
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Index Expansion for Machine Reading and Question

Answering

Giuseppe Attardi, Luca Atzori, Maria Simi

Dipartimento di Informatica, Università di Pisa, Italy

{attardi, atzoril, simi}@di.unipi.it

Keywords: index expansion, question answering, machine reading, information

retrieval

Abstract. The paper reports our experiments in tackling the CLEF 2012 Pilot

Task on Machine Reading for Question Answering. We introduce the technique

of index expansion, which relies on building a search index enriched with in-

formation gathered from a linguistic analysis of texts. The index provides a

highly tangled representation of the sentences where each word is directly con-

nected to others representing both meaning and relations. Instead of keeping the

knowledge base separate, the relevant knowledge gets embedded within the

text. We can hence use efficient indexing techniques to represent such

knowledge and query it very effectively. We explain how index expansion was

used in the task and describe the experiments that we performed. The results

achieved are quite positive and a final error analysis shows how the technique

can be further improved.

1 Introduction

The paper reports our experiments in tackling the CLEF 2012 Pilot Task on Machine

Reading for Question Answering. The task aimed at exploring the ability of a ma-

chine reading system to answer questions about a scientific topic, in particular about

the Alzheimer disease, using knowledge extracted from biomedical texts.

The evaluation has the format of traditional Multiple Choice Reading Comprehen-

sion tests: it involves reading a single scientific article at a time and answering a set of

questions regarding information that is stated or implied in the text. Multiple choice

answers are provided for each question, each having five options with only one being

correct. A background collection of reference articles about the topic is provided by

the organizers, which may be exploited for learning knowledge useful in answering

the questions. Nonetheless the principal answer is to be found among the facts pre-

sented in the given test document.

The rationale of the task [13] is to concentrate on the step of Answer Validation

which is the last one in a traditional QA pipeline (Question Analysis, Retrieval, An-

swer Extraction, Answer Selection/Validation).

mailto:attardi,%20atzoril,%20simi%7d@di.unipi.it

We approach the task using a technique that we call “index expansion”, which is

the dual to query expansion. Query expansion adds terms to the query in order to

achieve better recall, but this often results in poorer precision, since, because of term

polysemy, the terms introduced may have also quite different meaning and may match

irrelevant documents, introducing a lot of noise in the results.

Index expansion instead keeps the original query terms but adds variants of terms

to the index, for example synonyms and hyperrnyms. This introduces much less noise,

since if the variant term is used in the query, then it is relevant and the match will be

successful. On the other hand, inappropriate terms will not be used in the queries and

hence their presence in the index will not affect negatively the results. The only draw-

back of the approach is that the size of the index increases, but this is a minor issue,

since the index is compressed and disk space is cheap. In other words we trade space

for speed and accuracy, which is akin to the technique of “database denormalization”.

The approach extends the one that we proposed and applied successfully to the task

of Blog Opinion Mining at TREC 2006 [3].

The index is enriched with information extracted from linguistic analysis of the

documents. The index in fact can be seen as a multilayer index, where each layer

represents one kind of annotation. The layers are:

─ form the original text

─ lemma the lemma of each word

─ POS the POS of each word

─ head the governor of each word

─ deprel the dependency relation of each word with its governor

─ lemma the lemmas of each word

─ synonyms list of synonyms for each word

─ hypernyms list of hypernyms for each word

The process of answering a question relies on a similar analysis of text: questions are

parsed and from the parse tree a basic query in the DeepSearch query language is

generated. To each of these queries one of the multiple possible answers is added.

Those queries which obtain an answer with the highest score are considered to include

the correct answer.

2 Document Analysis

The collection of background documents about Alzheimer's Disease provided for the

task included: around 66,000 abstracts from PubMed
1
; around 8,000 Open Access full

articles from Central
2
; full articles about the key hypotheses in Alzheimer Disease

published by Elsevier.

The documents were provided also in a preprocessed format, split into sentences

and tokens, each one annotated with lemma, POS, dependency parsing annotations

1 http://www.ncbi.nlm.nih.gov/pubmed/
2 http://www.ncbi.nlm.nih.gov/pmc/

http://en.wikipedia.org/wiki/Query_expansion
http://www.ncbi.nlm.nih.gov/pubmed/
http://www.ncbi.nlm.nih.gov/pmc/

from the dependency parser GDep [15], and two types of Named Entities, one from a

UMLS-based NE tagger developed at CLiPS, and one from the ABNER NE tagger

[16].

3 Index Expansion

The idea of index expansion is to create a highly tangled representation of the sen-

tences where each word is directly connected to others representing both meaning and

relations. Instead of keeping the knowledge base separate, the relevant knowledge

gets embedded within the text. We can hence use efficient indexing techniques to

represent such knowledge and query it very effectively with suitably modified tech-

niques of information retrieval.

The first step of the process is to analyze the sentences and annotate them with

syntactic and semantic tags. Despite the fact that documents were provided prepro-

cessed with the GDep parser, we preferred to parse them with a parser that could pro-

duce Stanford Dependencies, which provide more refined analysis with respect to

standard parsers and whose annotation is closer to represent semantic roles. In par-

ticular we will make use of the ability to distinguish apposition.

Besides syntactic information, we looked for some kind of semantic information,

in particular grouping syntactic variants and identifying synonyms and hypernyms.

3.1 Synonym expansion

We explored using the Unsupervised Semantic Parser by [14], in order to obtain a set

of synonyms or related terms to annotate the documents. USP transforms dependency

trees in the Stanford Dependencies notation [9] into quasi-logical forms and clusters them

to abstract away syntactic variations of the same meaning. The approach seemed promis-

ing, in particular since USP had been trained on the Genia Corpus. Results on the

Genia corpus showed the USP ability to discover similar terms, albeit sometimes with

opposite polarity, and alternative phrasing for the same concept. For example, here is

a sample of the top clusters from the Genia corpus:

1. overexpression, over-expression

2. sustain, have

3. expression, co-expression, accumulation

4. receptor-alpha, receptor

5. low, highest

6. display, exhibit

7. htlv-i-infected, human, lipopolysaccharide-stimulated, uninfected

8. greater, higher, lower

9. emphasize, support

10. alteration, change

11. novel, many, other, new, known, latter, various, multiple, individual, several, cer-

tain, respective, additional

12. previously, originally

13. srf, e2f, nfkappab, nf-kappab, hgata-3, nf-kb

14. susceptibility, sensitivity

15. govern, effect, control, specify, regulate, modulate, mediate

Items no. 5, 7 and 9 clearly include opposites, but the remaining ones are indeed ei-

ther syntactic variants or have similar meaning.

USP requires the input annotated with Stanford Dependencies [9]. These depend-

encies are typically produced using the Stanford Parser which produces constituency

trees that are then converted to dependency trees.

This process turned out to be too slow to handle large collections. Therefore we

decided to train the DeSR dependency parser [1] on a version of the Penn TreeBank

annotated with basic Stanford Dependencies. This produced a native parser for Stan-

ford dependencies which outperforms the Stanford parser itself in accuracy
3
 (91.18 %

of Unlabeled Attachment Score), but most importantly in performance, reducing sig-

nificantly the parsing. This is due to the fact that DeSR algorithm has linear complexi-

ty and parsing a sentence takes in the order of hundredth of a seconds, while the Stan-

ford parser is cubic and the time grows to dozen of minutes for long sentences.

We applied USP to the Elsevier corpus. We had to overcome a number of prob-

lems with the implementation, in particular:

─ the handling of apostrophes, which the parser introduces to denote copy nodes and

therefore confuse USP

─ the handling of underscores, whose presence in words also confused USP

─ infinite loops due to the presence of cycles in the dependencies

After fixing these problems, we had to partition the Elsevier collection into four

smaller subsets because the parser was too slow to handle it as a whole. Unfortunately

the clusters that we were able to obtain were not very significant. Here are the top

clusters from the first subset:

─ furthermore, however

─ rinse, wash

─ moreover, thus

─ recent, previous

─ feature, manifestation

─ nacl, hepes

─ experimental, procedures

─ the (dep body), the (amod body), the (nn body), the (num body), the (nsubj body),

the (advmod body), the (poss body), the (nsubjpass body), …

─ phosphorylation (prep_at s45), phosphorylation (prep_of s45), phosphorylation

(amod s45), …

Except for the first few, all the remaining ones were cases of alternative parses of the

same phrase, e.g. ‘body’ with different dependency relations: ‘amod’, ‘num’ or

‘nsubj’. Therefore the clusters turned out not to be very useful for our purposes.

3 https://sites.google.com/site/desrparser/Announcements/stanforddependencies

Hence as an alternative we resorted to use WordNet [9] to extract synonyms and

hypernyms. Two layers of annotation were added to represent them for each term.

3.2 Appositions and Acronyms

We exploit the dependency annotations as appositions, to add the apposition at the

position of the head. For example, “Abeta” occurs as an apposition for “amyloid be-

ta”: the term “Abeta” is then added as a synonym in correspondence of “beta” and

hence it will inherit any relations that the phrase has.

Similarly the expansion of acronyms can be added as variants of terms.

3.3 Syntactic Variants

Syntactic variants are also added to the expanded index. For example to deal with

alternative passive forms, when a term has the dependency “nsubj_pass”, to the index

is also added the same term with a tag as “dobj”, while the corresponding “agent “ is

annotated also as “nsubj”.

3.4 Indexing

The search engine that we used in our experiments is called DeepSearch and is built

by means of IXE [1], an Open Source search engine library in C++ that we have been

developing along several years.

DeepSearch provides facilities for passage retrieval, so that it can return individual

passages, in our case sentences, matching queries. Scoring is based on a relevance

metric for the match within one sentence or within a number of adjacent sentences.

For this task we exploited the capability of IXE of dealing with multiple layers in

documents. A layer is an overlay of different terms on the same document. Each layer

has its own full-text index and can be queried independently. However the layers can

be considered as stacked and querying performed across layers, for instance one can

find a word with a given POS by searching for the word in the text layer that has the

given POS in the same position in the POS layer. Also proximity and phrase searches

that rely on term positions can exploit this.

Besides having multiple layers, a layer can have multiple terms in the same posi-

tion. This feature will be exploited to deal with variants, like synonyms and hyper-

nyms.

Notice that in among both synonyms and hypernyms we include the lemma itself,

hence there is no loss in generality when querying on these layers.

Finally, the column for dependencies is dealt specially in order to enable searching

for terms that are syntactically related. IXE exploits the fact that heads of terms repre-

sents positions, and list of positions are already represented in an inverted index.

Therefore a special posting list with position is created for the heads column. The

technique used for search is based on the Small Adaptive Set Intersection [1, 8],

which relies on cursors, which are scanned in parallel, until a match is found at the

same document position.

The SASI algorithm has been extended to handle dependencies queries, which look

for two related terms d and h, where h is the head of d. A special dependency cursor

uses three inner cursors, cursor Cd on the posting list of d, cursor Ch for that of h and a

cursor Hd on the postings of the heads of d. It first uses Cd and Ch to find matches for

d and h. Whenever such a match is found, it checks that the value stored in the posting

list of H at the position of d corresponds to the position of h. Having a single posting

list for all terms, rather than having one for each term, allows repeating the last step

and checking whether there is a transitive dependency. Despite the fact that the post-

ing lists for heads becomes very long, the algorithm is still quite fast since it exploits

skip lists to quickly scan such list.

To illustrate what goes into the index, we show here the annotated parse tree for one

sentence from one of the reading documents (with slight corrections of parser mis-

takes) that we will also use as an example for the process of answer selection:

form lemma POS H dep NE synonym hypernym

the the DT 4 det O

γ-secretase γ-secretase JJ 3 amod B-protein

inhibitor inhibitor NN 4 appos O inhibitor substance

drug

Semagacestat Semagacestat NN 11 nsubj_pass

dobj

O

tested test VBN 4 nmod O essay run

exam

screen

examine

prove try

trial test

examination

examine

evaluate

judge submit

check exper-

iment at-

tempt effort

endeavor

check see

ascertain

watch ...

in in IN 5 VMOD O

phase phase NN 10 nmod O phase form

stage

point arrange

appearance

visual_aspect

time_period

period syn-

chronise

state

III III CD 10 nn O

clinical clinical JJ 10 amod O clinical

trials trial NNS 6 prep_in O run visita-

tion trial

tribulation

tryout test

experiment

attempt

effort en-

deavour try

affliction

proceeding

contest com-

petition

Each column in the table represents a layer, which we represent here vertically for

easier readability. Most layers contain a single term. The terms in the last two layers

are to be considered as variants; hence they appear in the index as if they had the

same position. For eample the sentence will match a query for both form “Semagates-

tac” and synonym “check”. Notice that the presence of a possibly irrelevant synonym

like “run” would not affect any search that does not use it explicitly, which will hap-

pen instead if one performs query expansion with synonyms.

3.5 Query Language

The DeepSearch query language allows specifying conditions occurring simultane-

ously at the same position in different layers. Each layer is identified by its name, so

for example:

 ne:protein

matches the term protein in the “ne” (Named Entity) layer.

 dep:nsubj

matches the term “nsubj” in the “dep” (Dependency Relation) layer. The co-

occurrence of these condition at the same position, i.e. looking for a term which is

both a protein and the subject of a verb, can be specified using the align operator “|”:

 ne:protein|dep:nsubj

Moreover one can specify the presence of a syntactic dependency, either direct or

indirect, between two terms, like in this example:

 (ne:protein|dep:nsubj <- lemma:test)

Indirect dependencies are useful since quite often terms are connected though inter-

mediate prepositions.

Dependencies can be chained, as in:

 (phase <- lemma:trial <- lemma:test)

These queries can be tested in our online demo accessible at:

http://semawiki.di.unipi.it/alzheimer/

4 Question Answering

4.1 Query generation

Questions are processed similarly to documents, using the parsers DeSR and then

USP, in order to obtain a parse tree with semantic annotations.

A script analyzes the annotated parse tree and generates a query for the enriched

index.

Here is an example of the processing of one of the questions in the evaluation:

What candidate drug that blocks the γ-secretase is now tested in clinical trials?

The sentence is parsed with Stanford dependencies and then expanded with syno-

nyms, hypernyms and syntactic variants, obtaining the following layers (omitting

some of the synonyms, hypernyms):

form lemma POS H dep NE synonym Hypernym

What What WP 2 nsubj O

candidate candidate NN 0 root O prospect can-

didate cam-
paigner nomi-

nee

person individual someone

somebody mortal soul politi-
cian politico political_leader

drug drug NN 2 dobj O do_drugs drug

dose

consume ingest take_in take

havemedicate medicineagent

that that WDT 3 NMOD O

blocks block VBZ 3 rcmod O obstruct freeze

obturate im-

mobilise

auction_block

pulley_block

mental_block
stymie stop-

page forget

jam …

computer_memory_unit col-

lection aggregation accumula-

tion assemblage shape form

artifact inability cast casting

obstruction machine obstruc-

tion obstructor impediment
hide conceal prevent forestall

foreclose preclude forbid …

the the DT 7 det O

γ-secretase γ-secretase NN 10 nsubjpass

dobj

B-

pro

tei
n

is be VBZ 10 auxpass O

now now RB 10 advmod O

tested test VBN 5 ccomp O essay run exam
screen exam-

ine prove quiz

try trial tryout
test examina-

tion …

examine evaluate judge take
submit check core communica-

tion communicating experi-

ment experimentation attempt
effort endeavor try determine

check find_out see ascertain

watch learn covering cover …

in in IN 10 VMOD O

clinical clinical JJ 13 amod O clinical

trials trial NNS 10 prep_in O

? ? . 8 P O

Among the hypernyms for the word “candidate” appear terms like “politician”. It is

fairly clear that if these terms were used for expanding the query, quite confusing

results might be retrieved, unless one does some sophisticated kind of word sense

disambiguation to discard those terms. In our case though, the last three columns of

the analyzed sentence are discarded during query generation.

The query generator creates a basic DeepSearch query, which includes relevant

terms and both syntactic and semantic features from the query. A list of clauses is

produce which are combined in a Boolean disjunctive query. A few heuristics are

used in producing such clauses, for instance the possible answer is not included if it is

already present in another clause from the question.

For the above example the query generator produces this base DeepSearch query:

candidate OR syn:candidate OR drug OR syn:drug OR γ-secretase OR syn:γ-secretase

OR clinical OR syn:clinical OR lemma:candidate OR (ne:protein <- lemma:test) OR

syn:drug

Five variants of this query are submitted by adding to each, one of the possible multi-

ple answers. The one with the addition of “Semagacestat” returns two results, with the

highest score of 19.35. The query with the addition of “LPR1” returns one result with

a score of -1.64; the addition of “biochemical” returns 21 results with the best score of

4.24; the addition of “AD” obtains 9 results, with the best score of 9.18; the addition

of “PSEN1” returns 21 results, the highest with a score of 5.51. Hence “Semaga-

cestat” is selected as the correct answer, as it is indeed.

The sentence retrieved with the highest score is the one presented in Section 3.4.

4.2 Answer Selection

Most Question Answering system perform sophisticated processing on the candidate

answers, in order to determine which one is the most appropriate one. This processing

sometimes involves complex reasoning based on theorem proving techniques [11]:

the answer is transformed in some form of first order logic formula and an attempt is

made to prove that the formula entails the question either directly or by abduction.

Our system instead relies only on the ranking provided by the DeepSearch engine.

If the engine does not return any answer for a given query, the candidate solution is

discarded. When more than one query has answers, the one is chosen whose first an-

swer has the highest rank.

One limitation of the approach is due to the fact we employ a passage retrieval en-

gine, which splits documents at the sentence level and returns sentences that match

the query. We had planned to apply the anaphora resolution tool [5] that we had de-

veloped for SemEval 2011 to add an anaphora layer to our expanded index, but time

limitation prevented us from doing it. The problem is somewhat alleviated by exploit-

ing feature of the passage retrieval engine, which considers matches occurring also in

adjacent sentences, albeit with a lower score. This is controlled by parameter Con-

secutivePassage in DeepSearch, which was set to 2 in our experiments.

5 Evaluation

The metric for the evaluation is c@1 [12], which is based on the number of correct

single answers but takes into account the option of not answering certain questions.

We submitted a single run for evaluation, which obtained a cumulative c@1 score of

0.55, with the following breakdown on the four documents:

Reading Test n nR nU c@1

1 10 4 0 0.40

2 10 5 0 0.50

3 10 6 0 0.60

4 10 7 0 0.70

5.1 Error Analysis

Here are the answers provided by the system for the fourth reading document. Correct

answers are highlighted in bold.

Reading Document 4.

1. What effect can be observed when when γ-secretase is blocked?

System: APP-CTF accumulation Correct: APP-CTF accumulation

2. When APH1 genes are overexpressed in MEF KO what happens with the Aβ?

System: They are longer Correct: They are longer

3. In which gene are mutations associated to many cases of early-onset familial forms

of Alzheimer's disease?

System: PSEN1 Correct: PSEN1

4. What experimental technique was used specifically to purify the γ-secretase com-

plex?

System: lysate Correct: affinity chromatography

5. What peptide is able to control the expression of the ApoE gene?

System: AICD Correct: AICD

6. Which amino acid is critical for the activity of the PS1 protein?

System: aspartate Correct: aspartate

7. What experimental technique was used to determine the structure of γ-secretase?

System: immunostaining Correct: EM

8. What candidate drug that blocks the γ-secretase is now tested in clinical trials?

System: Semagacestat Correct: Semagacestat

9. What mutation of the PS1 protein causes γ-secretase activity almost to disappear?

System: wild-type Correct: P436Q

10. How many mutations relevant for familial forms of Alzheimer's disease have been

detected for the PSEN1 gene?

System: 185 Correct: 185

We briefly investigate the reason for the failures.

For the 8
th

 question the query generated contained the phrase "affinity chromatog-

raphy", but neither the term “affinity” nor “chromatography” appear in the document.

For question 7, the query with “EM” did not have the highest score. The answer

was hard to find, because the relevant sentence was twisted, saying that “protocols for

the purification of … γ-secretase … allowed the reconstitution of 3D structures … by

EM”. Some form of splitting and rewriting of the sentence might help with cases like

this.

Finally, in question 9 “wild-type” prevailed over “P436Q”, because the generated

query did not constrain the term “wild-type” to be connected with “mutation”.

These errors appear that could be reduced by improving some aspects of index ex-

pansion and query generation.

6 Conclusions

The approach of index expansion relies on enriching the index with information

which is gathered from a linguistic analysis of texts. Differently from traditional ap-

proaches to Question Answering, where an abstract separate formal representation of

texts is produced and then queried through some logical reasoning process, our ap-

proach keeps the information in the text itself.

The idea is to create a highly tangled representation of the sentences where each

word is directly connected to others representing both meaning and relations. Instead

of keeping the knowledge base separate, the relevant knowledge gets embedded with-

in the text. We can hence use efficient indexing techniques to represent such

knowledge and query it very effectively with suitably modified techniques of infor-

mation retrieval.

The approach proved fairly effective for the Pilot task of Machine Reading for

Question Answering. In the experiments we incurred into some limitations of the

tools we had planned to use. In particular it is important for the approach to be able to

identify alternative forms of expressions, in particular synonyms and hypernyms,

which are specific to the domain. We had some success in doing this by using de-

pendency relations produced by a statistical dependency parser. In particular the ap-

position relation allowed identifying synonyms and the recognition of passive forms

allowed normalizing them. We also tried some recent tools for semantic analysis that

in principle could have provided additional versions of linguistic variants, more do-

main specific. This did not work as expected and we had to resort to general linguistic

knowledge provided by WordNet. We also did not have time to incorporate our tool

for coreference resolution.

We hope that exploiting better or tuned versions of the tools for syntactic and se-

mantic analysis of text, the index expansion approach can provide an effective solu-

tion to answer validation in the context of question answering.

Acknowledgments.

Mihai Surdeanu provided us access to a version of the Penn Treebank annotated with

basic Stanford Dependencies and assisted us in the training of the DeSR parser.

References.
1. Attardi, G.: IXE at the TREC Terabyte Task. In: Proceedings of The Forteenth Text Re-

trieval Conference (TREC 2005), NIST, Gaithersburg (MD) (2005)

2. Attardi, G.: Experiments with a Multilanguage Non-Projective Dependency Parser. In:

Proc. of the Tenth Conference on Natural Language Learning, New York, (NY) (2006)

3. Attardi,G., Simi, M.: Blog Mining Through Opinionated Words, Proceedings of The Fif-

teenth Text Retrieval Conference (TREC 2006), NIST, Gaithersburg (MD), (2006)

4. Attardi, G., Dei Rossi, S., Simi, M.: The Tanl Pipeline. In: Proc. of Workshop on Web Ser-

vices and Processing Pipelines in HLT, Malta (2010)

5. Attardi, G., Dei Rossi, S., Simi, M.: TANL-1: Coreference Resolution by Parse Analysis

and Similarity Clustering. In: Proc. of SemEval 2010, Uppsala (2010)

6. Attardi, G., Simi, M., Zanelli, A.: Tuning DeSR for Dependency Parsing of Italian, In:

Proc. of Evalita 2011, Springer LNCS (to appear) (2012)

7. Bird, S., Looper, E.: Natural Language Processing with Python. O'Reilly Media (2009)

http://trec.nist.gov/pubs/trec14/papers/upisa.tera.pdf
http://trec.nist.gov/pubs/trec15/papers/upisa.blog.final.pdf

8. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Adaptive set intersections, unions, and dif-

ferences. In: Proc. of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), 743–752 (2000)

9. de Marneffe, M.-C., Manning, C.D.: The Stanford typed dependencies representation. In:

COLING 2008 Workshop on Cross-framework and Cross-domain Parser Evaluation

(2008)

10. Miller, G.A.: WordNet: A Lexical Database for English. Communications of the ACM,

Vol. 38, No. 11: 39-41 (1995)

11. Moldovan, D., et al.: COGEX: A Logic Prover for Question Answering. In: Proceedings

of HLT-NAACL 2003, Edmonton, pp. 87-93 (2003)

12. Peñas. A., et al.: Overview of ResPubliQA 2009: Question Answering Evaluation over Eu-

ropean Legislation. In: C. Peters et al.(Eds.), Multilingual Information Access Evaluation.

Vol. I, Text Retrieval Experiments. Workshop of the Cross-Language Evaluation Forum.

CLEF 2009, LNCS 6241, Springer-Verlag, Corfu, Greece (2010)

13. Peñas, A., et al.: Overview of QA4MRE at CLEF 2011: Question Answering for Machine

Reading Evaluation. In Proc. of CLEF 2011, Amsterdam (2011)

14. Pon, H., Domingo, P.: Unsupervised semantic parsing. In Proc. of the 2009 Conference on

Empirical Methods in Natural Language Processing, Volume 1, 1–10, Singapore (2009)

15. Sagae, K., Tsujii, J.: Dependency parsing and domain adaptation with LR models and par-

ser ensembles. In Proc. of the CoNLL 2007 Shared Task. Prague, Czech Republic (2007)

16. Settles, B.: ABNER: an open source tool for automatically tagging genes, proteins, and

other entity names in text. Bioinformatics, 21(14):3191–3192 (2005)

http://nlp.stanford.edu/pubs/dependencies-coling08.pdf
http://people.ict.usc.edu/~sagae/parser/docs/sagae-conllst07.pdf
http://people.ict.usc.edu/~sagae/parser/docs/sagae-conllst07.pdf

