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Abstract

In this paper we describe the participation of TELECOM Prach in the ImageClefphoto
2008 challenge. This edition focuses on promoting divgiisitthe results produced by the
retrieval systems. Given the high level semantic contenheftopics, search engines based
solely on text or visual descriptors are unlikely to offetisfactory results. Our system uses
several text and visual descriptors, as well as several T@tibn algorithms to improve the
overall retrieval performance. The text part includes dectibn of manually built boolean
gueries and a set of textual descriptors extracted autoaligtiusing dictionary filtering and
dimensionality reduction. Text and visual descriptorsa@mbined using two strategies: ad-
hoc concatenation and re-ranking. Diversity makes it fpbsgd reduce the redundancy in
the final results and it is obtained using two techniquesstold clustering and maxmin
exploration. Several runs were submitted to the challeingkiding individual (text or visual),
combined, and with different settings of diversity. Theulesshow that the combined runs
outperform by a significant amount the individual runs. Ehessults clearly corroborate (i)
the complementarity of text and visual descriptors andlfg)effectiveness of boolean queries
suggesting promising future research directions.

Categories and Subject Descriptors

H.3 [Information Storage and Retrievall: H.3.1 Content Analysis and Indexing; H.3.3 Information
Search and Retrieval; H.3.4 Systems and Software; H.3.itdDigbraries; H.2.3 Database Manage-
ment]: Languages-Query Languages

General Terms

Measurement, Performance, Experimentation.

Keywords

Image retrieval, Reranking, Support Vector Machines, litihext and Image Search.

1 Introduction

Stimulated by the exponential growth of multimedia corgette interest in document indexing and re-
trieval has steadily increased in recent years. Althoughliased retrieval has been studied for several



decades [26], many problems remain unsolved [20]. Recdeiybased retrieval emerged successfully in
internet search [17], and it usually relies on statistieat processing and tags collections. Content based
image retrieval also developed rapidly in the last decad#ivated by the growing amount of image and
video collections and by the need to organize, share andts#iawse contents effectively and efficiently
[28, 4]. Since neither world (text orimage indexing andiesal) offers a satisfactory bridge to solve the in-
famous semantic gap, more and more search engines emplog tepti and visual representations in order
to describe and search multimedia databases. In this dottteXxmageClef challenge offers an excellent
benchmark to test and compare several state of the art tigrproposed by different participahts

ImageClefphoto 2008 focuses on promoting diversity in #&ults produced by search engines, i.e.,
those which reduce the number of redundant elements indhgiut are preferred. As we shall seg
the query topics are very semantic so individual text or aligslescriptors are not expected to offer satis-
factory results. In this work, we investigate several camhibn strategies for text and visual descriptors
as well as several algorithms for reducing the redundanttydmesults returned by the system. In order to
describe the textual content we use two representatiohs: €&t of manually constructed boolean queries
and (2) a set of automatically extracted vector representabased on dictionary filtering and dimension-
ality reduction. We also use several global image desasdt®, 4], which even though less performant
than local ones [24], have the advantage of being genericamgutationally cheap (s&8).

We compare hybrid combination by concatenation and reingnkising both the Query By Example
(QBE) paradigm and SVM learning. In order to eliminate théuredancy in the final results we employ
two strategies: a modified version of Quality Thresholditggpathm and a maxmin exploration strategy.
Our results show that combining the visual search resufen(ghen using a small number of examples,
e.g. three in the challenge) with the textual results impsmsignificantly the overall performance. Clearly,
the information provided by the two modalities are complatagy. Furthermore, the manually prepared
boolean queries provide a noticeable and consistent ggigesting that semantic parsing and automatic
extraction of boolean representations is a promising rebatfirection.

The paper is organized as follows. We start by a short prasentof the ImageClef Photo Retrieval
Task §2). Then, we describe our visual descriptors and the refri@sults obtained using image descrip-
tors only §3). Manual queries are describedgi.1 while in§4.2 we present our automatic text feature
extraction from raw data and their combination with the alsdescriptors. Ir$5 we describe our diversi-
fication algorithm; we end the paper with a discussion andlcaiing remarks.

2 ImageCLEF Photo Retrieval Task

In this section we briefly describe the ImageClefphoto eegtl challenge, description that we use later
to motivate our choices and to discuss various results. yidas, ImageClefphoto focuses on promoting
diversity in the results produced by search engines, i@setlwhich eliminate (near-)duplicate documents
are likely to produce a higher percentage of meaningfulltesThe performance measures used in the
challenge are the precision at 20 (P20) defined as

Relevant(20)
P2)=———— 1
20 1)
and the cluster-recall at 20 (CR20), or sub-topic recall:
U2, s(@)
CR20="——— 2
s

where for a given topic, the documedyt is relevant for the set of sub-topi¢gd;) and N is the total
number of sub-topics [31]. The submitted runs were rankedraling to the average of the two above
measures.

The benchmark uses the IAPR-TC12 [12] data collection, Wwbinsists of 20,000 images associated
with a set of XML annotations, including text descriptiolugation tags, title and date. The challenge pro-
poses39 query topics, also available in XML format. Each topic is defi by a narrative block indicating

125 research teams submitted runs to the ImageClefphoto @@0@nge



<DOC=>
<DOCNO=annotations/00/60.eng</DOCNO>
S e L ) <num> Number: 5 </num>
<DESCRIPTION >two lane street with large

4 shops on the right and smaller shops on the left; <title> animals swimming </title>

people are walking on the sidewalk, some are .
crossing the street; cars are parked along the ‘:CJ HStEI'}ﬂHHH ﬂf{/{‘f us tEI'>

left side of the street as well; </DESCRIPTION>

<top=>

<NOTES>The main shopping street in Paraguay; <narr> </narr>

RO <image> 3739.jpg </image>
<LOCATION>Asuncién, Paraguay </LOCATION>

<DATE>March 2002 </DATE> <image> 4968 jpg </image>
<IMAGE>images/00/60 jpg </IMAGE> ) ) ‘
<THUMBNAIL>thumbnails/00/60 jpg <image> 30823 jpg </image>
</THUMBNAIL> </top>

</DOC>

Figure 1: IAPR-TC12 database entry description (left) anelry topic format (right).

the search target, a diversity criterion and a set of thregamueries (Fig. 1 shows one topic description
and a database entry). A short analysis of these data rahaalthe topics combine highly semantic con-
cepts and complex logical structures. For each topic, titmeges are also supplied in order to enhance
understanding and to help formulating visual queries, bay tare not intended as a replacement of text
descriptions. Indeed, due to the complex semantic defivstaf the topics, image queries are unlikely to
retrieve all relevant results. Thus, image examples aregpsrbest used to enhance the results through
their combination with the text description, and this is &pproach we adopted for this challenge.
Different acronyms were used by participants and stanchi@fallowing runs and query types: IMG
(image), TXT (text) and TXTIMG (combination text/image) M (manual) and AUTO (automatic).

3 Visual Content Description and Search

In this section we motivate our choice of image descriptorgtie ImageClefphoto retrieval use case (see
§3.1 and;3.2). We then present, §8.3, our querying paradigms and we show&4 some performance
measurements, including a comparison with other ImageGies. We end this section with a brief discus-
sion of the limits of visual queries.

3.1 Motivation

Extracting visual features that capture high level sengattdntent of an image is a difficult task. Indeed,
the main challenge for content based retrieval system®imfamous “semantic gap” that instantiates the
discrepancy between the low level features used to représeuaisual content and the high level concepts
expected by the users [4].

For some domain specific databases and applications, sbcbvasing fingerprint or face images, there
exists enougla priori knowledge of the image content to be able to propose morgatecmathematical
models. However, for generic databases, the task becomels hauder since there is no perfect and
unique description of the visual content which agrees withgemantit Therefore, many systems rely
on holistic combined image descriptions such as color, texture andegdafi8, 10] in order to search for
target images. This approach, even thoagkhog has been successfully applied for unstructured image
databases (which lack text descriptions) through an ioteeadescription of concepts using relevance
feedback and machine learning techniques [33].

Recent object recognition approaches relyiaral descriptors (for example, image regions or interest
points) in order to describe more precisely the visual auritd]. While local descriptors have many de-
sirable properties, such as stability and invariance tomomgeometric and photometric transformations
[23, 32], they are resource (time and memory) demanding andat be easily extended to large-scale
search engines. Moreover, although these algorithms camleel to perform well for some object cate-

2This is due to lack of consensus about the underlying sensarihich usually depends on the context (even humans eisagr
when interpreting images.)



gories, they are less adapted to pictures involving defbfenabjects or context dependent scenes that are
difficult to describe using individual rigid objects (for@xple, emotional states or esthetic impressions.)

Since ImageClefphoto query topics are very semantic andsores expressed as a combination of
several concepts, they are not easily translated in terrmolevel visual features. The large number of
topics and concepts involved in their definition rules ot plossibility to use specific visual models for
each concept. Instead, we use global image descriptorssasiold below. While being less performant
compared to local descriptions, they are more appropriatedr use case as (1) they have small memory
footprint and thus fit into standard PCs without any specificagje requirements; and (2) they are very
fast to compute as they involve simple distance measureatpes, guaranteeing real time responses.
Furthermore, as they do not include any a priori object matiely can be applied to any target category.
Indeed, global descriptors have been shown to perform wehis framework, for example with SVM-
based machine learning [33].

3.2 Global Image Descriptors

As described ir$3.1, we use global image descriptors in order to representitual content of images.
More precisely, we use a combination of color, texture arapbeteatures, as described below.

Color histograms: they provide a summary description of the color informatiomignore spatial corre-

lations between colors; thus, pixels having the same cadtrilobution may not be similar in the context of
their spatial neighborhoods [30], [1]. Alternatively, givan image of siz&/ x N, we weight each color

instance by a measure related to its local context:

1 M—-1N-1
e = 7y 2, 2 S )~

whereh(c) is frequency of coloke andw(x,y) is a pixel-based weighting function. We uséz,y) =
[|A(x,y)||?, the Laplacian at the pixélr, y), to emphasize corners and edges in the image and local color
frequency to emphasize non-uniform regions.
Texture features: we use the power spectral density distribution in the complane. This has been
shown to perform well when combined with color and shapeofistms [19]. Roughly, a high energy
spectrum concentrated at low frequencies highlights lacgée informations in an image, while high fre-
guencies correspond to textured regions (small scalelshetali
Shape features:in order to describe the shape content of an image we useasthedge orientation
histograms. First, edges are extracted from images, treegriédient is computed using only the edge
pixels. The orientation of the gradient is quantized w.r.thte angle resulting into a histogram that is
sensible to the general flow of lines in the image [14]. Mor&ilkeon image descriptors can be found in
[71.

Visual feature vectors are combined by concatenation aard th order to reduce resource requirements
and to avoid the curse of dimensionality, we apply linear HC8] and keep the 100 largest principal
components (which preserves 95% of the energy of the sjgnal.

3.3 Querying Paradigms

For each topic, we use the three query images combined witllifferent paradigms: (i) similarity search
by minimum distance and (ii) SVM filtering.

MinDistance Query: let B be the database and I8t= {q1, ¢2, g3} denote the query, herg, ¢ andgs
are the three images of the query topic. We extend the “qugsxbmple” search paradigm for multiple
inputs by introducing a composed measure of dissimilagtyveen an image € 5 andQ:

This definition naturally follows from the fact that images close to one of the three query images
{q:} are more likely to belong to the same topic. Instead of takivegmin-value, one can consider a
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Figure 2: Comparative performance of two-class SVM, ors<ISVM and similarity retrieval with
MinDist.

convex combination of distances; neverthelesi;;if are very distant in the description space, the resulting
dissimilarity measure is uncorrelated with the semantitwad by the query topics.

SVM Based Querying: Support Vector Machines (SVM) [27] have been applied witbcgiss to a great
wealth of practical problems since their inception in ed®s by Vapnik [29]. In image retrieval, they
provide state of the art results in many recognition taskafd relevance feedback [33]. They use a linear
combination of kernels as a decision function:

N
fsvm(@) = @K (z,x;), 4)
i=1

whereK (-, -) is a positive definite kerne{c; } are the signed Lagrange multipliers afpd : «; # 0} are
known as the support vectors (see [27, 29] for details).

We trained our SVMs using = {q1, ¢2, g3} as positive examples. One may use one class SVMs for
training, but their generalization performances were rigabto be sub-optimal (with respect to standard
SVMs) for image retrieval [4, 6] mainly when the positive sdas contain few examples. In practice, we
used, for each topic, standard two class SVMs traine@ @nd random subsets d6 negative examples
taken fromB. As the size of3 is 20, 000, it is unlikely that some relevant images belong to thesatieg
random subsets. While simple, this procedure proved tofbetefe in practice and produced better results
compared to one class SVMs.

Once each topic SVM learhtthe system ranks the database according to the score givEn.b4
and returns the most positive examples. In all these exeatsnwe use the Laplacian kernel defined as
K (x;,z;) = exp (—7|lzi — ;). This kernel was advocated in [3] for histogram-based intgeription
and proved to provide better results than the usual Gaugsiarel for relevance feedback tasks [15].
Notice that the dominant term in its Taylor expansion cqroesls to the triangular kernek (z;, z;) =
—|lz: — x;||, which is proved to be scale invariant with respect to théritlistion of the data in the
description space [8]. In practice, we found that a goodrggtif v is 1. For consistency and comparison
issues, we fix in all our experiments the kernel and its pataraeOf course, our results could be improved
by fine tuning the kernel parameters or by exploring othendds; but this is not in the scope of this work.

3.4 Performance

In Fig. 2 we present the average precision over all topicsfaacion of the number of results sent by the
guery engine. At this stage, we draw the following conclasio

3In our experiments we used the well known LIBSVM packagegghttp://www.csie.ntu.edu.tw/cjlin/libsvm



Figure 3: “Bird flying” search topic: comparative results &imilarity retrieval by MinDist (left) and SVM
retrieval (right).

1. As expected, the SVM query procedure described abovedatms all the other paradigms (a gain
of almost10% when compared to QBE MinDist and One-class SVM).

2. One-class SVM performs about the same as the QBE MinDisis dan be explained by the fact
that the number of learning examples is very small (onlyghend thus, not enough to capture the
complexity of the target topic.

These runs do not include diversity and were not submitteithéolmageCLEF-PRT (se$b). The
two IMG runs we submitted (using only visual features), weneked 29 and 3 tailing the ' rank run
performances on the combined P20/CR20 measure§eeln terms of theP20 measure (Eq 1), our
two runs were ranked'and é" which proves that the diversification algorithms, altholghering the
P20 measure, improved the overall performance. As an illustnafig 3 shows the difference between
SVM and direct MinDist similarity retrieval using the “bisdlying” topic. As expected, SVM uniformly
provides more consistent results.

3.5 Limits of the Visual Search

Motivated by a wealth of practical applications, imageiestul by visual content has became a rapidly
evolving research field, although breakthrough advancestil rare. State of the art results are far from

satisfactory and search by image descriptors alone iselylik offer complete satisfaction for most practi-

cal task [4]. This state of progress clearly motivates threeaf$ybrid descriptions, for example by combin-

ing visual features with text and other available media fslhimusic, meta-tags, etc.) Meanwhile, recent
trends in research suggest that machine learning basechsmathods with relevance feedback provide
excellent results for many tasks. In the following sectiaresdescribe our approach for ImageClefphoto
challenge by using manually prepared boolean quet®d) and combined text and image content repre-
sentationsg4.2).

4 Hybrid Document Search

As mentioned ing3, using only visual descriptors is not enough to providésattory results in this
challenge. Our goal is to measure the gain when combinirigarek image features; ig4.1 we describe
boolean queries and their combination with visual desaripivhile in§4.2 we present our text descriptor
based on dictionary filtering and dimensionality reductiBath approaches are illustrated by examples of
actual queries; we also present different results from tiadlenge.



Figure 4: Some examples of boolean retrieval (see the texiiails).

4.1 Boolean Queries

A short analysis of the query topics reveals complex andihggmantic concepts involving several objects
and relations. One possible way to represent these top&piimcipled way is to use boolean queries. Let
us consider the'8topic (“religious statue in the foreground”):

Relevant images will show a statue of one (or more) religiauges such as gods, angels, prophets etc.
from any kind of religion in the foreground. Non-religiousties like war memorials or monuments are
not relevant. Images with statues that are not the focuseoiintiage (like the front view of church with
many small statues) are not relevant. The statues of Eatdedlare not relevant as they do not have any
religious background.

This can naturally be expressed using boolean operatisalring concepts and operatiorigeligious
AND statue) AND NOT (memorial OR monument OR war) AND NOT (LOCATION 'Easter Island’)”. Boolean
retrieval relies on the use of logical operators where tiragén queries are linked together using an algebra
of simple operations (including AND, OR and NOT). Never#ss, automatic extraction of boolean queries
from raw text is known to be a difficult and still unsolved t4&k, 20]. Hence, we choose to manually build
these expressions from the raw text. This approach whichrigpopular in Internet search, has emerged
as one of the easy to use standards in text retrieval.

4.1.1 Query Construction

We first introduce a small querying language adapted forttagkeClefphoto challenge. We use AND, OR
and NOT to connect terms and we use a “LOCATION" specifier t&esdt possible to filter documents
by their locations (such as “country” or “city” tags). Thdaséormations can easily be extracted from the
XML document descriptions.

For some topics, we filter and tag (as “BW": black and whiteagas depending on their grey level
information. This is implemented using the saturation comgnt in the HSV color space. For instance,
the query‘church AND BW AND NOT LOCATION France” seeks grey level pictures of churches not located
in France.

Queries are created using a web interface. Using the rawtitextiser interactively formulates boolean
queries for different topics. This procedure is similaretevance feedback as the user iteratively updates
the boolean queries until the results are satisfactory. 4ghows some results: (left) topic #@church
OR cathedral OR mosque) AND (towers) AND (three OR four OR five))”, (middle) topic #11‘((LOCATION
Russia) AND (BW))” and (right) topic #2(lighthouse AND (water OR sea OR ocean))”.

4.1.2 Combination with Visual Descriptors

Boolean queries described earlier return a set of candidieant images which are not scored (and hence
unranked) so it is not possible, at this stage, to use mergicigniques in order to produce combined
text/image ranks. Instead, we intersect the results of @raagl text queries. Notice that topics are very
complex and difficult to express exactly using only booleaarges. The latter may produce relevant and
(also) irrelevant results which are filtered using visualrsk .

4In practice, visual queries retuff00 documents which are intersected with the results of textsanded using visual distances.



4.1.3 Experiments

In our experiments, we extract the raw text, the LOCATIONdfigbm XML documents and the “BW” tag
from the underlying images. Using these informations arddibolean queries, the search engine returns
the results in real time. Notice again that the user is iredlonly in the construction of boolean queries
so all further steps, arilly automatic Fig. 5 shows the evaluation of different querying schenest(
image and combined text/image).

We clearly see that boolean queries outperform visual bearcThis is predictable since the former are
manually and interactively constructed while visual shasdully automatic. We also see from the results
that combining visual and boolean searches boosts thesprediy ~ 20% and even though limited, the
information provided by the visual descriptors is alway®imative. This result is slightly unexpected,
because of the small number of positive examples (only jtaeeé suggests that visual descriptors provide
a complementary information w.r. to the boolean queries. néced that the influence of the visual
descriptors decreases as the rank increases: at rank 5Binsmhiext/image performs about the same as
text only. This is due to the small number of examples aviléd compute the visual similarity, e.g. for
lower ranks the results are less semantically correlatéld tive topics. Finally, we conclude that hybrid
search always outperforms individual text or image seache

The runs we submitted to the ImageClefphoto were similaritoey differ in terms of their diversity
algorithms (see§5) and were ranked™] 29 and 39 in ImageClefphoto.
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Figure 5: Precision of boolean retrieval: text and imag@aleersus combined text and visual queries.

4.2 Automatic Queries

In this section, we compare several schemas that combimenatitally extracted text descriptors and
visual features. The automatic query description and dngrig expected to be less performant than the
manual one. As described below, we consider in these expatinboth early and late descriptor merging
techniques.

4.2.1 Text Description

Text indexing and retrieval is a growing field and many erigttate of the art techniques provide reason-
ably accurate results [26, 22, 17]. Nevertheless, mostashittely on the estimation of statistical measures
and can only be applied on large datasets. For the IAPR-T@figbdse, almost all the terms appear only
once, so these statistical techniques are clearly notcgipé. In order to extract meaningful information
from short descriptions, semantic analysis and naturgluage parsing are necessary; however, these are
known to be difficult and still unsolved problems [21, 20].



Our goal is to investigate the performance improvementinbtbby combining both textual and visual
descriptions, so we adopted a simple vector space modetiar tw represent the text information. First,
we eliminate the stop words, then we parse the list of terntis thie Porter stemmg{25]. We associate
to each resulting term a coordinate in the feature spaceoAslationships are considered between terms,
we only keep the terms that are used in the definition of theygtopics. A further step is considered in
order to reduce the dimensionality based on a linear vedi®CA. In this step, we only keep the first 100
principal components, correspondingd&% of the total statistical variance of the text data. We measur
dissimilarity between documents using the L1 distanceifeodistance produced similar results). Query
topics are described in a similar way but they are pre-poedsn order to eliminate words common to all
topics.

4.2.2 Combination with Visual Descriptors

We use two merging strategies: 'Early merging’ refers to bimimg descriptors prior to querying while
'late merging’ performs individual text and visual querpsr to combination.

Early merging: we create hybrid descriptors by concatenation (cartesiadyet space) of text and the
visual feature spaces. To ensure equal contributions iffinbéfeature vector, we normalize individual
features by the mean and the variance computed on the whialgetla

Late merging: for each document, we first run individual queries (text aisdal) obtaining two ranking
lists. Then each document is assigned a final rank based dnINMRANK scheme defined as

r(I) = min(ry (I),r7 (1)) (5)

wherei € B is an image from the databaBeandry (resp.rr) is its visual (resp. text) rank. The intuition
behind this combination strategy comes from the fact thab#st rank should be preferred, e.g. low ranked
documents are unlikely to be similar to the query topic.

4.2.3 Experiments

Fig. 6 shows a comparison of the merging techniques. As weaeedeal features extracted automatically
outperform significantly the visual ones. We also notice &aaly combination by concatenation (cartesian
product) produces slightly better results than the MINRAMK combination, but the difference is not
significant. From these experiments, the best results waeered by applying the MINRANK algorithm
(as described previously) to the hybrid text/image and oety. We obtain~ 10% improvement w.r.t.

to text retrieval. Nevertheless, this gain is less signific@mpared to boolean queries which are built
manually (se¢4.1).

Finally, this run is ranked®in the ImageClefphoto AUTA'XTIMG and even though no diversifi-
cation algorithm was used, it ranke82v.r. to the CR20 measure. This can be explained by the fact
that the MINRANK mixes best ranks from both image and textiltssand since text and visual features
are independently extracted, some reduction in the rechaydaf the results is expected, i.e. the returned
images do not belong to the same sub-categories.

5 Diversity and Clustering

As presented 32, the measures used to evaluate the runs are precisionustdralecall on the first 20
results (denoted as P20 and CR20 resp.) According to theasumes, results should be both relevant and
as diverse as possible. Notice that extra information i3 ptevided for each query topic (specified by the
field “<cluster></cluster> ") about the targeted diversity criterion. In this sectiare describe our
diversity schemes and their impacts on the P20 and CR20rp&afe.

Shttp://tartarus.org/"martin/PorterStemmer
SFor example, expressions like “relevant images” are usetl topic descriptions.
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Figure 6: Precision results for several text and image coathin techniques.

5.1 Text Clustering

Some of the diversity criteria required by the query topias be directly extracted from the XML data.
Each document contains a tag such as “city”, “state” anddtion” which can be used in order to filter and
group documents. For that purpose and in order to keep a gaadde between precision and diversity,
we start with a larger selection of 40 results and we clustemtfollowing the specified location tags. The
output is formed by taking the®lelement in each cluster, then th& 2etc.

5.2 Visual Diversification

Visual clustering is applied when the diversity criteri@naot be extracted from the XML tags associated
to images. We consider two types of “visual diversity” alifumns, described below.

5.2.1 MAXMIN Diversity

The MAXMIN diversity algorithm is based on the maximizatiofithe mininum distance of a given docu-
ment with respect to the (so far) selected results. Our dlgorstarts by choosing the document with the
best rank. Afterwards, it chooses the next document as thevhith maximizes the distance with respect
to the first. More precisely, I& be the candidate set (the initial window of size 40 in our tase suppose
thatC C S is the set of already selected examples. Then, the next dgasnghosen as:

T = argmax,, cs\c iné% d(zg, ;) (6)

This procedure does not produce a clustering, but ratherraygation of the initial selection such as its
prefixes are very diversified according to Eq. 6 with respetii¢ distance defined on the description space.

5.2.2 QT Clustering

Our second “diversification” method is based on visual €rst. We tested several standard clustering
techniques, such as Fuzzy-K-Means [5] and Competitive é&mgkation [9], but we obtained many clusters
of large size and highly diverse semantic content. To cotitessize of the generated clusters, we developed
a variant of the Quality Threshold algorithm [13], descdixlow.

Let s denotes the cluster size definedsas= N/n¢, whereN, ne are respectively the number of
images and the expected (fixed) number of clusters. Theittigobuilds the clusters iteratively. First the
center of the new cluster is chosen by minimizing the folloyveriterion

Ty = argming g R (KNN4(zi; St)) (7



whereKNN(x;; S;) denotes the set of nearest neighbors af; in S; (S1 = {z1,...,zx}) andR the
radius of the smallest sphere enclosi®N(z;;S:). The new cluster is built a§; = KNN,(z;;S;),
and then removed from the remaining data,&g.1 = S;\C;. As for the text clustering, the final output is
formed by taking the % element in each cluster, then th¥ 2etc., until all elements are exhausted.

5.3 Experiments

We submitted several runs to ImageClefphoto including therdity settings described above. More specif-
ically, 26 out of the 39 topics have “cluster tags” relatedHe location of the pictures; diversity is per-
formed for these topics using text clustering while for tkstrit is visual. We observed that applying a
diversity schema lowers the P20 measure; however, as th@ @Rasure increases, we expect the results
to be more meaningful.

Visual Retrieval allows us to evaluate the impact of visual diversity (using @ MAXMIN clus-
tering). As already discussed §3.4, the best “visual retrieval” performances were achdewsing the
two class SVM (P20=0.248) and without diversity. We subaditiwo runs to the challenge using QT and
MAXMIN clustering and they are ranked®and 3¢ when using the combined P20 and CR20 score. Their
P20 measure is, as expected, lower (0.20 and 0.17 respgrctvmeen compared to the non-diversified
results, and this suggests that diversity indeed producétiportant CR20 gain.
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Figure 7: Hybrid text and image descriptor: the effect of/&sification” of results.

Combined Text/Visual Search:in Fig. 7 we examine the impact of different diversity alglonis on
the P20 and CR20 measures for the combined text and imagepdesc(see4.2.2). First, we observe a
loss of precision for both QT and MAXMIN algorithms. Nevegtlss, the QT algorithm failed to produce
better CR rankings when compared to the case without diyeFsir this algorithm, we set the number of
clusters to 20 and the initial selection contains the 40 fasked results. As the size of different clusters
is very small (i.e.,s = 2), many clusters are similar and this affects the quality ieéisity. Moreover,
even for a perfect retrieval, there is simply not enough dlass than 100 in average) per class in order
to generate consistent clustering. These results showhbapace of query results is better explored and
summarized using MAXMIN than QT clustering which suffersrfr the insufficient amount of data.

6 Conclusion and Perspectives

In this paper we presented our experiments investigatmpdinformance of several combination techniques
for image and text descriptors, on the ImageClefphoto ehgkt database. We compared early merging of
descriptors by concatenation with late ranking combimadibtained by separate queries on text and image
features. We also described two schemes for reducing reahendn the results returned by our search
engine.
In our first conclusion, we found that even with very few imadtaree in the ImageClefphoto), our

system was able to improve the results significantly. Moeedhe improvementis more significant in case
of manually prepared boolean queries. This clearly inégdhat good quality boolean queries are less



likely to return noisy results with respect to the targetspic. Automatic extraction of boolean queries
from raw text is hence identified as a worthy to explore rededirection, for instance by using Parts of
Speech (POS) tagging and language parsing.

In our second conclusion, we noticed that using a diversifinalgorithm helped improving the rank-
ing of our submitted runs. This is more noticeable for quetsing only visual descriptors (sg8) where
the proposed diversification schemes significantly impddize ranking of our runs (¢ and 3%). However,
because of the limited size of ground truth classes (less 108 images per topic), it is not possible, at
this stage, to draw firm conclusions. Indeed, in a real seamgime, where topics might be represented by
millions of (possibly similar) images, we expect the obéairtlusters to be much more consistent.
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