held in Nicaragua from Nicaraguan electoral campaign.

We ensured the relevance of the lexical chains by limiting the path length to three relations and
the set of WordNet relations used to create the chains by discarding the paths that contain certain
relations in a particular order. For example, the automatic axiom generation module does not

. . . . . , is—g ., h
consider chains with an 1S-A relation followed by a HYPONYMY link (Chicago =¥ city yronymy
Detroit). Without removing these types of chains, our system inferred, for instance, John lives

8R(x,y) should be read as “x is R of y”.

9Because WordNet senses are ranked based on their frequency, the correct sense is most likely among the first
k. In our experiments, k = 3.

10Each lexical chain is assigned a weight based on its properties: shorter chains are better than longer ones, the
relations are not equally important and their order in the chain influences its strength. If the weight of a chain is
above a given threshold, the lexical chain is discarded.



in Detroit from John lives in Chicago (Chicago == city hyponymy Detroit). Similarly, the system
rejected chains with more than one HYPONYMY relations. Although these relations link semanti-
cally related concepts, the type of semantic similarity they introduce is not suited for inferences
(the hypothesis should be more general than the text and too many HYPONYMY relations can
lead to a too specific concept in H). Another restriction imposed on the lexical chains generated
for entailment is not to start from or include too general concepts'!. Therefore, we assigned to
each noun and verb synset from WordNet a generality weight based on its relative position within
its hierarchy and on its frequency in a large corpus. If d; is the depth of concept ¢;, Dg, is the
maximum depth in ¢;’s hierarchy H; and IC(c;) = —log(p(c;)) is the information content of ¢;
measured on the British National Corpus, then

1

%—;1 *IC(C,’)

generalityW (¢;) = .
In our experiments, we discarded the chains with concepts whose generality weight exceeded 0.8
such as object_ NN#1, act_VB#1, be_VB#1, etc.

Another important change that we introduced in our extension of WordNet is the refinement
of the DERIVATION relation which links verbs with their corresponding nominalized nouns. Be-
cause the relation is ambiguous regarding the role of the noun, we split this relation in three:
ACT-DERIVATION, AGENT-DERIVATION and THEME-DERIVATION. The role of the nominalization
determines the argument given to the noun predicate. For instance, the axioms act_VB(el,x1,x2)
— acting NN(el) (ACT), act_VB(el,x1,x2) — actor NN(x1) (AGENT) reflect different types of
derivation.

4.2 NLP Axioms

Our NLP axioms are linguistic rewriting rules that help break down complex logic structures
and express syntactic equivalence. After analyzing the logic form and the parse trees of each
text fragment, the system, automatically, generates axioms to break down complex nominals and
coordinating conjunctions into their constituents so that other axioms can be applied, individ-
ually, to the components. These axioms are made available only to the (T, H) pair that gener-
ated them. For example, the axiom nn NNC(x3,x1,x2) & Sigmund NN(x1) & Freud NN(x2) —
Freud NN(x3) breaks down the noun compound Sigmund Freud into Sigmund and Freud.

This type of axioms proved to be the most frequently used for both the English and Spanish
datasets. More specifically, the apposition axioms which show the equivalence between an entity
and its explanatory equivalent alone solved 33.22% of the Spanish entailments. For example, CO-
GEX detects the entailment between the English supporting text The space shuttle Atlantis blasted
through low lying clouds yesterday and the hypothesis Atlantis is space shuttle by using the corre-
spondence axioms space_shuttle NN(x9) & atlantis NN(x10) — space_shuttle NN(x10) and
space_shuttle NN(x9) & atlantis NN(x10) — atlantis NN(x9).

Newly introduced types of NLP axioms include implications from named entity classes to
nouns that describe the class (for example, the axioms kuwait NN(x1) & _country NE(x1) —
country NN(x1) and kuwait NN(x1) & _country NE(x1) — country NN(x2) & ISA_SR(x1,x2)
help COGEX infer hypothesis’s country of Kuwait from texts that mention only Kuwait) and log-
ical equivalences between name variations, for instance, Mikhail Gorbachev, Michail Gorbatchov,
and Mikhail S. Gorbachev. Most of these correspondences cannot be found in WordNet even if
the named entity has its appropriate synset.

4.3 World Knowledge Axioms

Because, sometimes, the lexical or the syntactic knowledge cannot solve an entailment pair,
we exploit the WordNet glosses, an abundant source of world knowledge. We used the logic
forms of the glosses provided by eXtended WordNet!2 to, automatically, create our world knowl-

1 There are no restrictions on the target concept.
12h1:‘t:p ://xwn.hlt.utdallas.edu



edge axioms. For example, the first sense of noun Pope and its definition the head of the Ro-
man Catholic Church introduces the axiom Pope NN(x1) ¢> head NN(x1) & of_IN(x1,x2) &
Roman _Catholic_Church NN(x2) which is used by prover to show the entailment between T: A
place of sorrow, after Pope John Paul IT died, became a place of celebration, as Roman Catholic
faithful gathered in downtown Chicago to mark the installation of new Pope Benedict XVI. and
H: Pope Benedict XVI is the new leader of the Roman Catholic Church.

We also incorporate in our system a small common-sense knowledge base of 457 hand-coded
world knowledge axioms, 74 where have been manually designed based on the entire devel-
opment set data, and 383 originate from previous projects. These axioms express knowledge
that could not be derived from WordNet regarding employment (the axiom _country NE(x1) &
negotiator NN(x2) & nn NNC(x3,x1,x2) — work VB(el,x2,x4) & for_IN(el,x1) helps the prover
infer that Christopher Hill works for the US from top US negotiator, Christopher Hill), family re-
lations, awards, etc.

5 Semantic Calculus

The Semantic Calculus axioms combine two semantic relations identified within a text fragment
and increase the semantic connectivity of the text [16]. A semantic axiom which combines two re-
lations, R; and R;, is devised by observing the semantic connection between the w; and ws words

for which there exists at least one other word, ws, such that R;(w;,ws) (wy B w2) and R; (w2, ws3)

(wa il w3) hold true. We note that not any two semantic relations can be combined: R; and R;
have to be compatible with respect to the part-of-speech of the common argument. Depending
on their properties, there are up to 8 combinations between any two semantic relations and their
inverses, not counting the combinations between a semantic relation and itself'3. Many combina-
tions are not semantically significant, for example, KINSHIP_SR(x1,x2) & TEMPORAL SR(x2,el)
is unlikely to be found in text. Trying to solve the semantic combinations one comes upon in
text corpora, we analyzed the RTE development corpora and devised rules for some of the R; o R;
combinations encountered. We validated these axioms by checking all the (w;,ws) pairs from the
LA Times text collection such that (R; o R;)(w1,ws) holds. We have identified 82 semantic axioms
that show how semantic relations can be combined. These axioms enable inference of unstated
meaning from the semantics detected in text. For example, if T' (even further to include external
factors such as weather conditions) states explicitly the THEME (THM) relation between include
and external factors and the 1SA relation between factors and weather conditions, the logic prover
uses the ISA_SR(x1,x2) & THM_SR(x2,el) — THM_SR(x1,el) semantic axiom (the dominance
of the THEME relation over 1SA) to infer the THM(weather conditions, include). Another fre-
quent axiom is LOCATION_SR(x1,x2) & PARTWHOLE_SR(x2,x3) — LOCATION_SR(x1,x3). Given
the text John lives in Dallas, Texas and using the axiom, the system infers that John lives in
Texas. The system applies the 82 axioms independent of the concepts involved in the semantic
composition. There are rules that can be applied only if the concepts that participate satisfy
a certain condition or if the relations are of a certain type. For example, LOCATION SR (x1,x2)
& LOCATION_SR(x2,x3) — LOCATION_SR(x1,x3) only if the LOCATION relation shows inclusion
(John is in the car in the garage — LOCATION_SR(John,garage). John is near the car behind the
garage /> LOCATION_SR(John,garage)).

6 Temporal Axioms

One of the types of temporal axioms that we load in our logic prover links specific dates to more
general time intervals. For example, August 1990 entails the year 1990. This rule is used to prove
that Iraq invaded the country of Kuwait in 1990 from Trade sanctions imposed on Iraq after it
invaded Kuwait in August 1990. These axioms are automatically generated before the search for a

13Harabagiu and Moldovan [5] lists the exact number of possible combinations for several WordNet relations and
part-of-speech classes.



proof starts. Additionally, the prover uses a SUMO knowledge base of temporal reasoning axioms
that consists of axioms for a representation of time points and time intervals, Allen [1] primitives,
and temporal functions. For example, during is a transitive Allen primitive: during TMP (el,e2)
& during TMP(e2,e3) — during TMP(el,e3).

7 Experiments and Results

The AVE corpus consists of text-hypothesis pairs generated from the responses to the QA task. The
text snippet returned by a QA system as supportive for its answer became the T and the question
transformation into a declarative sentence which includes the answer became the hypothesis H.
Table 2 present statistics about the datasets provided by the AVE organizers.

Development (%) Test (%)
True False Total True False Unknown | Total
English | 436 (15.19) | 2434 (84.80) 2870 215 (10.29) | 1144 (54.78) | 729 (34.91) 2088
Spanish | 638 (21.96) | 2267 (78.03) 2905 671 (28.32) | 1615 (68.17) 83 (3.50) 2369

Table 2: Datasets Statistics

The test pairs tagged as unknown (pairs with inexact answers or not judged by humans) were
ignored in the performance evaluation of the system.

7.1 CoGEX’s Results

Table 3 summarize COGEX’s performance on the English and Spanish datasets. Because our
knowledge representation method relies on a full syntactic parse tree of the input and, in the
AVE corpus, a large number of hypotheses were incorrect from a syntactic point of view, the logic
representations were compromised. This created the largest source of errors for our logic-based
system. We performed a deep analysis of the system’s results in order to pinpoint the sources of
its mistakes and we mainly focused on the negative pairs that COGEX labeled as true entailments
which led to a low precision.

| | English | Spanish |

Development data (%)

Precision for YES class 34.49 53.58
Recall for YES class 72.93 78.52
F-measure for YES class 46.83 63.69
Accuracy 74.84 80.34
Test data (%)

Precision for YES class 31.87 52.70
Recall for YES class 70.70 71.39
F-measure for YES class 43.93 60.63
Accuracy 71.45 72.79

Table 3: System’s Performance

Because there were pairs for which we felt that the system’s response which contradicts the
human annotated label of the pair was correct (for example, English pair 5183 with the text that
before D-day Hitler’s army had ravaged Europe for five years, and many feared Germany might
still win the war. Gen. Duwight D. Eisenhower called D-day “a great crusade,” but privately,
the day before D-day, Eisenhower wrote a message in case things went wrong: “Our landings ...
and the hypothesis FISENHOWER called D-day “a great crusade”), one of the authors of the
paper manually labeled the test pairs which were annotated by judges with either YES or NO (we
discarded the UNKNOWN pairs) and we computed the inter-annotator agreement for this data. The



values presented in Table 4 show substantial agreement for the English pairs and almost perfect
agreement for the Spanish data. These findings combined with the system’s higher results for the
Spanish when compared to English suggests that the English data was more difficult (even for
humans) or that pre-processing errors (some of which we listed below) made the English pairs
more problematic.

Proportional agreement (%) | Kappa agreement (%)
English 92.05 72.16
Spanish 95.05 88.24

Table 4: Inter-annotator agreement on the YES/NO test pairs

Some of the system’s difficulties were posed by the semi-automatically generated English hy-
potheses which contained the entire supporting text on the answer’s position (English test pair
6989, for example, has as T" David Shearer wrote about Hodgkin, Bellany and Vermeer but failed
to mention David Hosie who has surely influenced his stolid, iconic figures most of all and as
H Vermeer was David Shearer wrote about Hodgkin, Bellany and Vermeer but failed to mention
David Hosie who has surely influenced his stolid, iconic figures most of all). With so much overlap
between T and H, the system assigned to this type of pairs high scores which lead to true assign-
ments in 66.66% of false entailment cases while only 18.57% of the pairs with the entire T inserted
in the hypothesis are true entailments. On the other hand, the system effortlessly labelled as false
the 34 negative pairs from the English test set with empty T's. For the Spanish data, 34 out of
the 35 pairs whose H includes the whole T are false entailments and COGEX incorrectly labelled
41.17% of them.

Another subset of negative pairs that our system mistakenly tagged as positive include pairs
whose T' contains the correct answer to the question being asked but this answer was not correctly
identified and other phrase mentioned in the text was inserted in the hypothesis, for instance,
the text Jordan signed an accord with Israel on July 28 ending the state of war between them and
pledging to conclude with o peace treaty is not entailing the hypothesis Jordan and Israel signed
a peace treaty on state of war created based on the question On which day did Jordan and Israel
sign a peace treaty?, but it contains the correct answer. The very high lexical overlap between
T and H coupled with COGEX’s argument relaxation technique (the system relaxes the on-link
between signed and state of war) led to high proof scores.

8 Conclusion

In this paper, we present as part of the Language Computer’s system participating in the Answer
Validation Exercise, a logic form representation of knowledge which captures syntactic dependen-
cies as well as semantic relations between concepts and includes special temporal predicates. We
implemented several changes to our eXtended WordNet lexical chains module which lead to fewer
unsound axioms, refined our set of natural language axioms and incorporated in our logic prover
semantic and temporal axioms which decrease its dependence on world knowledge. We plan to
improve our logic prover to detect false entailments even when the two texts have a high word
overlap and further expand our axiom set.
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