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Abstract. In this paper we describe our experiments related to the
ImageCLEF 2010 medical modality classification task using extremely
randomized trees. Our best run combines bags of textual and visual
features. It yields 90% recognition rate and ranks 6th among 45 runs
(ranging from 94% downto 12%).
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1 Task description

We participated in the ImageCLEF 2010 task related to imaging modality clas-
sification1. A set of 2390 (in color or greylevels) training images were provided.
These were extracted by the organizers of the challenge from articles published
in scientific journals (Radiology and Radiographics) together with the text of the
figure captions and the title of articles. Images have been classified by experts
into the following 8 classes that are illustrated by Figure 1:

– CT: Computerized tomography (314 images)
– GX: Graphics, typically drawing and graphs, (355 images)
– MR: Magnetic resonance imaging (299 images)
– NM: Nuclear Medicine (204 images)
– PET: Positron emission tomography including PET/CT (285 images)
– PX: optical imaging including photographs, micrographs, gross pathology

etc (330 images)
– US: ultrasound including (color) Doppler (307 images)
– XR: x-ray including x-ray angiography (296 images)

1 http://www.imageclef.org/2010/medical
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Fig. 1. Images for each of the 8 classes of the ImageCLEF 2010 imaging modality
classification task (from articles published in Radiology and Radiographics).

The goal of the task is to build classification models able to recognize the
imaging modality, using visual information only, textual information only, or
both. Such models are expected to improve further content-based image retrieval.
Participants submitted their predictions on a independent test set of 2620 images
(for which modality classifications were not available) and classification results
were later evaluated by organizers. A total of 45 runs were submitted by 7
research teams. In this paper, we report our results exploiting visual and textual
information independently or combined using extremely randomized trees in a
straightforward fashion.

2 Method

2.1 Generation of bags of textual terms

We adopted the bag of words model that is widely used in natural language
processing and information retrieval. We processed the provided XML file using
a Python script to build a dictionary of all unique term (words) from the training
set of image captions and article titles. More precisely, the XML file is cleaned
(by removing XML tags and unuseful characters, and lowering characters) and a
dictionary is built which finally consists of 13553 unique terms. Each image was
then described by 13553 features where each feature is simply the term frequency
ie. the number of times a given term appears for that image (in its caption and
title) normalized by the number of terms for that image (in its caption and title),
so that each textual feature is comprised in the [0, 1] interval.
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2.2 Generation of bags of visual terms

Despite many years of research in feature extraction, decribing image content
is not a trivial task when facing a new image classification problem. We adopt
here a generic approach that learns a global, bag of visual words, image rep-
resentation by using dense random subwindows extraction [MGPW05,MGW07]
and extremely randomized trees [GEW06,MNJ08,MGW09]. More precisely, from
each training image, we extracted 2000 small subwindows (which sizes were ran-
domized between 10% and 25% of image sizes) at random positions in images,
we resized them to 16× 16 patches and described them by 768 HSV raw values,
as illustrated by Figure 2.

Fig. 2. Random subwindows extraction and description by raw pixel values.

We then built T = 10 extremely randomized trees using K = 28 random
tests in each tree node and a minimum node sample size of 4000 (see Section
2.3 for algorithm details). Subwindow sizes and minimum node sample size were
optimized on the training set by cross-validation. Other parameters were set to
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default values but further optimization might improve results. These parameter
values yield 52660 terminal nodes in the ensemble of trees. Each terminal node
(or leaf) of a tree is then used as visual feature (also known as “codebook” or
“visual word”). By propagating image subwindows downto trees, each image is
thus described by a global feature vector which dimensionality equals the number
of terminal nodes in the ensemble of trees. For a given image, the value encoded
for a given feature was equal to the visual term frequency, ie. the number of
image subwindows that reach this terminal node divided by the total number of
subwindows extracted in the image (so a leaf value is included in [0, 1], and the
sum over all terminal nodes equals to 1 in a given tree for a given image), as
illustrated by Figure 3.

Fig. 3. Training an ensemble of trees from random subwindows to build bags of visual
terms.

2.3 Extremely Randomized Trees Classifier

Once features are built, they are concatenated and fed into a machine learn-
ing algorithm to build a classifier. We used the extremely randomized trees
algorithm [GEW06] that was successfully used in various application domains
(e.g. [GdF+05,HTIWG10]) and more particularly in the context of various im-
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age classification tasks where it was already combined with random subwindows
extraction [MGPW05,MGW07].

Starting with the whole training set at the root node, the Extra-Trees algo-
rithm builds an ensemble of decision trees according to the classical top-down
decision tree induction procedure [BFOS84] that uses tests on input variables
to progressively partitions the input space into hyperrectangular regions so as
to yield regions where the output is constant. The two main differences between
this algorithm and other tree-based ensemble methods are that it splits nodes
by choosing both attributes and cut-points at random (rather than choosing the
best cut-point that optimizes a score measure like in Tree Bagging [Bre96] or
Random Forests [Bre01]) and that it uses the whole learning sample (rather than
a bootstrap replica in Tree Bagging and Random Forests) to grow the trees.

In our case, we use extremely randomized trees to build visual features from
images as already mentionned in previous section, but also as final classifier
either on textual or visual features or both.

In the case of construction of visual features where subwindows are described
by raw pixel values, a test associated to an internal node of a tree simply com-
pares the value of a pixel (intensity of a grey level or of a certain color component)
at a fixed location within a subwindow to a cut-point value. In the case of its
use as final classifier, a internal test compares the value of a (textual or visual)
feature to a cut-point value.

In order to filter irrelevant attributes, the filtering parameter K corresponds
to the number of input features chosen at random at each node, where K can
take all possible values from 1 to the number of variables describing the training
objects (e.g. 768 when building visual features from HSV subwindows; 13553
when building trees on textual features only). For each of these K attributes,
a numerical threshold is randomly choosen within the range of variations of
that attribute in the subset of objects available in the the current tree node.
The score of each binary test is then computed on the current training subset
according to an information criterion (the score measure is defined in [Weh97]
and corresponds to a measure of impurity), and the best test among the K

tests is chosen to split the current node into two nodes. Objects that fulfill the
choosen test are propagated to the left child node, and others to the right node,
and the process is repeated recursively on both child nodes. The development
of a node is stopped as soon as either all input variables or the output variable
are constant in the local subset of the leaf (in which cases impurity can not be
further reduced), or the number of objects in the leaf is smaller than a predefined
value (the minimum node sample size, nmin). A number T of such trees are grown
from the training sample.

3 Results

3.1 Textual features only

Using T = 10000 trees and K =
√

13453 = 116 random tests in each tree node,
we obtain 85% recognition rate on the independent test set using textual features
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only. This result is comparable with results we obtained by cross-validation on
the training set (86%). Table 3.1 gives the first 50 textual terms used by the
ensemble of trees and their relative importance for each class. Among the 13553
terms, the model is able to select very relevant ones to discriminate imaging
modalities (e.g. the active molecule FDG for PET, the term photograph for PX,
the scintigraphy test for NM, . . . ) but it does not filter out several artefacts
neither rather neutral words (A, B, BB, BBB, IN, . . . ).

3.2 Visual features only

Using T = 10000 trees and K =
√

52660 = 230 random tests in each tree node
of the final classifier, we obtained 75% recognition rate on the independant test
set. This result is slightly better than results we obtained by cross-validation on
the training set (71.75%).

3.3 Combination of textual and visual features

Building an ensemble of T = 10000 trees using both textual and visual features
(ie. 62213 input features) raised results up to 90% recognition rate. This final
result is comparable with results we obtained by cross-validation on the training
set (90.377% recognition rate using both feature types, see the confusion matrix
in Table 2). To reduce computing times and give less importance to visual fea-
tures than textual features, we introduced a new parameter, p, that indicates the
proportion of visual features (randomly choosen) that each tree will use as input
features. The value of K was fixed to its default value K =

√
13453 + p × 52660.

The submitted result was obtained with p = 0.05 so that each tree was able to
use 13553 textual features and 2633 (52660 × 0.05) visual features. This value
yielded the best results by cross-validation on the training set.

Table 3 shows contribution of both feature types for each class. Visual fea-
tures are the most useful for the GX (Graphics, typically drawing and graphs)
imaging modality while textual features are the most useful for the PET imaging
modality. Table 4 illustrates some test images and their classification confidences
using individual feature types of a combination of them.

It has to be noted that we also experimented with LIBLINEAR 2 as final clas-
sifier on both feature types but results were slightly inferior (86.42% recognition
rate by cross-validation on the training set) to those obtained with extremely
randomized trees.

3.4 Computing times

Our approach consists in rather simple operations, especially for the prediction
phase. First, the training of 10 trees for the bag of visual terms construction takes
about 20 hours when using about 4.6 million subwindows (2000 subwindows for
each of the 2320 training images) on a single processor. This training phase is

2 http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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Term Importance CT GX MR NM PET PX US XR

US 100.00 1.77 0.64 1.47 0.35 0.44 0.54 17.32 1.49

CT 98.05 15.73 0.44 1.56 0.61 0.54 0.76 1.96 1.80

MR 65.64 1.22 0.52 10.74 0.41 0.56 0.48 1.05 1.06

PET 63.86 0.87 0.31 0.41 0.59 12.96 0.24 0.39 0.45

FDG 62.09 0.79 0.30 0.37 0.61 12.69 0.25 0.37 0.41

T-WEIGHTED 53.56 0.65 0.72 9.66 0.22 0.30 0.34 0.56 0.59

PHOTOGRAPH 52.03 0.64 0.68 0.42 0.17 0.14 8.67 0.44 0.76

SCAN 43.08 4.57 1.18 0.86 0.40 0.85 0.47 0.78 1.16

RADIOGRAPH 42.44 0.77 0.63 0.51 0.23 0.12 0.28 0.46 7.37

UPTAKE 36.59 0.65 0.24 0.36 3.11 4.47 0.29 0.36 0.47

GRAPH 35.56 0.27 6.15 0.28 0.09 0.08 0.21 0.32 0.35

IMAGE 32.86 0.49 1.32 2.42 0.30 0.19 0.69 1.51 0.90

STAIN 26.87 0.20 0.31 0.24 0.08 0.09 4.79 0.21 0.22

ORIGINAL 24.51 0.18 0.25 0.25 0.08 0.09 4.38 0.18 0.20

FOR 23.46 0.43 3.09 0.32 0.19 0.20 0.23 0.33 0.50

MAGNIFICATION 22.58 0.18 0.31 0.23 0.08 0.09 3.91 0.19 0.17

-YEAR-OLD 22.44 0.97 1.88 0.47 0.26 0.29 0.41 0.29 0.65

PHOTOMICROGRAPH 22.34 0.18 0.21 0.19 0.07 0.07 4.01 0.20 0.17

SCINTIGRAPHY 19.38 0.15 0.12 0.10 5.34 0.20 0.08 0.11 0.16

SCINTIGRAM 19.34 0.14 0.12 0.08 5.42 0.14 0.08 0.12 0.17

ARROW 18.96 0.82 1.76 0.33 0.21 0.27 0.23 0.31 0.45

PET-CT 18.94 0.23 0.09 0.09 0.15 3.96 0.08 0.10 0.11

IMAGES 16.81 0.29 0.54 1.38 0.22 0.47 0.43 0.33 0.41

ACTIVITY 16.00 0.23 0.13 0.15 2.65 1.03 0.09 0.16 0.24

FONT 15.77 0.16 0.16 0.16 0.09 0.10 2.62 0.16 0.19

SPECIMEN 14.96 0.23 0.19 0.18 0.07 0.07 2.28 0.17 0.27

AXIAL 14.80 0.67 0.35 0.96 0.18 0.54 0.20 0.22 0.48

PETCT 14.10 0.15 0.08 0.09 0.06 2.95 0.05 0.09 0.09

A 13.93 0.40 1.02 0.29 0.21 0.12 0.42 0.33 0.48

ARROWS 13.87 0.36 1.11 0.34 0.16 0.11 0.23 0.50 0.42

RADIONUCLIDE 13.58 0.12 0.09 0.07 3.69 0.12 0.09 0.06 0.13

HYPOECHOIC 13.54 0.19 0.10 0.19 0.04 0.05 0.11 2.46 0.11

AB 13.01 0.19 0.21 0.26 0.38 0.04 0.81 0.70 0.58

IMAGING 12.95 0.36 0.20 1.12 0.44 0.15 0.22 0.31 0.42

FUSED 12.65 0.16 0.07 0.07 0.09 2.62 0.05 0.08 0.07

LONGITUDINAL 12.40 0.23 0.09 0.09 0.06 0.05 0.08 2.22 0.16

DOPPLER 12.14 0.14 0.07 0.15 0.04 0.05 0.07 2.27 0.12

HEMATOXYLIN-EOSIN 11.79 0.09 0.13 0.10 0.04 0.05 2.09 0.09 0.09

SHOWS 11.58 0.37 0.54 0.32 0.22 0.13 0.40 0.39 0.40

OBTAINED 11.16 0.53 0.62 0.23 0.27 0.15 0.23 0.26 0.38

TRANSVERSE 11.00 0.52 0.41 0.22 0.13 0.10 0.15 0.71 0.38

IN 10.93 0.36 0.28 0.26 0.25 0.55 0.33 0.30 0.36

TC-M 10.68 0.09 0.06 0.05 2.97 0.06 0.04 0.09 0.09

SAGITTAL 10.63 0.20 0.26 1.05 0.08 0.10 0.16 0.46 0.24

CORONAL 10.46 0.22 0.30 0.44 0.15 0.95 0.12 0.14 0.24

BAB 10.39 0.31 0.64 0.29 0.25 0.20 0.23 0.24 0.32

B 10.23 0.27 0.75 0.22 0.29 0.17 0.17 0.23 0.34

BBB 10.00 0.31 0.60 0.26 0.21 0.18 0.26 0.24 0.31

BB 9.89 0.31 0.25 0.18 0.44 0.07 0.37 0.40 0.45

SPECT 9.81 0.07 0.03 0.07 2.73 0.10 0.04 0.06 0.08
Table 1. The top 50 textual terms according to their importance given by 10000
extremely randomized trees.
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Predicted - True Class CT GX MR NM PET PX US XR

CT 574 3 15 8 0 13 4 45

GX 0 686 2 19 0 10 0 0

MR 40 0 575 3 0 9 24 48

NM 0 3 0 347 2 1 0 3

PET 4 0 0 5 567 0 0 0

PX 5 17 2 10 0 577 14 9

US 4 0 1 3 0 18 562 14

XR 3 1 5 15 1 32 6 471
Table 2. Confusion matrix obtained by cross-validation on the training set using both
feature types (90.377% recognition rate).

Feature type CT GX MR NM PET PX US XR

Textual 0.07 0.02 0.08 0.06 0.09 0.07 0.07 0.06

Visual 0.06 0.12 0.05 0.03 0.03 0.07 0.06 0.06
Table 3. Class importance of feature types given by 10000 extremely randomized trees
on the training set.

only performed once using all training images. Building the 10000 trees of the
final classifier requires about 4 hours. Once trees have been built, the bag of
visual terms of one test image is constructed on average in 0.83s (0.65s for the
extraction and resizing of 2000 subwindows, 0.18s for their propagation in the
ensemble of 10 trees). Computing the bag of textual term frequencies for test
images requires 0.03s per image on average. Propagating an image (described
by both textual and visual features) into the final classifier requires 0.01s per
image. In total, a new image could then be described and classified roughly in
less than 1s using both feature types on a single computer.

4 Conclusions

We obtained 90% recognition rate on the ImageCLEF 2010 modality classifica-
tion task using a rather straightfoward and fast approach that combine textual
and visual features. Optimization of parameters and other combination mecha-
nisms might further improve results.
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Image ID True Class Textual Visual Both

32316 PX PX (0.81) XR (0.43) XR (0.47)

128482 MR GX (0.41) MR (0.38) MR (0.50)

36398 PX PX (0.80) CT (0.26) PX (0.32)

223797 GX XR (0.42) GX (0.98) GX (0.86)

63382 XR PX (0.29) PET (0.36) XR (0.45)
Table 4. Examples of image predictions using textual, visual or both feature types.
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