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Abstract. This paper describes the approaches and experimental set-
tings of the five runs submitted by CERTH at the photo annotation task
of ImageCLEF 2012. Two different approaches were used, the first using
the Laplacian Eigenmaps of an image similarity graph for learning, and
the second using a “same class” learning model. Four runs were submit-
ted using the first, and one using the second approach. A multitude of
textual and visual features were employed, making use of different aggre-
gation (BoW, VLAD) and post-processing schemes (WordNet, pLSA).
The best performance scores in the test set was achieved by Run 3 (first
approach using all features), which amounted to 0.321 in terms of MiAP
and 0.2547 in terms of GMiAP (7th out of 18 compteting teams), and
Run 5 which led to an F-ex score of 0.495 (6th out of 18 teams).

1 Introduction

This document describes the participation of CERTH at the photo annotation
task of the 2012 ImageCLEF competition [1]. CERTH submitted five runs using
two different approaches. The first approach, to be described in subsection 2.1,
computes the similarity between test images and train images, constructs an im-
age similarity graph, and trains concept detectors by using the graph Laplacian
Eigenmaps (LE) [7] as features. This is done for each modality and the final
result is obtained by performing late fusion using a linear classifier. The second
approach, to be detailed in subsection 2.2, utilizes the concept of a “same class”
model that takes as input the set of distances (as many as the number of used
features) between the image to be annotated and a reference item that represents
a target concept, and predicts whether the image belongs to the target concept.
Section 3 outlines each of the submitted runs and presents the obtained test
results. Section 4 presents some general remarks and conclusions.

2 Overview of methods

2.1 Concept detection using image similarity graphs

The first approach used by CERTH is based on the construction of a similarity
graph between the images. This graph is used to obtain a low-dimensional feature



representation: we use the first eigenvectors of the graph Laplacian as features.
These features correspond well to semantically coherent groups of images, and
are thus used to train concept classifiers.

The idea of utilizing the implicit relational structure that can be derived by
computing similarities between the images of a collection has been proposed be-
fore. In [8], an extended similarity measure is proposed that takes into account
the local neighbourhood structure of images, i.e, the content and label infor-
mation (if available) of images that are similar to the input image. The afore-
mentioned measure is used in combination with two well-known semi-supervised
learning methods [16] and is shown to improve their performance both in syn-
thetic experiments and in benchmark video annotation task. Our work is mostly
related to [6] that introduces the concept of ”social dimensions”, i.e. the top-k
eigenvectors of a graph Laplacian, as an alternative to tackling the relational
classification problem, [10], i.e. the classification of a graph node by taking into
account information from neighbouring nodes. Here, we adopt a similar repre-
sentation for graph structure features.

Method overview: Given a set of K target concepts Y = {¥7....Yx } and an
annotated set £ = {(xi,yi)}\_; of training samples, where x; € R stands for
the feature vector extracted from content item i and y; € {0, 1} for the corre-
sponding concept indicator vector, a transductive learning algorithm attempts
to predict concepts associated with a set of unknown items U = {x; éi’l‘ L1 by
processing together sets £ and U. Based on the features of the input items, a
graph G = (V,E) is constructed that represents the similarities between all pairs
of items. The nodes of the graph include the items of both sets of media items (£
and U), i.e. V = VL UVy with |V| = n. There are different options for construct-
ing such a graph. We adopt the kNN graph in which an edge is inserted between
items ¢ and j as long as one of them belongs to the set of top-k most similar
items of the other. Similarity can be computed by means of different schemes,
e.g. inner product or heat kernel (Equation 1).

L2
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The basic variants of this scheme are symmetric and asymmetric, depending on
whether both items to be linked need to belong to the set of top-k£ most similar
items of each other or not. Having constructed the similarity graph between the
input items, our approach proceeds with mapping the graph nodes to feature
vectors that represent the associations of nodes with latent groups of nodes
forming densely connected clusters. To extract such features, we first construct
the normalized graph Laplacian:

L=D'2LD Y2 =1 D 1/24D"1/? (2)

where D and A are the degree and adjacency matrix of the graph respectively,
and L = D-A is the graph Laplacian. Computing the eigenvectors of L corre-
sponding to the C'p smallest non-zero eigenvalues of the matrix results in a set



of n vectors with C'p dimensions, which are then stacked to form the input ma-
trix S € R"*Cp_each row of which is denoted as S; € REP and constitutes the
graph structure feature vector for media item i. These features are also known
as Laplacian Eigenmaps (LE) [7].

Training and performance tuning: We approximately optimise the values
from the top-k most similar items, the LEs and the ¢ parameter from the SVM
linear classifier in order to construct sets of parameters per concept for each
initial feature. In practice, we choose six different top-% [100, 200, 500, 1000, 1500,
2000] nearest neighbours values and for each one we compute LE vectors for six
different values [10, 50, 100, 200, 400, 500] for Cp using spectral clustering. For
the parameter ¢ we investigate the performance of the SVM classifier by doing
cross validation and to decide which of the five different values [0.1, 1, 5, 50]
yields the best performance. In most cases the best classification was achieved
for ¢ = 5 and, thus, we set this as the default value. This procedure was done for
every feature and every concept in order to choose the best parameter set (top-*k,
Cp) for each concept-feature configuration. A late fusion step would then output
an overall prediction score. This simple late fusion technique is implemented by
simple LE vector concatenation and an optional feature normalization step after
the final step was evaluated, but led to marginally lower performance, thus it was
not used for preparing the final submission. In the final step, a linear classifier
is trained using the structure feature vectors of the labelled items as input. In
our implementation, we opted for the use of SVM. Apart from classification
performance considerations, it is important for retrieval applications that the
classifier produces real-valued prediction scores for unlabelled items, so that
they can be ranked per concept.

2.2 Concept detection using a same class model

A very large variety of features can be extracted from an image. For detect-
ing different concepts, the use of specific features or modalities may be more
appropriate than others. That is, it could be that for some concept, similarity
according to some feature or modality between an image and some set of images
that belong to a specific concept is a very strong indicator that the image belongs
to that concept; whereas for other concepts similarity according to some other
set of features may be more indicative. The second approach attempts to deal
with this issue; i.e. to learn in an automatic manner which modalities should
be used for the detection of specific concepts. It uses what is termed the “same
class” model. A “same-class” model takes as input the set of pairwise dissimi-
larities between two images according to the set of features and modalities that
are used and predicts if these two images belong to the same class.

There are two options for training and predicting with such a model. In the
first, all images that belong to the target concept are used. Pairs of samples from
these images are generated in order to come up with the positive examples of the
classifier. Additionally, a set of images that do not belong to the target concept
are selected and pairs of images consisting of an image that does and an image
that does not include the concept are generated in order to come up with the



negative examples. For a new image, the pairwise distances between it and the
set of reference images that belong to that class would be computed and fed into
the classifier that would output a set of scores, each of which is a prediction if
the new image belongs to the same class as each image in the reference set for
that concept. A final fusion step would then output an overall prediction score.
This approach is depicted in Figure 1.
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Fig. 1. A vector of dissimilarities for the set of used features is computed between the
image to be annotated and the each of example the images that belong to the concept.
These vectors are fed to the “same class” model and the predictions are fused to obtain
a final prediction for the membership of the test image to the particular concept.

The first option essentially represents each concept by the set of images that
belong to that concept and requires a final fusion step. The other option is to
represent each concept using a mock average image, e.g. for each feature the
average value for the images that belong to that class is computed and the
set of all average values is used to build a prototype feature set for the items
that belong to that class. The rest of the procedure is similar as in the first
scenario: a set of positive examples is generated by computing the multimodal
distances between images that belong to the target concept and the prototype
representation of the concept. A set of negative examples is generated in a similar
manner. When a new image is being annotated, the vector of distances between
it and the prototype image is computed and fed into the classifier. Contrary to
the previous case, there is no need for a final fusion step, as the classifier provides
a single “same-class” prediction. This approach is depicted in Figure 2.

Compared to the first option, the second is more crude, in the sense that in-
formation from individual images that may be important for concept detection
may be lost during averaging. On the other hand, the second option is compu-
tationally more efficient and does not require a final fusion step. Pursuing the
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Fig. 2. A vector of dissimilarities for the set of used features is computed between the
image to be annotated and the aggregate image that represents the concept. The vector
of dissimilarities is fed to the same class model in order to obtain a final prediction for
the membership of the test image to the particular concept.

second option, the hope is that the important parts of features will be so preva-
lent for each concept, that the averaging procedure will manage to maintain
them in this generic prototype representation. In practice, the first option did
not perform well in preliminary tests and the second option was eventually used.

The same class approach has been applied before for dealing with multi-
modal problems in a clustering task [9]. In that work, it is recognized that when
attempting to cluster items that may be represented by multiple modalities or
features, different clustering results that correspond to different conceptual or-
ganizations of the data may result by putting emphasis on different modalities
(i.e. by following different fusion strategies). Instead of looking for appropriate
fusion strategies, it was deemed interesting to allow an example clustering to
guide the clustering procedure. The example clustering was used to obtain the
“same-class” model, which in turn was used to group together items that had
similar “same-class” relationships to the rest of the dataset.

3 Description of Runs and Results

3.1 Runs Description

This section describes the experimental settings of our submissions. Runs 1, 2,
3 and 5 are based on the first approach and Run 4 is based on the second. Runs
1, 2, 3, and 5 were performed on two quad core machines (Intel Quad Core i7-
950 @3.07Ghz, 12G RAM and Intel Quad Core Q6600 @2.4Ghz, 8G RAM) and
coded in Matlab. Run 4 was performed on a dual core machine (Intel Dual Core
Q900 @2.5Ghz, 4G RAM ) and coded in Java. Run 1 uses textual, Run 2 visual,
while Runs 3-5 make use of both visual and textual features.

Run 1 (Approach 1, textual only): The total Mean interpolated Average Pre-
cision (MiAP) in this run was 0.2913 in training and 0.2311 in testing. In this
run we used seven textual descriptors (Table 1). The TOP-TAGS feature was
created using the 5000 most frequent tags. The TAGS-BOW textual feature



was extracted using the 5000-dimensional bag of words (BoW) representation
following the approach of [13]. We took the union of raw tags of all images in
the training set and applied stemming and stop word removal. This led to a
vocabulary of approximately 32000 stems. Then, we applied feature selection to
select the most important features using the x?2, ., criterion and finally selected
the top 5000 features. The next three features were extracted using WordNet.
The TAGS-WNET-TOP500 uses BoW representation using a codebook of 500
words. In order to define the codebook the full set of tags accompanying the
ImageCLEF images was pre-processed by removing stop words and words not
recognized by WordNet [3]. Then, the 500 most frequent tags were selected to
compose the codebook. Finally, every image in the dataset was expressed as
the occurrence count histogram of the codebook words in its set of tags, result-
ing in 500-dimensional feature vectors. As above, the TAGS-WNET-TOP5712
feature was extracted by selecting 5712 distinct tags instead of 500 to com-
pose the codebook. The resulting feature vectors were 5712-dimensional. The
last feature (TAGS-WNET-KRN-TOP500) was extracted using WordNet-based
kernel similarities to enhance the semantic information enclosed by the BoW
representation [11], by measuring the semantic relatedness of every word in the
codebook with all other members of the codebook. Subsequently, the resulting
matrix was multiplied with the original 500-dimensional BoW representation,
to generate a new feature space with 500 dimensions. The last three features
were extracted by applying probabilistic Latent Semantic Analysis (pLSA), a
technique that considers a single document as a mixture of topics and learns the
conditional distribution of features (words) given that some topic is present in
the document [4]. According to this, the PLSA-TOP10000TAGS was extracted
by applying pLSA on top 10000 tags feature vectors using 100 latent topics and
the PLSA-TOPTAGS by applying pLSA on the top 10000 tags feature vectors
using 100 latent topics respectively.

Run 2 (Approach 1, visual only): We achieved a MiAP of 0.3118 in training
and 0.2628 in testing. In both training and testing, visual features were found
to yield higher scores than textual. We used Dense and Harris Laplace sam-
pling to extract keypoints. For local feature aggregation, hard assignment was
used only in the TOPSURF+BOW descriptor, while Vector of Locally Aggre-
gating Descriptors (VL) [5] was used for the rest. Two of the used visual features
include the GIST and TOPSURF+BOW descriptors made available by the Im-
ageCLEF organizers. The SURF features were extracted from all training images
and codebooks of sizes k = 64, 128 and 256 were learned using the k-means al-
gorithm (code provided by the authors of [12]). This process led to three sets
of SURF+VL features with dimensionalities 64x64 (4096), 64x128 (8192) and
64x256 (16384). The final vectors where power (a=0.5) and L2 normalized. The
SIFT(D)+VL features, were computed in the same way as SURF+VL using
codebooks of k=64 visual words, with dimensionalities 64x128 (8192) computed
on a dense multi-scale grid. The HUESIFT(D)+VL feature where computed
in the same way as SURF+VL using codebooks of k=64 visual words, with
dimensionalities 64*165 (10560) computed on a dense multi-scale grid. The RG-



BSIFT(D)+VL, OPPONENTSIFT(D)+VL, RGSIFT(D)+VL, CSIFT(D)+VL
and HSVSIFT(D)+VL where computed in the same way as SURF+VL using
codebooks of k=64 visual words, with dimensionalities 64x384 (24576) computed
on a dense multi-scale grid. The SIFT(H)+VL, RGBSIFT(H)+VL, RGSIFT(H)
+VL and HUESIFT(H)+VL were computed in the same way as SURF+VL us-
ing codebooks of k=64 visual words, with dimensionalities 64x128 (8192, SIFT)
and 64x384 (24576) where regions found with Harris Laplace keypoint detec-
tor. In the end, we used the GIST-PLSA by applying pLSA on the GIST feature
vectors using 100 latent topics. In total, we combined 17 different visual features.

Run 8 (Approach 1, multimodal): In this run, MiAP was 0.3894 in training and
0.3210 in testing. This was the best MiAP performance achieved by CERTH.
Figure 3 illustrates the MiAP for each concept for this run. In this run all
aforementioned features and also the hybrid feature which combines the GIST
and TOP-TAGS descriptors by applying pLSA were used. More specifically, the
pLSA model was applied independently in both the GIST and TOP-TAGS fea-
tures resulting in the 100-dimensional GIST-PLSA and PLSA-TOPTAGS. Mo-
tivated by the fact that both feature spaces refer to latent semantic spaces and
express probabilities (i.e., the degree to which a certain topic exists in the im-
age), we assume that the topics obtained from both modalities are homogeneous
and can be indiscriminately considered as the words of a common Topic Word
Vocabulary. Based on this assumption we applied a second level pLSA model
that operates on the feature space generated by concatenating the GIST-PLSA
and PLSA-TOPTAGS (i.e. 100 4+ 100 = 200-dimensions). In total we combined
25 visual and textual features.

Run 4 (Approach 2, multimodal): In this run, MiAP was 0.3014 in the training
set and 0.2887 in the test set. Figure 4 illustrates the MiAP for each concept for
this run. SVM was used in order to learn the same class model. The following set
of features were used: textual using only the tags (no stemming and stop word
removal was applied) and a bag of words representation, SURF using a bag
of words representation, SURF using a VLAD aggregation scheme with 2048
dimensions and GIST. For each concept, a separate same class model was used.
The positive examples for each model were obtained by selecting all items that
belong to the concept and computing the set of distances between them and the
prototype of the concept. The negative examples were obtained by randomly
sampling a number of images that do not belong to the concept. The number of
negative examples was equal to the number of positive examples.

Run & (Approach 1, multimodal): In the final run, MiAP was 0.3769 and 0.3012
in the training and test set respectively. MiAP was not better than Run 3, to
which the features were similar, but we managed to achieve higher F-measure
(0.495) in the test set. In this run all features of Run 3 were used except the
ones that were pre-processed with pLSA and extracted using WordNet (Table
1, features 1, 3-19).
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Fig. 3. MiAP per concept for Run 3

# |Descriptor Dims| MiAP ||# |Descriptor Dims| MiAP
1 |GIST 480 |0.21026{|{13|HSVSIFT(D)+VL 24576(0.26629
2 |GIST-PLSA 100 |0.21604||14|SIFT(H)+VL 8192 | 0.2561
3 |TOPSURF+BOW | 200k | 0.1469 (|15 RGBSIFT(H)+VL 24576(0.27177
4 |SURF+VL 4096 |0.23483||16|RGSIFT(H)+VL 24576(0.25235
5 |[SURF+VL 8192 (0.23722||17|HUESIFT(H)+VL 10560(0.24541
6 |SURF+VL 163840.23667||18 TOP-TAGS 500 |0.2739
7 |SIFT(D)+VL 8192 |0.26377||19| TAGS-BOW 5000 |0.29369
8 |HUESIFT(D)+VL |10560|0.25883(|20| PLSA-TOPTAGS 100 |0.22639
9 |RGBSIFT(D)+VL |24576(0.27672(|21|PLSA-GIST-TOPTAGS 200 |0.24506
10|OPP-SIFT(D)+VL|24576|0.27718||22|PLSA-TOP10000TAGS 100 |0.20751
11| RGSIFT(D)+VL |24576|0.25368|23| TAGS-WNet-TOP500 500 |0.27691
12|CSIFT(D)+VL 24576(0.27214||24| TAGS-WNET-TOP5712 5712 |0.28025
13/ HSVSIFT(D)+VL |24576|0.26629| 25| TAGS-WNET-KRN-TOP500{ 500 |0.22877

Table 1. The MiAP scores for each descriptor, D stands for Dense grid and H stands
for Harris Laplace keypoint Detector, and VL stands for VLAD [5].

3.2 Evaluation

Feature comparison: Table 1 compares individual feature performance. Visual
features RGBSIFT(D)+VL, OPP-SFIT(D)+VL , CSIFT(D)+VL and RGB-
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Fig. 4. MiAP per concept for Run 4

SIFT(H)+VL and textual features TOP-TAGS, TAGS-BOW and TAGS-WNET-
TOP5712 achieved the best MiAP scores compared to the rest.

Approach 1 vs approach 2: Figure 5 illustrates the MiAP score for each
run comparing the performance we achieved in the training set with the one
in the test set. Apparently, Runs 3 and 5 suffer from overfitting, while Run 4
appears to generalize better. Furthermore, in some concepts one approach does
better than the other. Run 3, based on the first approach is slightly better than
Run 4 in the majority of concepts separately (50 concepts). Run 3 does much
better in concepts celestial stars (6, Figure 3), weather clearsky (7), weather
rainbow (10), flora grass (36) and quality partialblur (63), while Run 4 does
much better in concepts water underwater (28, Figure 4), fauna horse (39) and
fauna amphibianreptile (44).

Comparison to competing teams: Comparing per concept our best per-
formance (Run 3) to other competitors, good performance was achieved (in
terms of MiAP) in eight concepts and relatively low performance in six concepts.
Specifically, our approach yields good performance in concepts weather rainbow,
combustion fireworks, flora plant, fauna spider, sentiment euphoric, combustion
smoke, style graycolor and transport truckbus, while it yields low performance in
concepts water other, fauna amphibianreptile, quantity two, quantity three, age
elderly and sentiment unpleasant. Finally, Tables 2 and 3 provide an impres-



sion of the standing of CERTH’s performance against competing teams. Table
2 presents the rank of CERTH’s best submission both at run-level (80 runs in
total) and at team level (18 competing teams) in terms of the three performance
measures. Table 3 presents the ranks of all CERTH runs compared to runs of
the same type of features (textual, visual, multimodal).

0.4 T T
I AP train
| | I mIAP test

Runl Run2 Run3 Run4 Run5

Fig. 5. MiAP for all Runs

measures score | Run-Level Rank| Best-Run Rank
MiAP 0.3210 28/80 7/18
GMiAP 0.2547 29/80 7/18
F-ex 0.4950 27/80 6/18

Table 2. The test scores from ImageCLEF competition and the best rank

Runs|features MiAP GMIiAP F-ex

1 textual 0.2311 (5/17) | 0.1669 (7/17) | 0.3946 (7/17)
2 visual 0.2628 (13/28)(0.1904 (13/28)[0.4838 (10/28)
3 |Multimodal All[0.3210 (15/35)]0.2547 (15/35)[0.4899 (18/35)
4 Multimodal gp [0.2887 (18/35)|0.2314 (18/35)(0.2234 (32/35)
5 Multimodal 1 {0.3012 (17/35)|0.2286 (19/35)[0.4950 (17/35)

Table 3. The test scores from ImageCLEF competition and the level run




4 Discussion

According to the obtained results, CERTH’s performance ranks a bit higher
than median. This leaves much room for improving performance in the future.
An obvious option to achieve this is to use enhanced features. According to Ta-
ble 3 particular emphasis should be placed on visual features. A second option
for improving the performance of the first approach is to avoid overfitting by
devising a more robust training process. A further option for improving perfor-
mance stems from the fact that each image may be related to more than one
concepts. For the same class approach, this implies that the average feature for
each concept captures not only characteristics of the concept but also some of the
characteristics of other concepts frequently co-occuring with it. This could lead
to false positives for images not related to the concept but carrying these char-
acteristics due to their relevance to these related concepts. Moreover, in some
cases, when these characteristics are very prevalent they may even dominate the
representation of the concept, leading to false negatives.

There is a lot of space for improvement considering the fact that we are deal-
ing with a multi-label classification problem [15]. That is, from a probabilistic
point of view, the occurrence of many concepts is not independent of the oc-
currence of other concepts and therefore, the estimates about the occurrence of
a concept could be refined using the estimates about the occurrence of other
concepts. There have been many approaches for dealing with this problem, for
instance [2], which builds a chain of binary classifiers (one for each concept)
where the input space of each classifier is augmented by the decisions of pre-
vious classifiers and [14] where a set of meta-classifiers are stacked upon the
decisions of independent binary classifiers.
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