
Building an Optimal Question Answering System Automatically using
Configuration Space Exploration (CSE) for QA4MRE 2013 Tasks

Alkesh Patel, Zi Yang, Eric Nyberg, Teruko Mitamura

Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA 15213

alkeshku@anderw.cmu.edu,{ziy, ehn, teruko}@cs.cmu.edu

Abstract

Different software systems for automatic question answering have been developed in recent years.
Some systems perform well on specific domains, but may not be appropriate for other domains. As
the complexity and scaling of such information systems become ever greater, it is much more challenging
to effectively and efficiently determine which toolkits, algorithms, knowledge bases or other resources
should be integrated into a system so that one can achieve a desired or optimal level of performance on a
given task. In this working notepaper, we present a generic framework that can be used for any machine-
reading task and automatically find the best configuration of algorithmic components as well as values of
their corresponding parameters. Although we have designed the framework for all QA4MRE-2013 tasks
(i.e. Main task, Biomedical about Alzheimer’s and Entrance Exam), our analysis will mostly focus on
Biomedical about Alzheimer’s task. We introduce the Configuration Space Exploration (CSE) framework,
an extension to the Unstructured Information Management Architecture (UIMA) which provides a general
distributed solution for building and exploring possible configurations for any intelligent information
system. For the Biomedial about Alzheimer’s task, CSE was used to generate more than 1000 different
configurations from existing components; we selected the 3 best runs for submission. We achieved an
average c@1 of 0.27; our highest score was 0.60 for reading-test-1, and our lowest was 0.0 for reading-test-
3. We further enhanced the system by introducing point-wise mutual information (PMI) scoring for answer
ranking, which produced an average c@1 of 0.4025, with a highest score of 0.77 for reading test-1 and a
lowest score of 0.2 for reading test-2.

Keywords: biomedical question answering, configuration space exploration, unstructured
information management architecture

1. Introduction

When selecting algorithms or tools for text analysis, it can be difficult to determine which tools will be
suitable for a particular task. Performance varies depending on the application and domain in which the
tools are applied. Software frameworks, which support the integration of text analysis algorithms into end-
to-end solutions, make it possible to build complex, high-performance systems for information extraction,
information retrieval, and question answering; IBM’s Watson is a prominent example of such a system. As
the complexity of information systems become ever greater, it is much more challenging to effectively and
efficiently determine which toolkits, algorithms, knowledge bases (KBs) or other resources should be
integrated into the system in order to achieve an acceptable or optimal level of performance on a given task.

This paper presents a generic framework for QA systems, which is suitable for all tasks included in
QA4MRE. It utilizes the Configuration Space Exploration (CSE) framework, an extension to the UIMA
framework1 , which provides a general distributed solution for building and exploring configuration spaces

1 http://uima.apache.org

for information systems. Complex QA systems are usually built as a solution to a specific task in a
particular domain, and mostly lack a clear separation of framework, component configuration, and
component logic. This in turn makes it difficult to adapt and tune existing component for new tasks without
editing the original component source code. Such changes are expensive, and often preclude an exhaustive
and/or efficient exploration of the large set of possible configurations. To fully leverage existing
components, it must be possible to automatically explore the space of possible system configurations to
determine the optimal combination of tools and parameter settings for a new task. We refer to this problem
as configuration space exploration [16].

As a pilot task, we have implemented a UIMA (Unstructured Information Management Architecture)
pipeline using various components required for the Alzheimer’s QA task. The details of pipeline
architecture are discussed in Section 3. Then, we talk about our experimental design for run submission in
Section 4. In Section 5, we provide a detailed analysis and the results we obtained for each run. We
conclude and describe directions for future work in Section 6.

2. Previous Work

The field of automatic question answering has seen many advances in the past decade. Previous research
investigated solutions to the problem of comparative evaluation, and addressed two different aspects:
workflow management and benchmark evaluation. Most of the systems available in the scientific
community for evaluation focus on one or the other of these two aspects, and are not directly suitable for
evaluating text information systems. Moreover, existing evaluation approaches don’t provide a formal
performance evaluation of each individual component in a system, which is crucial in designing the best-
performing overall system. The success of IBM Watson in the Jeopardy! Challenge2 provided great hope
that complex question answering systems could achieve human-level performance when appropriate effort
is invested in system tuning and optimization. The Apache UIMA framework used in Watson is highly
suited to the creation of solutions which integrate multiple components for information retrieval, natural
language processing, machine learning etc. However, UIMA by itself does not include a facility for
optimization via automatic, comparative evaluation of multiple system configurations.

The QA research community has conducted many conferences and competitions to create standard
benchmarks and metrics to evaluate participating QA systems, and organizers have tried to consolidate and
analyze the most important features of high-performing systems. For example, for the TREC Genomics
task, Hersh et al. employed multivariate regression analysis to discover factors associated with variation in
question answering performance [11, 12]. Reproducible experiments may also be used to try different
combinations of modules (e.g. across participating organizations) to find the best-performing combination.
More recently, the NTCIR Advanced Cross-Lingual Information Access (ACLIA) task employed a
standardized question answering data flow for two successive subtasks: IR4QA and CCLQA. The results of
the IR4QA task were collected from each system and shared for processing by all participants in the
CCLQA task. Mitamura et al. showed that this approach was able to find system configurations that
combined different IR4QA and CCLQA systems to attain a better result than the originally reported
systems [8, 10], which provides further motivation for a principled approach to configuration space
exploration. However, the ACLIA evaluation used task-specific XML schemas for data exchange between
subsystems, and did not provide a general framework for describing and evaluating configuration spaces
that included variation of individual components and their parameter settings.

In the work described in this paper, we have UIMA for workflow management, coupled with a framework
for benchmark evaluation through configuration space exploration (CSE) developed at Carnegie Mellon
University [16].

2 http://www.jeopardy.com/

3. System Architecture

We have built a UIMA-based annotation pipeline for the QA4MRE tasks. UIMA annotators are the
analysis components that can be plugged into the UIMA framework to analyze unstructured information.
The design of the architecture is shown in Figure 1.

Figure 1. UIMA-based System Architecture for QA4MRE

The detail of each component is given in the following subsections.

3.1 Data Readers
Readers are basically the modules responsible for reading and parsing raw or annotated data stored
in the file system. There are 4 types of data readers in our system. In QA4MRE 2013, we were given a
huge background document collection for the Main task and the Alzheimer’s task. BgCorpusReader
reads the background corpus data in plain text format. In general, there can be multiple
implementations for BgCorpusReader depending on the source and format. TestDocReader reads and
parses the contents of the test document that contains document text and corresponding question-
answer set. After passing through UIMA-based annotators, each document is serialized in the form of
an XMI (XML Metadata Interchange) file. XMIBgDocReader and XMITestDocReader read XMI
documents and de-serialize them into appropriate data structures for further processing (i.e. the
UIMA CAS object; see below).

3.2 Annotators
In the UIMA framework, an Analysis Engine is a program that analyzes documents and infers

BgCorpusReader TestDocReader XMITestDocReader

BgDoc TestDoc
(Contents)

TestDoc
(Annotated)

[Annotators]
TextSegmenter

SentenceExtractor
NoiseFilter

NamedEntityRecognizer
PhraseExtractor

SynonymExpander
DependencyExtractor

XMICasConsumer

File System XMIBgDocReader
XMITestDocReader

XMIBgDocIndexer
XMITestDocIndexer

Solr/Lucene Index

CandidateSentenceSearching
Strategist

AnswerChoiceScoring
Strategist

AnswerChoiceSelection
Strategist

ResultCasConsumer

File System

information from them. Analysis Engines are constructed from building blocks called Annotators. An
annotator is a component that contains analysis logic3. The annotated data is propagated from one
annotator to next annotator in the form of a CAS (Common Analysis Structure). Depending on the
domain and application there can be a long chain of annotators. Here, we have described the set of
annotators we used in Alzheimer’s task.

Text Segmenter: This component is important when the raw data is inherently noisy, e.g. because it
was converted from PDF using OCR. In this case, it will be useful to segment the text and remove the
unnecessary segments such as “References”, “Figure” and “Table” headers that are unlikely to contain
relevant answer text.

Sentence Extractor: This module extracts sentences from the text. We used the StanfordCoreNLP
toolkit4 for extracting sentences.

Noise Filter: There are many low-quality sentences in the data, which do not contribute to finding
the correct answer. We use heuristic methods to calculate a score for each sentence and apply a
threshold to discard noisy from further consideration. For example, important sentences cannot be
less than ‘C’ characters long, cannot contain less than ‘W’ words, cannot contain too many digits or
too many author names (likely to be a reference) etc. Removing noisy sentences improves the
candidate sentence generation process during subsequent analysis.

Named Entity Recognizer: This module extracts the named entities such as person, organization,
location, protein, gene, drug etc. In many questions, specific named entities are the direct answer.
We have used the StanfordCoreNLP toolkit and ABNER5 (A Biomedical Named Entity Recognizer) for
named-entity recognition in our pipeline.

Noun-Phrase Extractor: The named entity recognizer module often fails to capture important noun
phrases which can be potential answer candidates. We also use a phrase extractor that utilizes Part-
of-Speech tagging provided by StanfordCoreNLP toolkit to extract text matching appropriate patterns
(e.g. NN*-NN* and JJ*-NN*) as key phrases.

Synonym Expander: This module uses external resources to further annotate the extracted named
entities and noun phrases. We have used the DISCO6 (DIStributionally related words using CO-
occurrences) semantic similarity tool to look up synonyms. This tool has been developed based on a
statistical analysis of a very large text collection (e.g. including Wikipedia and PubMed).

Dependency Extractor: In factoid QA, the grammatical structure of the question text and the
answer-bearing passage are more likely to match (e.g. by matching dependency parse relations).
Hence dependency extraction can be a useful step in ranking candidate sentences. We used the
StanfordCoreNLP toolkit for extracting dependency tuples (e.g., <Relation, Governor, Dependent>).

The annotation process described above is used to process both the background corpus and the test
document containing questions and answer choices.

3.3 Document Indexer
After annotation of documents, it is useful to index the annotated documents to provide efficient
document search during run-time question answering. Many open-source tools are available for
indexing and retrieval (e.g. Solr/Lucene, Indri etc.). We used Solr7, as it comes with a wide variety of

3 http://uima.apache.org/downloads/releaseDocs/2.1.0-
incubating/docs/html/tutorials_and_users_guides/tutorials_and_users_guides.html
4 http://nlp.stanford.edu/software/corenlp.shtml
5 http://pages.cs.wisc.edu/~bsettles/abner/
6 http://www.linguatools.de/disco/disco_en.html
7 http://lucene.apache.org/solr/

configuration options for its components and provides effective indexing a search over annotated
documents.

3.4 Candidate Sentence Search Strategy
As mentioned earlier, test documents are annotated, and the corresponding UIMA CAS is serialized in
the form of an XMI file. The actual process of finding the best answer for the given question starts by
reading the annotated XMI document. Candidate sentence extraction involves multiple steps. The
system first considers the annotated question and forms an appropriate search query. Search is
performed on the Solr index and the most relevant sentences for a given question are listed in
descending order of their relevance score. From this list, an appropriate strategy can be used to pick
the top K candidate sentences that are most likely to contain a correct answer. We have
experimented with the following approaches:

i) Search is performed on question keywords and at max K candidate sentences are
selected dynamically by considering sentences having a relevance score within P% of
the maximum relevance score.

ii) Search is performed on synonyms of question keywords and at max K candidate
sentences are selected dynamically by considering sentences having a relevance score
within P% of the maximum relevance score.

iii) Search is performed with question keywords and/or their synonyms as usual. Then the
dependency matching score between the question and the candidate sentence is
calculated to re-rank the K candidate sentences.

3.5 Answer Choice Scoring Strategy
Input to this module is the K candidate sentences and the output is a score for each answer choice
with respect to each candidate sentence. Various strategies can be used to assign a score to an
answer choice. We have experimented with the following approaches:

i) Number of noun-phrases/named-entities matched in candidate sentence and answer
choice;

ii) Number of synonyms of noun-phrases/named-entities matched in candidate sentence
and answer choice;

iii) Point-wise Mutual Information (PMI) between noun-phrases/named-entities in
candidate sentence and answer choice with respect to the background corpus.

3.6 Answer Choice Selection Strategy
Input to this module is the score of each answer choice with respect to each candidate sentence.
Multiple strategies can also be used here; we have experimented with the following approaches:

i) Aggregate the scores of each answer choice across the candidate sentences and pick the
highest scoring answer choice;

ii) Take voting of winner answer choice in each candidate sentence and use majority voting
scheme to pick the answer choice.

The output of this module is the final answer for the question.

3.7 CAS Consumers
CAS consumers persist the output of an analysis process in different file formats. We are using two
types of CAS consumer: XMICasConsumer and ResultCasConsumer. XMICasConsumer simply writes
out the annotated CAS in XMI format, where the ResultCasConsumer writes final results for each
reading-test document in format required for evaluation. In our case, the ResultCasConsumer
generates its XML output according to the QA4MRE guidelines for a run submission.

4. Experimental Design

We submitted 3 official runs for Biomedical about Alzheimer’s Task. In order to choose these three
best runs, we conducted a large-scale experiment using our Configuration Space Exploration (CSE)
framework. As explained in Section 3, for finding the correct answer choice, an annotated document
passes through three main stages: Candidate Sentence Searching, Answer Choice Scoring and Answer
Selection. Each of these stages has different possible strategies, and each strategy involves a set of
configuration parameters values, e.g. Max K candidate sentences, %P threshold for dynamic K
selection, how many synonyms to consider, etc. Given this possible variation, the total number of
configurations turned out to be 1020 possible systems/runs. The CSE framework provides an easy
way to configure and execute a comparative evaluation using appropriate YAML8 descriptors and a
gold-standard dataset. The YAML descriptor that we used is shown in Figure 2.

configuration:
 name: qa4mre-13-test-alzheimer
 author: oaqa-cmu

persistence-provider:
 inherit: persistence.local-persistence-provider

collection-reader:
 inherit: collectionreaders.CollectionReaderDescriptor
 dataset: QA4MRE-13-test-alzheimer
 INPUT_DIR: data/13-test-alzheimer/

pipeline:
 # question and document annotations: data -> XMIs
 - inherit: ecd.phase
 name: TextSegmenter
 options: |
 - inherit: annotators.TextSegmenter

 - inherit: ecd.phase
 name: StanfordSentenceAnnotator
 options: |
 - inherit: annotators.StanfordSentenceAnnotator

 - inherit: ecd.phase
 name: NoiseFilter
 options: |
 - inherit: annotators.NoiseFilter

 - inherit: ecd.phase
 name: StanfordNLPAnnotator
 options: |
 - pipeline:
 - inherit: annotators.StanfordNLPAnnotator
 - inherit: annotators.StanfordQuestionNLPAnnotator

 - inherit: ecd.phase
 name: PhraseAnnotator
 options: |
 - pipeline:
 - inherit: annotators.PhraseAnnotator
 - inherit: annotators.QuestionPhraseAnnotator

 - inherit: ecd.phase
 name: NEAnnotator
 options: |
 - pipeline:
 - inherit: annotators.NEAnnotator
 - inherit: annotators.QuestionNEAnnotator

 - inherit: ecd.phase
 name: SynonymAnnotator
 options: |
 - pipeline:
 - inherit: annotators.SynonymAnnotator
 - inherit: annotators.QASynonymAnnotator

 - inherit: ecd.phase
 name: WikiSynonymAnnotator
 options: |
 - pipeline:
 - inherit: annotators.WikiSynonymAnnotator
 - inherit: annotators.WikiQASynonymAnnotator

 - inherit: consumers.CasConsumerDescriptor
 OutputDirectory: results/13-test-main/final-xmis

 # indexing
 - inherit: ecd.phase
 name: SolrIndexer
 options: |
 - inherit: annotators.SolrIndexer

 # answer ranking and merging: XMIs -> results

8 http://www.yaml.org

 - inherit: ecd.phase
 name: QuestionCandSentSimilarityMatcher
 options: |
 - inherit: annotators.QuestionCandSentSimilarityMatcher
 - inherit: annotators.QuestionCandSentDependencyMatcher
 - pipeline:
 - inherit: annotators.QuestionCandSentSimilarityMatcher
 - inherit: annotators.QuestionCandSentDependencyMatcher
 - pipeline:
 - inherit: annotators.QuestionCandSentSimilarityMatcher
 - inherit: annotators.QuestionCandSentSynonymMatcher
 - pipeline:
 - inherit: annotators.QuestionCandSentSimilarityMatcher
 - inherit: annotators.QuestionCandSentSynonymMatcher
 - inherit: annotators.QuestionCandSentDependencyMatcher

 - inherit: ecd.phase
 name: AnswerChoiceCandAnsSimilarityScorer
 options: |
 - inherit: annotators.AnswerChoiceCandAnsSimilarityScorer
 - inherit: annotators.AnswerChoiceCandAnsPMIScorer
 - pipeline:
 - inherit: annotators.AnswerChoiceCandAnsSimilarityScorer
 - inherit: annotators.AnswerChoiceCandAnsPMIScorer
 - pipeline:
 - inherit: annotators.AnswerChoiceCandAnsSimilarityScorer
 - inherit: annotators.AnswerChoiceCandAnsSynonymScorer
 - pipeline:
 - inherit: annotators.AnswerChoiceCandAnsSimilarityScorer
 - inherit: annotators.AnswerChoiceCandAnsSynonymScorer
 - inherit: annotators.AnswerChoiceCandAnsPMIScorer

 - inherit: ecd.phase
 name: AnswerChoiceCandAnsSimilarityScorer
 options: |
 - inherit: annotators.AnswerSelectionByKCandVoting
 - inherit: annotators.AnswerSelectionByKCandAggregation

 # output format
 - inherit: consumers.ResultCasConsumer
 OUTPUT_DIR: results/13-test-alzheimer/final-outputs

Figure 2. YAML descriptor used in CSE framework for Biomedical Alzheimer task

We used the CLEF 2012 test set and CLEF 2013 sample set (whose Gold Standards were already
given) as reference data to estimate the best configuration for the CLEF 2013 test data. We selected
the top 3 runs for the submission. Details of these three runs are given in the following subsections.

Run1: In this run, we used a very simple strategy. We process the annotated question and form a
Lucene query using underlying noun phrases and named entities. E.g. for the question “What protein
activity can be inhibited by LiCl?”, the following Lucene query is produced:

text: (what protein activity can be inhibited by Licl) AND
 nounphrases: “protein activity”^2 AND
 ners: LiCl^2

There can be many different schemes to form a Lucene query with more sophisticated boosting of
various search fields; a well-formulated query can boost the ranking of the most relevant sentences
in the search result. We applied a dynamic threshold on the relevance score, and selected all relevant
sentences that came within 60% of the maximum relevance score in a given set of search results as
the K candidate sentences (potential answers).

Then, we extracted noun phrases and named entities from each candidate sentence and matched
them with the answer choices. We calculated the matching score for each answer choice across all
candidate sentences. For selection of the final answer, we aggregated the matching scores obtained
for each candidate sentence and the highest scoring answer choice was picked.

Run2: In this run, we utilize synonyms of noun phrases and named entities in addition to their
surface forms to construct the Lucene query. Again K candidate sentences are selected by applying
the same dynamic threshold strategy used in Run1.

We used the same scheme for matching each answer choice with every candidate sentence’s noun
phrase and named entities. However, in Run 2 we also added a semantic similarity score between
synonyms of the answer choice and candidate sentence terms. For selection of the final answer, we
used a majority-voting scheme where the winning answer choice is determined for each candidate
sentence, and the final answer is chosen by summing votes across the candidate sentences.

Run3: This run is almost exactly similar to run1. The only difference is in the final answer selection
strategy. We used the majority-voting scheme across all candidate sentences.

As we mentioned earlier, our main objective was to automatically find the best combination from the
available components, although these available components may not be intrinsically the best
implementations of the desired functionality. After release of the Gold Standards for the QA4MRE-
2013 Alzheimer’s task, we conducted an error analysis and tried to incorporate more sophisticated
strategies to improve system performance. We added a PMI (Point-wise Mutual Information)
module for ranking answer choices, and noted a drastic improvement. We added 3 more runs (see
below) that show how the addition of a better module in combination with existing components can
result in significant performance gain using configuration space exploration.

Run4: In this run, we processed the annotated question and formed a Lucene query using underlying
noun phrases and named entities. We then searched for K relevant candidate sentences with the
same strategy described earlier. We extracted noun phrases and named entities from each candidate
sentence. We calculate the Point-wise Mutual Information (PMI) of noun-phrase/named-entity and a
given answer choice using following formula:

𝑃𝑀𝐼(𝑒𝑛𝑡𝑖𝑡𝑦, 𝑎𝑛𝑠𝑤𝑒𝑟𝑐ℎ𝑜𝑖𝑐𝑒) = 𝑙𝑜𝑔
ℎ𝑖𝑡𝑠(𝑒𝑛𝑡𝑖𝑡𝑦 𝐴𝑁𝐷 𝑎𝑛𝑠𝑤𝑒𝑟𝑐ℎ𝑜𝑖𝑐𝑒)
ℎ𝑖𝑡𝑠(𝑒𝑛𝑡𝑖𝑡𝑦) ⋅ ℎ𝑖𝑡𝑠(𝑎𝑛𝑠𝑤𝑒𝑟𝑐ℎ𝑜𝑖𝑐𝑒)

The cumulative PMI score for each answer choice is calculated with respect to every candidate
sentence. The idea behind using the PMI strategy is to capture the intuition that terms in the correct
answer choice will be co-occurring significantly with the noun-phrases/named-entities of the
candidate sentences. Scores for each answer choice are aggregated across all candidate sentences
and the highest scoring answer choice is selected as the final answer.

Run5: This run uses a combination of the matching score between noun phrases/named entities of
K candidate sentences and answer choices, as well as the PMI score calculated according to Run4.
Answer selection was done using the aggregated score.

Run6: We wanted to check the influence of dependency matching between question and the
relevant sentences retrieved; answer choice scoring was done using simple noun-phrase/name-
entities matching, and the final answer choice was selected via the highest aggregate score.

5. Results & Analysis

The results we got for our submitted runs are shown in Figure 3 as pie charts. We did not try to
guess an answer for any question, so the ‘Unanswered, Right’ and ‘Unanswered, Wrong’ categories
are not applicable in our case. There were a total of 40 questions for 4 reading sets; each set consists
of 10 questions.

 Run1 Run2

Run3

Figure 3: Pie charts of submitted runs showing Answered Right, Answered Wrong and Unanswered

The evaluation measure used in the QA4MRE tasks was ‘c@1’. The formula used for calculating c@1
is given below:

𝑐@1 =
𝑛𝑟 + 𝑛𝑢 ∗ �𝑛𝑟𝑛 �

𝑛

where:
 nr: is the number of correctly answered questions
 nu: is the number of unanswered questions
 n: is the total number of questions

For Run1, we answered 32 questions out of which 9 were correct. This gives c@1 value 0.27.
Although the value is higher than the baseline value (i.e. 0.20 if one randomly guesses from 5 answer
choices), it is not significantly higher. We also found that for reading set 3, none of the answers were
correct. However, for reading set-1, Run1 could answer 5 out of 10 questions.

During our error analysis, we found that some of the answer choices in reading set-3 seemed to be
designed to confuse an automatic system. E.g., for the question “What group of receptors can regulate
the expression of the Seladin-1 gene?”, the following candidate sentences were generated:

 1) On the other hand, as shown in Figure 3C, administration of TO significantly increased Seladin-1 gene expression in the forebrain

of TRKI mice compared with that of Sham group about 1.2-fold.

2) Estrogen receptor (ER) is another nuclear receptor closely related to Seladin-1 gene expression.

3) However, the molecular mechanism by which LXRs regulate Seladin-1 gene expression has been yet to be elucidated.

4) Interestingly, an agonist of liver X receptor (LXR), TO901317 (TO) administration in vivo increased Seladin-1 gene and protein
expression in the mouse forebrain only in a hypothyroid state and in the presence of mutant TR-β, suggesting that LXR-α would
compensate for TR-β function to maintain Seladin-1 gene expression in hypothyroidism and resistance to TH.

5) A) TO failed to induce the Seladin-1 gene expression in LXR-knockdown HTB185 cells.

6) The up-regulation of Seladin-1 gene expression by TO requires LXRs in HTB185 cells.

7) These data indicate that TO increases Seladin-1 gene expression in HTB185 cells through intrinsic LXRs.

8) Seladin-1 gene expression is down-regulated in the vulnerable region in the brain of AD patients [21].

9) In the current study, we demonstrate that TH increased Seladin-1 gene and protein expression in the mouse forebrain.

10) While Seladin-1 gene expression is induced in a thyrotoxic state, under hypothyroid treatment, the gene and protein expression
levels were not significantly reduced compared to those in a euthyroid state (Figure 1).

As “expression” was one of the multiple choices and appeared more than “liver X receptor” (which is the
correct choice), ‘expression’ got a higher aggregated matching score compared to “liver X receptor”. In
such a case, a better answer ranking module can play an important role. Adding synonyms into the search
query for finding K candidates and using them for further matching did not actually improve the c@1
score. In Run3, the majority-voting scheme performed better than Run2 but could not surpass the c@1 in
Run1 with the aggregate scoring scheme.

As discussed earlier, it was surprising that none of these three runs gave any right answers for reading set-
3. To overcome the obvious underlying problem, we tried to use background corpus information. E.g. we
searched in background corpus to verify whether ‘liver X receptor’ or ‘expression’ is more likely to appear
in the context of the question being asked. We found the following PMI scores for each answer choice:

 expression 3.58259073012903
 AD 3.588834358208376
 TH 5.057297430222549
 Liver X receptors 10.693749999999998
 β-amyloid 0.0

Correct Choice: Liver X receptors
 Best Choice: Liver X receptors

PMI score proved to be significantly useful in ranking answer choices across all reading sets. We got the
highest c@1 i.e. 0.77 for reading set-1. The overall c@1 scores for all submitted and un-submitted runs are
given in Table 2. Results of individual reading sets is given in Table 3.

Table 2: Overall c@1 measure

Runs c@1 Score
Run1 0.27
Run2 0.24
Run3 0.25
Run4 0.40
Run5 0.32
Run6 0.27

Table 3: c@1 score for individual reading tests

Runs r_id 1 r_id 2 r_id 3 r_id 4 Median Mean S. D.
Run1 0.60 0.36 0.0 0.13 0.25 0.27 0.26
Run2 0.55 0.30 0.0 0.11 0.21 0.24 0.24
Run3 0.60 0.33 0.0 0.12 0.22 0.26 0.26
Run4 0.77 0.2 0.4 0.22 0.31 0.40 0.26
Run5 0.66 0.30 0.20 0.11 0.25 0.32 0.24
Run6 0.44 0.20 0.20 0.22 0.21 0.27 0.12

6. Conclusion & Future Work

In this paper, we investigated the usefulness of configuration space exploration (CSE) in discovering

effective combinations of components for QA4MRE 2013 - Biomedical about Alzheimer’s task. The CSE
framework was used to conduct more than 1000 experiments involving different configurations of
components and their corresponding parameters. The framework automatically and efficiently evaluated
different system configurations, and identified a configuration of the given components that achieved
competitive results with respect to any prior published result for similar data sets. We also observed that
PMI scoring for ranking answer choices could provide a substantial enhancement in final answer selection.

As a next step, we are interested in combining various tools used in all tasks (Main, Alzheimer’s and
Entrance Exam) that turned out to be the best in QA4MRE 2013. It would be exciting to see which
combinations outperform existing combinations that were reported in the original evaluation.

Acknowledgments
We thank all members of the OAQA project team, and especially Collin McCormack, for their valuable
contributions to this work. We also thank the students in the Question Answering Lab course who
experimented with and provided a comparative analysis of the different tools we used in this work.

References

[1] Attardi, G., Atzori, L. and Simi, M. Index Expansion for Machine Reading and Question Answering.
Working notes of CLEF 2012: Evaluation Labs and Workshop for QA4MRE’12 Tasks.

[2] Bhattacharya, S. and Toldo, L. Question Answering for Alzheimer Disease Using Information
Retrieval. Working notes of CLEF 2012: Evaluation Labs and Workshop for QA4MRE’12 Tasks.

[3] Martinez, D., MacKinlay, A., Molla-Aliod, D., Cavedon, L. and Verspoor, K. Simple Similarity-based
Question Answering Strategies for Biomedical Text. Working notes of CLEF 2012: Evaluation Labs and
Workshop for QA4MRE’12 Tasks.

[4] Tsai, B.H., Liu, Y.Z. and Hou, W.J. Biomedical Text Mining about Alzheimer’s Diseases for Machine
Reading Evaluation. Working notes of CLEF 2012: Evaluation Labs and Workshop for QA4MRE’12
Tasks.

[5] Verbeke, M. and Davis, J. A Text Mining Approach as Baseline for QA4MRE’12. Working notes of
CLEF 2012: Evaluation Labs and Workshop for QA4MRE’12 Tasks.

[6] Dupont, G. M., de Chalendar, G., Khelif, K., Voitsekhovitch,  D., Canet, G. and Brunessaux, S.
Evaluation with the virtuoso platform: an open source platform for information extraction and
retrieval evaluation. In Proceedings of DESIRE’11, pages 13–18, 2011.

[7] Eckart de Castilho, R. and Gurevych, I. A lightweight framework for reproducible parameter
sweeping in information retrieval. In Proceedings of DESIRE’11, pages 7–10, 2011.

[8] Mitamura, T., Shima, H., Sakai, T., Kando, N., Mori, T., Takeda, K., Lin, C.Y., Song, R., Lin, C.J. and Lee,
C.-W. Overview of the ntcir-8 aclia tasks: Advanced cross-lingual information access. In Proceedings
of NTCIR-8, pages 15–24, 2010.

[9] Howe, D., Costanzo, M., Fey, P., Gojobori, T., Hannick, L., Hide,  W., Hill, D. P., Kania, R., Schaeffer,
M., St Pierre, S., Twigger, S., White, O. and Rhee, S.Y.Y. Big data: The future of biocuration. Nature,
455(7209):47–50, Sept. 2008.

[10] Mitamura, T., Nyberg, E., Shima, H., Kato, T., Mori, T., Lin, C.-Y., Song, R., Lin, C.-J., Sakai, T., Ji, D.
and Kando, N. Overview of the ntcir-7 aclia tasks: Advanced cross-lingual information access. In

Proceedings of NTCIR-7, pages 11–25, 2008.

[11] Rekapalli, H.K., Cohen, A. M. and Hersh, W.R. A comparative analysis of retrieval features used in
the trec 2006 genomics track passage retrieval task. In Proceedings of AMIA’07, pages 620–624, 2007.

[12] Hersh, W. R., Cohen, A.M., Roberts, P. M. and Rekapalli, H.K. Trec 2006 genomics track overview.
In Proceedings of TREC’06, 2006.

[13] Meij, E., Jansen, M. and de Rijke, M. Expandingqueriesusing multiple resources. In Proceedings of
TREC’06, 2006.

[14] Si, L., Lu, J. and Callan, J. Combining multiple resources, evidences and criteria for genomic
information retrieval. In Proceedings of TREC’06, 2006.

[15] Turney, P. D. Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. In Proceedings of the
Twelfth European Conference on Machine Learning (ECML-2001), pp. 491-502.

[16] Yang, Z., et al. (2013). Building Optimal Information Systems Automatically: Configuration Space
Exploration for Biomedical Information Systems. In Proceedings of the ACM Conference on Knowledge
and Information Management (CIKM) 2013 (to appear).

