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Abstract. This paper describes the participation of the CIII UTN FRC
team in the ImageCLEF 2012 Robot Vision Challenge. The challenge
was focused on the problem of visual place classification in indoor en-
vironments. During the competition, participants were asked to classify
images according to the room in which they were acquired, using the
information provided by RGB and depth images only. We based our ap-
proach on the Fisher Vector representation —a robust signature recently
proposed in the literature— and the use of efficient linear classifiers. In
order to exploit the information provided by different information chan-
nels, we adopted a simple fusion strategy and generated classification
scores for each image in the sequence. Two tasks were proposed during
the competition: in the first, images had to be classified independently
of one another while, in the second, it was possible to exploit the tem-
poral continuity of the stream. For the first task, we adopted a simple
threshold based classification scheme. For the second, we considered the
classification of groups of images instead of single frames. These groups,
i.e. temporal segments, were automatically generated based on the visual
similarity of the images in the sequence. Our team ranked first on both
tasks, showing the effectiveness of the proposed schemes.

Keywords: Fisher vectors, place recognition, semantic localization, tem-
poral segmentation.

1 Introduction

In the 2012 edition of the ImageCLEF Robot Vision Challenge, participant were
asked to classify functional areas based on sequences of images acquired by
a mobile robot within an office environment, either in a frame-by-frame basis
(obligatory task) or by exploiting the temporal continuity of the image stream
(optional task). For learning the classifiers, the organizers provided training se-
quences consisting on RGB and depth images acquired under different lighting
conditions.



Fig. 1: Sample images from the “training2” sequence of the ImageCLEF Robot Vision
Challenge 2012 dataset. All images belong to the “ProfessorOffice” class. Note the great
amount of variability in the visual appearance within this group of images. Also, the
last two seems more closely related to the “Corridor” class instead of that provided as
ground truth.

This paper describes the participation of the CIII UTN FRC team in both
tasks. Our methods leverage recent advances in the fields of image classification
and retrieval, in which robust and efficient representations have been devised.
Particularly, we consider the state-of-the-art Fisher Vector (FV) representation
[6,8] which has been recently shown to give excellent results in a wide range of
problems [8,3,2].

Before introducing the core components in our system, we first highlight some
of the differences between the problem of visual place classification (VPC) in
robotics and the more general problem of automatic image annotation (AIA)3,
i.e. the problem of assigning labels to images based on its content. First, the
labeling of images in VPC is based on the physical location of the robot instead
of a visually well defined concept. This makes the labeling of training images
in some cases ambiguous, as images acquired at a particular location might
reflect a different visual concept than the one assigned to them (e.g. last images
in the sequence of Fig. 1). Second, images acquired for VPC exhibit a great
degree of redundancy due to the temporal continuity of the image stream, i.e.
labels associated to images acquired close in time are likely to belong to the
same concept and share similar appearance. These peculiarities, originated in
the very definition of the problem, make the visual classification of places a very
challenging task.

The paper is organized as follows. In Sec. 2 we give a high level description
of the different stages in our system. In Sec. 3, 4 and 5 we describe in detail the
representation we use as well as the different classification schemes we applied.
In Sec. 6 we present our experimental setup and in Sec. 7 we show results using
the training set provided by the organizers of the challenge. Finally, in Sec. 8 we
draw some conclusions.

2 System Overview

In this section we describe the core components of our system. The methods we
applied in solving both the obligatory and optional tasks comprise the following
processing steps:

3 The problem is also known in the literature as image classification, categorization
or tagging.



— FEncoding: images must be robustly represented in order to capture high level
properties of the scene. We rely on the state-of-the-art Fisher Vector image
signature. As far as we know, this is the first time such a representation is
applied in robotics.

— Scoring: we generate, for each image and concept, a score that provide us
with a measure on how likely is for an image to have been acquired at a
particular location. We use simple linear classifiers, which are efficient both
to train and to evaluate.

— Classification: based on the scores obtained in the previous step, we generate
a prediction of the robot actual location. We consider two cases:

1. Individual frames are classified without taking into account the temporal
consistency of the stream. We treat this problem as a simple (baseline)
image classification task using FV and efficient linear classifiers.

2. The image stream is automatically segmented into visually similar groups
of images and the classification is performed in a segment-by-segment
basis. We propose an efficient temporal segmentation algorithm based
on representation properties of the FV signature.

3 Encoding

We provide a brief overview of the representation in which our method is based,
namely, the Fisher vector image signature. Further details can be found in [6,8].

3.1 Fisher Vectors and the Similarity Between Images

Let uy : RP — R, be a pdf of parameter vector A modelling the generation
process of low-level descriptors in any image. Let X = {x,,,n=1,--- ,N} be a
iid sample of such D-dimensional descriptors extracted from a given image. The
Fisher vector is defined as

Gy = L)\GY. (1)

Here, G5 denotes the gradient of the (average) log-likelihood of X under wy:

N
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and L) is a diagonal normalizer. We model u) as a mixture of M Gaussians
. A . . M . .

with diagonal covariances, i.e. ux(z) = > ;_; wyu;(x), parametrized in terms of

A = {wi,pi, 00,9 = 1,---  M}. Here, w;, pu; and o? denote, respectively, the

mixing weight, mean and variance vector corresponding to the ith component of



the mixture. It can be shown that [6]*:
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with 7, (i) representing the soft assignment of low-level descriptors to compo-

(4)

nents of the mixture, i.e. v, (i) = wzul(a:n)/Zﬁl w;uj(z,). The image signature

is the concatenation of partial terms®, i.e.
X xT x T -xT x T\T
G¥ = (X", g, e gXT) (5)

resulting in a vector of dimensionality £ = 2M D. Following [8], we apply the
transformation f(z) = sign(z)+/|z| independently on each dimension and Lo-
normalize the transformed vector. These transformations have been shown to
be highly beneficial in classification [8,2] as well as in image retrieval problems
[7,3]. An important property of the transformed representation is that it allows
the similarity between images to be measured efficiently by a simple dot-product
between their FVs [8,3]. Moreover, as the transformed vectors are Lo-normalized,
the similarity between FVs —as measured by the dot-product— is upper-bounded

by 1. In what follows, we use G = to denote the transformed signature.

3.2 Low-level Descriptors

We extract two sets of low-level feature descriptors per image, computed inde-
pendently from the luminance (Y) and depth (D) channels of each input frame.
These sets of descriptors are used to compute two separate FVs that we de-
note by G:Xlum and Grglepen respectively. Note that these two F'Vs originate from
different probabilistic models, i.e. uf\“m and uieP t The parameters for these
models can be estimated using the expectation maximization (EM) algorithm

and a large set of descriptors.

4 Scoring

Let us denote by C = {1,...,C} the set of concepts, i.e. locations defining the
problem. For each channel (luminance and depth), we learn a set of C' binary
classifiers that provide us with a measure of how likely is for a given image to
have been acquired on a particular location in the environment. Concretely, we
generate a set of C linear predictors per channel, of the form:

Sg = ech’r)z(oETm + bgv (6)

4 Vector divisions must be understood as term-by-term operations.
® We consider the gradient w.r.t. the mean and variance vectors only as the gradient
w.r.t. the mixing weights has shown to provide little discriminative information [6].



where 65 € RP 0§ € Rand € € {lum, depth}. As we rely on simple linear models,
learning the parameters for the 2C' classifiers can be done very efficiently, e.g. by
using Stochastic Gradient Descent (SGD) [1]. Given a test image, we generate a
single score per class by computing the unweighted average of s“™ and sdePth,
We denote this score by s..

5 Classification

In this section we describe our approach for robust place classification for both
tasks of the challenge.

5.1 Obligatory Task (Task 1)

For the obligatory task, images have to be classified without considering the

temporal continuity of the image stream, i.e. frame-by-frame. In cases of uncer-

tainty, the system is allowed to refrain from making a decision (thus avoiding
penalization points).

We treat this task as a simple (baseline) classification problem. Deciding to

which class an image belongs was done according to the following rule:

. {c:argmaxi sq, if s, >'a ™)

0, otherwise

Here, 0 denotes “no classification”, i.e. the image is left unclassified. The param-
eter « is set empirically by cross-validation.

5.2 Optional Task (Task 2)

For this task, participants were allowed to exploit the temporal continuity of
the image stream. This task also characterizes by the presence of kidnappings:
situations in which the robot abruptly changes its location from one room to
another.

Before introducing the methods we applied for this task, let us first introduce
some notation. Let I,y = {I;,t = 1...T}, I; € Z, be a sequence of images
acquired by a mobile robot up to time 7. With a slight abuse of notation, we
denote by s.(t) the classification score computed for image I; and class ¢ € C. We
define the score vector s(t) := (s1(t),...,sc(t))". Similarly, we use the notation
gﬁffm (t) to represent the FV computed for image I; using the set of descriptors
extracted from channel £ € {lum, depth}.

Temporal Segmentation. Let us assume that for every ¢ and ¢ there exists
a function m(¢,t") that provide us with a measure of the similarity between
images I; and I,. Given a reference image [I,, we define a temporal segment as
the sequence I, = {I;,t = a,...,b}, where b is the greatest integer such that



Algorithm 1 Temporal segmentation and classification
to <1
S« {s(1)}
fort=2,... do
if m(to,t) < mo then
Classify images in I;,:.—1 according to MCT or MVT using the scores in S
to <t
S+ {s(t)}
else
S+ Su{s(t)}
end if
end for

m(a,b) > mgy and mg a free parameter. Reference images are selected as the first
image that follows a previously computed segment. The first of such reference
frames is chosen as the first image in the sequence. The classification of images is
performed segment-by-segment instead of frame-by-frame. Algorithm 1 provides
an overview of our approach for temporal segmentation and classification.

As a proxy for m(¢,t") we use the dot product between FVs computed from
either the luminance or depth channel features of I; and I; (Sec. 3.1). This
provides us with a measure consistent with the classification model. It holds
that |m(t,t')] < 1.

Using the above procedure, dealing with kidnapping situations becomes rather
natural since, in such cases, the visual appearance of images is likely to change
considerably from one frame to another. This abrupt change in appearance will
trigger the generation of a new reference image and the classification of the
segment extracted just before the kidnap point.

Segment classification. Based on the above definition, we classify all images in
the segment I,.; according to one of the following rules: a) Mazimum confidence
and threshold (MCT), which takes into account the confidence of the classifiers
w.r.t. the best alternative hypothesis within a given segment; or b) Majority
vote and threshold (MV'T), which tries to exploit the temporal and semantic
consistency of the images. Details for these rules are given next.

Mazimum confidence and threshold (MCT). Let ¢1,c € {1,---,C} denote the
indices to the best and second best scoring classifiers at time ¢ and let d(t) :=
Sy (1) — S¢,(t) > 0 denote the difference between the corresponding scores. All
images in the segment I, are classified as belonging to class ¢ according to the
following rule:

R c1, if se,(u) > B, u = argmax;epq,p) d(t)

¢ = . ’ (8)

0, otherwise



Magjority vote and threshold (MVT). Let vgp(c) = #{s.(t) > B,t=a,...,b}
denote the number of times the classification score for the cth classifier is above
B for images in the segment I,.;,. We consider the following voting strategy for
the classification of the temporal segment 1,.p:

¢ = arg max Va:p(C) (9)

As before, ¢ = 0 means that images in I,.;, are left unclassified. In both cases,
the parameter [ is set empirically by cross-validation.

6 Experimental Setup

In this section we provide a detailed explanation of our experimental procedure.

6.1 Dataset

The training set for the Robot Vision Challenge 2012 consists of three sequences
of 2667, 2532 and 1913 RGBD images respectively, acquired under different
illumination conditions within the same floor of an office environment. They
include motions in both clockwise and counter clockwise directions. Performance
is measured based on the number of correctly and misclassified images in a given
sequence and it varies from task to task.

Further details regarding the dataset and the evaluation methodology can be
readily found in [5].

6.2 Low-level Features

Both RGB and depth images were reduced at half their original resolution be-
fore computations. We extracted 128-dimensional SIFT descriptors [4] from local
patches of 32 x 32 pixels located at the nodes of a regular grid (step size of 4
pixels). We used the DSIFT implementation of [9]. We did not perform any nor-
malization (rotation, intensity, etc.) on the image patches before computations.
To account for variations in scale, we built a resolution pyramid of 5 levels using
a scale factor of 0.707 between them. SIFT descriptors were extracted indepen-
dently on each level using the procedure described above. In the case of depth
images, we considered only descriptors whose magnitude was greater than a small
value (set to 1072 in our experiments). The dimensionality of SIFT descriptors
was further reduced to 80 by Principal Components Analysis (PCA). PCA pro-
jection matrices were learned from a set of 10 randomly sampled descriptors
from the training set.

6.3 Generative Model

For each channel, we trained a Gaussian Mixture Model (GMM) with M com-
ponents under a Maximum Likelihood (ML) criterion using the Expectation-
Maximization (EM) algorithm. We used 10° random samples from the training



set. We initialized the EM iterations by running k-means and using the statis-
tics of cluster assignments (relative count, mean and variance vectors) as initial
estimates.

6.4 Base Classifiers

As base classifiers we used linear SVMs trained on the primal using Stochastic
Gradient Descent (SGD) [1], i.e. minimizing the Lo regularized hinge-loss in a
sample-by-sample basis. The regularization parameter A was chosen by cross-
validation on the training set. We trained C' classifiers per channel following a
one-vs-all strategy. i.e. when training the models for class ¢ we used the samples
of that class as positives and the rest as negatives.

7 Results

In order to allow the system to cope with changes in illumination and the robot
motion direction, we considered the following data augmentation strategies: i)
adding new images by simulating uniform changes in illumination, i.e. generating
darker /brighter versions of randomly sampled images; ii) generating mirrored
(left-to-right) versions of the images provided as training material. In the first
case, we did not observe any noticeable improvement while, in the second, we
observed an increase of +30% (on average) w.r.t. a system trained using the
original data only. This is to be expected, as our low-level features (i.e. SIFT
vectors) are based on gradient information which makes them insensitive to uni-
form changes in the illumination. On the other hand, adding mirrored samples to
the training set let the system learn up to some degree the symmetries originated
from the changes in the robot motion.

7.1 Task 1

In this subsection we evaluate the performance of our system in classifying im-
ages independently (frame-by-frame). In particular, we consider the following
aspects: ) the impact of using increasingly complex models (i.e. number of
Gaussians, M); 4i) the benefits of using different representation channels. For
each configuration, we ran three experiments using different train/test splits of
the data, using two of the sequences for training and the third for testing. Re-
sults are reported on Table 1. We show recognition performance® for models
with M = 256, 512 and 1024 Gaussians and systems based on single and mul-

tiple descriptor channels. Results on Table 1 were obtained by setting @ = —oo
in Eq. (7), i.e. argmaz rule without thresholding. The classification performance
obtained with o = —0.5 is shown in parentheses.

If we consider the different train/test configurations, it can be observed a big
drop in performance for the system trained on sequences 1 and 2. This drop can

5 The score was computed using the scripts provided by the organizers of the challenge.



Table 1: Recognition performance for “Task 1” for models involving M = 256, 512 and
1024 Gaussian and different representation channels. See text for details.

Luminance Depth Lum+Depth
Train Test|256 512 1024|256 512 1024| 256 512 1024
1&2 3 |275 411 491|511 489 609 | 835 897 965
2& 3 1 (1941 1945 1969|1403 1429 1461| 1947 1961 1941
3& 1 2 |2150 2158 2154|1548 1564 1598| 2050 2078 2094
Average (1455 1505 1538|1154 1161 1223| 1611 1645 1667
(a=-0.5)| - - - - - - [(1657) (1718) (1722)

be explained by noting that sequence 3 was acquired under very poor illumina-
tion. A system trained using only images acquired under “normal” illumination
does not generalizes well to this previously unseen scenario. In contrast, systems
to which this sequence was shown during training exhibit much better perfor-
mance (second and third row in the table). As expected, the system based on the
luminance channel alone performs worse than the system using depth informa-
tion when testing on sequence 3. On the contrary, the luminance channel shows
better performance on test sequences 1 and 2. The combination of both chan-
nels brings large improvements in all scenarios. Increasing the model complexity
(number of components in the mixture) can bring additional improvements at
the cost of a greater computational cost.

The system we submitted during the challenge included both luminance and
depth features and models with M = 1024 Gaussians. The threshold parameter
was set to & = —0.5. Our system ranked first, achieving a score of 2071 points.

7.2 Task 2

For this task, we first evaluate the influence of the parameter mg in classifica-
tion performance (Sec. 5.2, temporal segmentation). mg controls the degree to
which an image is considered similar to another of reference, i.e if it belongs
to the temporal segment defined by the second. Fig. 2 (left) shows the average
score as a function of my for different choices of the similarity measure (dot-
product between luminance or depth FVs) and classification rules (Sec. 5.2),
e.g. Lum+MVT corresponds to the system using the dot-product between lumi-
nance FVs for segmentation and the MVT rule for classification. Fig. 2 (right)
show the average length of the temporal segments obtained by using FVs from
either channel.

It can be observed that for mg above 0.2, using luminance FVs for seg-
mentation leads to better results than with depth FVs. Using luminance FVs,
performance reaches a peak at mg = 0.3 (Lum+MCT: 1836, Lum+MVT: 1871).
Within this range, MVT performs better than MCT. For values of my < 0.2,
the segmentation using depth FVs leads to better results. In this case, a peak is
observed at mg = 0.1 (Depth+MCT: 1919, Lum+MVT: 1888) with MCT per-
forming better. As a comparison, the average score obtained by setting mg =1
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Fig. 2: Experiments for Task 2 using models with M = 1024 Gaussians and 8 = —0.4,
given as a function of the segmentation threshold mg. Left: average classification score
for different choices of the similarity measure and classification rule; Right: average
segment length.

(frame-by-frame classification) on this task is 1801. The average segment length
at the above points is 5.4 and 6.86 for luminance (mg = 0.3) and depth (my =
0.1) features, respectively. For the same value of mg, luminance FVs lead to
larger segments.

For the competition we submitted two systems: Depth+MCT and Depth+MVT
using, as before, 1024 Gaussians. We set the segmentation and classification
thresholds to my = 0.1 and 8 = —0.4, respectively. Our systems ranked first,
achieving 3930 points on this task.

7.3 Timings

Finally, we report computation times for the system based on models with M =
1024 mixture components. Reported times were measured on a AMD Opteron
machine (8 cores @ 2GHz) with 8 GB of RAM. Table 2 show estimated times
for both offline and online processes. Additionally, we report FV computation
times for M = 256 and 512 Gaussians.

Table 2: Computation times for models with M = 1024 Gaussians. PCA and GMM
parameters were estimated on 10° randomly sampled features.

PCA training 4min / channel
Offline |GMM training (M = 1024) 1h 30min / channel
Classifier training 5min / class / channel
SIFT+PCA 170msec / image / channel
FV (M = 256) 220msec / image / channel
Online [FV (M = 512) 310msec / image / channel
FV (M = 1024) 490msec / image / channel
Scoring 2.2msec / image / class




8 Conclusions

This paper describes the CIII participation at ImageCLEF Robot Vision Chal-
lenge 2012. Our approach leverages recent advances in the fields of image classi-
fication and retrieval. We proposed a temporal segmentation methodology based
on the visual similarity of images that allowed us to classify groups of images in a
robust manner. Our team ranked first on both the obligatory and optional tasks
of the challenge, showing the potentiality and effectiveness of our approach.
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