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Abstract. Modality is a key facet in medical image retrieval, as a user
is likely interested in only one of e.g. radiology images, flowcharts, and
pathology photos. While assessing image modality is trivial for humans,
reliable automatic methods are required to deal with large un-annotated
image bases, such as figures taken from the millions of scientific publi-
cations. We present a multi-disciplinary approach to tackle the classi-
fication problem by combining image features, meta-data, textual and
referential information. Our system achieved an accuracy of 96.86 %
in cross-validation on the ImageCLEF 2011 training dataset having 18
imbalanced modality classes, and an accuracy of 90.2% on the Image-
CLEF 2010 dataset having 8 well-balanced modality classes. We evaluate
the importance of the individual feature sets in detail, and provide an
error analysis pointing at weaknesses of our method and obstacles in the
classification task. For the benefit of the image classification community,
we make the results of our feature extraction methods publicly available
at http://categorizer.tmit.bme.hu/~illes/imageclef2011modality.
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1 Introduction

Imaging modality is an important aspect of the image for medical retrieval [6]. In
user-studies, clinicians have indicated that modality is one of the most important
filters that they would like to be able to limit their search by. However, this
modality is typically extracted from the caption and is often not correct or
present. Studies have shown that the modality can be extracted from the image
itself using visual features [13, 10, 7]. Therefore, In this paper, we propose to use
both visual and textual features for medical image representation, and combine
the different features using normalised kernel function in SVM.



The proposed algorithm is evaluated in the context of the ImageCLEF 2011
Modality Classification task[9], which uses a dataset of 98841024 images taken
from PubMed articles.

The rest of this paper is organised as follows. In Section 1, we describe in
detail our experimental setting. In Section 3, we present and compare different
runs we submitted. We discuss the submitted runs and the results in Section 4
and we conclude in Section 5.

2 Methods

In this section, we describe in detail our experimental setting.

2.1 Evaluation setting

Table 1: Modality labels at ImageCLEF 2011 and their distribution

Modality label Training
Group Code Description # %

Radiology AN angiography 11 1.1
CT  computed tomography 70 7.1

MR  magnetic resonance imaging 17 1.7

US ultrasound 30 3.0

XR  X-ray 59 6.0

Microscopy FL fluorescence 44 4.5
EM  electronmicroscopy 16 1.6

GL gel 50 5.1

HX  histopathology 208 21.1

Photograph PX general photo 165 16.7
GR  gross pathology 43 4.4

EN  endoscopic imaging 10 1.0

RN retinograph 5 0.5

DM  dermatology 7 0.7

Graphic GX  graphs 161 16.3
DR  drawing 43 4.4

Other 3D 3D reconstruction 32 3.2
CM  compound figure (> 1 type of image) 17 1.7

Total 18 988 100.0

The ImageCLEF 2011 Modality Classification task used split-validation mea-
suring the accuracy of the systems. On the training dataset, we performed strat-
ified 10-fold cross-validation to evaluate feature sets and classifiers.



2.2 Feature extraction

Caption text Figures in scientific publications often have descriptive captions
that provide information on the modality of the image. “Contrast-enhanced ax-
ial computed tomographic scan”, “HRCT showing extensive areas of consolida-
tion with air bronchogram” are examples of captions of images assigned to the
‘CT’ modality class. However, the caption may be missing or may not hint at
the modality, e.g. “E. coli that satisfy the similarity threshold values.” As the
examples suggest, the linguistic constructs expressing modality can have a high
variation. Considering these remarks, we extract binary features from caption
texts as follows. We define a set of regular expressions to be matched against the
caption text, a match results in a value of 1. Regular expressions were initially
created for each word having a high information gain for any of the modal-
ity classes and were later manually refined to capture linguistic variations (e.g.
£?MRI?) and multi-word phrases (e.g. error bars?).

MeSH terms Scientific articles indexed by Medline/PubMed are tagged with
MeSH terms (medical subject headings) by field experts. MeSH terms can be
seen as a thesaurus for the life sciences containing entries like ‘Human’, ‘Liver
Neoplasms’ and ‘Magnetic Resonance Imaging’, entries can be further qualified
by e.g. ‘methods’, ‘pathology’. We hypothesise that the article’s MeSH terms
and its figures’ modality are correlated, and hence define features correspond-
ing to individual MeSH terms and qualifiers. A unique identifier for the article
(e.g. PMID or DOI) is required to retrieve its MeSH annotations, however, such
identifiers can be absent. As the number of MeSH terms, qualifiers and their
combinations far exceeds the number of modality labels, we perform feature se-
lection by keeping only those that are present for at least a predefined number
of articles in the training set.

Colour histogram Using colour histograms in content-based image retrieval sys-
tem has been successfully applied in the past, for a detailed review see [16]. Based
on these studies we have chosen to use HSV colour-space based histogram, and
quantised the hue and the saturation to three and the wvalue to four levels.
Based on this we defined f;s¢ feature vector, where each element of the
vector represents the normalised number of pixels in a given histogram bin.

Mean of pizels Through manually supervised error analysis on the training set,
we identified that the images in Graphic lst-level group are mainly having a
white background. Hence, we have defined a simple feature fcqn = I?-, that
represents the mean value of the pixels in an image. By simply thresholding
these values one could identify the images that belong to the Graphic group
with a very high accuracy.

Axis recognition The previously mentioned mean of pixels method gave a strong
support for recognising images in the Graphic top-level group, but as it consists
of two sub-groups, Graphs and Drawing, thus a new feature was required to



differentiate the images belonging to one or the other category. By manually
observing the images in these two categories one can easily point out the main
difference by using a simple edge detector: the images belonging to the Graphs
category are mainly consisting of horizontal and vertical lines (i.e. the x-y axis of
a graph), whereas the images in Drawing category are mostly diagrams, where
the orientation of the lines is random.

Based on this idea we have defined the following feature. Let L I; be the set of
all the detected lines and G'Lj; be the number of good lines in an arbitrary image
I;, where a given line is a good line if it’s orientation is horizontal or vertical
and it is within a given margin of the picture’s border. The latter condition is
for not to count the borders of an image as good lines.

Using these two sets we defined a feature
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flines(Ij) (1)

In order to detect the lines and their orientation in an image we used a simple
Hough transform [4].

Skin detection The images in the Dermatology category was one of the most
difficult recognise. As not only it was the least represented category in the whole
training set, i.e. there are only seven examples (see Table 1) for this category,
but the images in this set are simple photographs (of various skin abnormalities)
thus they have very similar characteristics to the general photo labeled images.
Hence, most of the previously defined features failed to distinguish the images
in Dermatology set from the others.

Using a simple skin detector algorithm[2] we defined a new feature fozin (1)
for and image I;

fskin(Ij) = SD(I]) (2)
where the function SD(-) calculates the skin-segmented binary image of an input
image, and I—as previously defined—is the mean value of image I.

Meta-data We determine whether an image post-processing software was used
by analysing meta-data stored in JPEG files” EXIF section. For this, we analyze
the ‘Comment’ field, to find mentions of commonly used image manipulation
software (e.g. Adobe Photoshop, MS Paint). We also extract from the EXIF
whether the image is stored as gray-scale only.

Radiopaedia Radiopaedia (http://radiopaedia.org) is a community wiki for radi-
ology images and patient cases. Images are tagged by users with the body system
(e.g. Heart, Musculoskeletal) depicted, but unfortunately for us, not with the
type of radiology method used to create the image. Leveraging the mutual in-
formation between body systems and radiology methods, we derived features for
modality classification by taking the output probabilities of a classifier trained
to predict body systems shown in the image.



Bag of visual-words The state-of-the-art content based image retrieval systems
has been significantly improved by the introduction of SIFT[11] features and the
bag-of-words image representation [12, 8, 3, 14].

The bag-of-visual-words image representation is based on the bag of words
(BoW) model in natural language processing (NLP). BoW in NLP is a popular
method for representing documents In this model a document is simply rep-
resented by the number of different words that are in the document. The idea
behind this is, that documents on the same topic have similar words with similar
number of occurrences in them (see LDA[1]).

In case of and image, the basic idea of bag-of-words model is that a set
of local image patches is sampled using some method—e.g. densely or using a
key-point detector—and a vector of visual descriptors is evaluated on each patch
independently. In this paper we used the well known SIFT descriptor on each
patch. The SIFT descriptor computes a gradient orientation histogram within
the support region. For each of eight orientation planes, the gradient image is
sampled over a four y four grid of locations, hence resulting in a 128-dimensional
feature vector for each region. In order to make the descriptor less sensitive to
small changes in the position of the support region and put more emphasis on
the gradients that are near the centre of the region a Gaussian window function
is used to assign a weight to the magnitude of each sample point.

After acquiring these SIFT features for all the images in the dataset, the
final step is to convert vector represented patches to ”codewords” (analogy to
words in text documents), which also produces a ”codebook” (analogy to a
word dictionary). A codeword can be considered as a representative of several
similar patches. In our case we performed k-means clustering over all the vectors.
Codewords are then defined as the centres of the learned clusters. Thus, each
patch in an image is mapped to a certain codeword through the clustering process
and the image can be represented by the histogram of the codewords.

In our bag-of-visual-words model we used the the ¢f-idf weighting[15] scheme,
that has proven to be a very successful approach for image retrieval. The tf
part of the weighting scheme represents the number of features described by
a given visual word. The frequency of visual word in the image provides useful
information about repeated structures and textures. While, the idf part captures
the informativeness of visual words—visual words that appear in many different
images are less informative than those that appear rarely.

Other systems The challenge organisers generously supplied participants with
predictions of their in-house system. This classification was automatic for the test
set, but confusingly enough, the ground truth labels were used for the train set. In
order to exploit this valuable resource, we used it as an input to our classifier by
introducing artificial smoothing to avoid overfitting on this particular otherwise
noise free indicator variable. Also note that while split evaluation is sound in
this setting, the cross-validation evaluation of those two runs is flawed (being
over-optimistic) due to information leakage.



2.3 Classification

Based on the numerical and binary features of the images obtained through fea-
ture extraction, we perform vector space classification to predict modality classes
of unseen images. Among the classification algorithms available in Weka [5], we
found the support vector machine SMO to have the best standalone perfor-
mance over the full feature space in cross-validation on ImageCLEF 2011 train-
ing dataset. We used SMO with default settings for the rest of the experiments
unless stated otherwise.

3 Results

In this section, we provide the final results of the five submitted runs for the
modality classification tasks. Table 2 shows both the correctly classified percent-
age for the different features set compositions. Comparing the result of our best
submitted run and the best submitted run of the modality classification task,
one can see that there is very small (0.88%) difference between the two runs.

The performance of the runs broken down for the individual classes is show
in Table 3 and in Figure 1.

Table 2: Results of the runs for the medical modality classification task. For
the reference we have included the best performing run of the competition. The
figures in parenthesis are the result of information leakage that only appears in
the cross-validation setting, see Section 2.2 for details.

Accuracy
Run Feature set test  cross-val
#1  MeSH+BoW+RP+Cap+frist+fskin+fmean+flines 86.03  82.59
#2 MeSH+BoW+Cap+ frist+fskintfmean+t flines 85.64 81.57
#3  BoW+Cap+fristtfskintfmean 85.15 80.97
#4  Sys+MeSH+BoW+ frist+ fskintfmeantfiines 76.85  (94.83)
#5 Sys+MeSH+BoW+RP+Cap+frist+fskin+fmean+flines+focepp  74.12  (96.86)
Best n/a 86.91 n/a

4 Discussion

As can be seen on Figure 1, the systems performs well on higher support classes,
while performance drops to zero for some more rare classes. This behaviour is
tolerated by the challenge main evaluation metric accuracy, in contrast to a
more pessimistic evaluation like F-measure. Table 2 shows, which features have
been used in the different runs. It is important to see that omitting Caption text
features results in almost about a ten percent accuracy loss, see the difference
between the runs #3 and #4.



Table 3: Correctly classified images per category for the submitted runs. For
each modality class, the result of the best performing run is typeset in bold.

Ratio (%) Run
Modality class train test #1 #2 #3 H#4 #5
3D : 3D render 3.2 44 66.7 T1.1 73.3 66.7 57.8
AN: Angiography 1.1 0.9 88.9 778 T77.8 66.7 88.8
CM: Compound figure 1.7 20 00 5.0 50 5.0 5.0
CT: Computed tomography 7.1 8.1 98.8 97.6 95.2 91.6 89.2
DM: Dermatology 07 15 00 00 00 6.7 13.3
DR: Drawing 4.4 7.2 689 66.2 70.3 27.0 24.3
EM: Electronmicroscope 1.6 1.8 55.6 55.6 55.6 55.6 55.6
EN: Endoscope 1.0 1.1 36.4 364 273 36.4 27.3
FL : Fluorescence 45 2.7 964 964 100 100 100
GL: Gel 51 4.9 98.0 98.0 100 82.0 80.0
GR: Gross pathology 44 3.1 46.9 40.6 344 344 34.4
GX: Graphics 16.3 16.8 97.1 96.5 94.8 97.1 96.5
HX: Histopathology 21.1 19.0 99.0 99.0 99.0 954 95.9
MR: MRI 1.7 2.0 65.0 70.0 75.0 60.0 50.0
PX: Photo 16.7 13.8 91.5 90.1 88.7 73.8 66.7
RN': Retiongraph 0.5 0.3 66.7 66.7 66.7 0.0 33.3
US : Ultrasound 3.0 4.0 95.1 95.1 90.2 854 78.0
XR: X-ray 6.0 6.5 92.5 94.0 940 821 71.6
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Fig. 1: Modality class distribution and best run performance. Modality classes
are sorted by support in descending order. For the names of modality classes,
see Table 3.



Using MeSH and Radiopaedia features gained us about one percent in accu-
racy.

The in-house modality classifier of the challenge organisers proved to be su-
perior in predicting the ‘Dermatology’ class (Table 3, however, its inferior per-
formance on higher support classes prevented it from being benefitial in combi-
nation (Table 2).

4.1 Other experiments

Motivated by the grouping of modality labels by the challenge organisers, we
experimented with hierarchical classification. In particular, we applied a hierar-
chical greedily ascending classifier scheme wrapping the baseline classifier. In this
scheme, classification is first performed on the hierarchies uppermost level (here
groups), then the most probable hierarchy node is selected where classification
continues recursively. For hierarchical classification, cross-validation results were
inferior to those obtained from the baseline (flat) classifier.

5 Conclusion

In this paper, we proposed to extract different visual and textual features for
medical image representation, and fusion the different extracted visual feature
and textual feature for modality classification. To extract visual features from
the images, we used some state-of-art methods like bag-of-visual words and some
standard ones like colour histogram and introduced some heuristic representa-
tions of the images specialised for the ImageCLEF2011 medical modality classi-
fication task.

With the suggested feature extraction algorithms in this paper and the SVM
classifier we have achieved to 2nd place on the ImageCLEF2011 medical image
modality classification task.
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