
Hashing and Merging Heuristics for Text Reuse
Detection

Notebook for PAN at CLEF-2014

Faisal Alvi1, Mark Stevenson2, Paul Clough2

1King Fahd University of Petroleum & Minerals, Saudi Arabia,
2University of Sheffield, United Kingdom.

alvif@kfupm.edu.sa, mark.stevenson@sheffield.ac.uk,
p.d.clough@sheffield.ac.uk

Abstract This paper describes a joint software entry by King Fahd University of
Petroleum & Minerals and the University of Sheffield for the text-alignment task
at PAN-2014. We employ the three steps of seeding, extension and filtering for
text alignment. For seeding we use character n-grams with a variant of the Rabin-
Karp Algorithm for multiple pattern search. We then use an elaborate merging
mechanism with several cases to combine the individually found seeds. A short
filtering step is then used to remove extraneous passages. This approach scored
plagdet scores of 0.65954 and 0.73416 on test corpora 2 and 3 during the final
test run.

1 Introduction

Text Reuse Detection has been a part of plagiarism detection at the PAN Competition
since inception as text alignment [5,6] in 2012-14 and as extrinsic plagiarism detection
earlier. For the year 2013, the text alignment task consisted of finding passages of reused
text in five different types of obfuscated document pairs: no plagiarism, no obfuscation,
random obfuscation, translation obfuscation and summary obfuscation. Since the train-
ing corpus for PAN-2014 text alignment is the same as in 2013, it could be inferred that
similar obfuscation types could be in use in 2014.

Several approaches have been employed by participants for text alignment includ-
ing character n-grams, word n-grams and their variants, along with various similarity
metrics. Three distinct stages in participants’ approaches have been identified in PAN
Overview paper for 2013 [6]: (1) seeding, (2) extension, and (3) filtering.

For our current year’s (2014) entry, our submitted software also consists of these
three stages of seeding, extension/merging and filtering. In the seeding stage we use
character n-grams after post-processing and apply a variant of the Rabin-Karp Algo-
rithm [2] for multiple pattern search [3,4] to find matching seeds. We then classify
pairs of matching seeds within source and suspicious documents into four classes: con-
tainment, overlap, near-disjoint and far-disjoint. We then use case-by-case merging to
combine pairs of various classes. Finally, we apply filtering to remove short passages
in order to exclude false positives. Our approach has shown mid-range results for the
2013 and 2014 training and test corpora.

939

mailto:alvif@kfupm.edu.sa
mailto:mark.stevenson@sheffield.ac.uk
mailto:p.d.clough@sheffield.ac.uk

2 The Approach

As outlined in the first section our approach consists of 3 phases: seeding, extension and
filtering along with some preprocessing. An overview of the resulting software appears
in the block diagram as shown in Figure 1. The language of the software was java.

PREPROCESSING SEEDING

EXTENSION / MERGING

FILTERING and OUTPUT

Pairs file

Sort according

to source files

Sorted Pairs file as a list

S
o

u
rc

e
F

il
e

1

S
o

u
rc

e
F

il
e

2

S
o

u
rc

e
F

il
e

n

Whitespace Removal

Apply hashing to generate a hashmap

of char n-grams with (key, value)

pairs as (char n-gram, position pair)

M
u

lt
ih

as
h

m
ap

 1

M
u

lt
ih

as
h

m
ap

 2

M
u

lt
ih

as
h

m
ap

 n

List(s) of position pairs

Apply rule-based merging

based on pre-defined classes

for each position pair list

Remove short matches

Write output to XML file

.....

Find all char n-grams in each suspicious

file from the multihashmap to generate

exact matches of position pairs

...........

...

Figure 1. Block Diagram of the Submitted Software

2.1 Preprocessing

Initially the ‘pairs’ file is sorted according to the source file by file number. Since one
source document may be linked to several suspicious documents, a single hashing of
source document is repeatedly used for finding matches in corresponding suspicious
documents. Furthermore, during hashing, all punctuation, whitespace and non-printable
characters are removed. This is done as two perfectly reused strings (one in the source
document and other in the suspicious one) could go undetected because of an unequal
amount of spaces, punctuation and/or other characters.

2.2 Seeding

Seeding is defined as “Given a suspicious document and a source document, matches
(so-called “seeds”) between the two documents are identified using some seed heuris-
tic.... By coming up with as many reasonable seeds as possible, the subsequent step of
extending them into aligned passages becomes a lot easier”. [6]

For seeding, or identifying exact matches of character n-grams between two docu-
ments, we use Rabin-Karp Algorithm [2] for multiple pattern search [3,4]. This is done
by first placing all character n-grams (for a particular value of n) into a multiple valued
hashtable, and then finding matches for character n-grams of the suspicious document

940

from the hashtable. Due to hashing, the search time of this is reduced from O(source
size × susp size) to O(source size + susp size) - a substantial saving over naïve string
search. However, we employ several optimizations and simplifications to the Rabin-
Karp Algorithm in java as follows:

1. We use java’s built-in java.util.hashmap collection, which in-turn utilises
java’s built-in hashCode() method as a hash function, that ensures a unique hash
value for each unique character n-gram.

2. Since several strings are repeated in a document at different locations, use of a
single-valued hashtable will inevitably lead to collisions - hence we use a multi-
ple valued hashtable called a multihashmap to store these, as shown in Figure 2. A
multihashmap can be created by some modifications to the original hashmap pro-
vided in java. For example, the character 20-gram "symptomsofarrhythmia"
appears several times in a source document and it is recorded each time with new
locations as a value.

3. For each n-gram its location is stored as a 3-tuple (start location, end location, size)
in the multihashmap. Some book-keeping is done to keep track of whitespace and
other ignored characters in the location(s), while the size parameter keeps track of
actual size.

Once the multihashmap for a particular source document is created, we make a run of
each suspicious file to find the matching character n-grams. The output is a list of pairs
of 3-tuples: one from the source file and the other from the suspicious file.

What are the symptoms of

arrhythmias? The effects on the

body are often the same,

however, whether the heartbeat

is too fast, too slow, or too

irregular. Some symptoms of

arrhythmias include, but are

not limited to: weakness

The symptoms of arrhythmias may

resemble other conditions.

symptomsof

arrhythmia

(x1, y1, size1),

(x2, y2, size2),

(x3, y3, size3).

KEY VALUE

theeffects

onthebodya

char n-gram (start, end, size)

.......

source-document01999 (2013 Test Corpus 2) Mutiple Valued Hash Map

Figure 2. Collision Management in Multiple Valued Hashmap

For example after the algorithm is run on a source file with the corresponding sus-
picious file, the output would be a list of the form:

List of 3-tuple pairs = {(x1, y1, s1) → (a1, b1, s
′
1
), (x2, y2, s2) → (a2, b2, s

′
2
), . . .}

In the list above, the entry (x1, y1, s1) → (a1, b1, s
′
1
) means that the text in the

source file from position x1 to y1 of size s1 is aligned with the text in the suspicious file
from location a1 to b1 of size s′

1
. It may be noted that y1 > x1 and b1 > a1, furthermore

s1 ≤ y1 − x1, s′
1
≤ b1 − a1.

941

2.3 Extension

Once the list of matching pairs is generated between a pair of source and suspicious
documents, the next step is the extension or merging of these matches into contiguous,
aligned passages. This is done by combining seeds or matches that satisfy certain crite-
ria both in the source and suspicious documents into larger matches. We identify four
distinct categories of matches as follows based on their vicinity towards each other.

Consider two matching pairs (x1, y1, s1) → (a1, b1, s
′
1
), (x2, y2, s2) → (a2, b2, s

′
2
)

where (x1, y1, s1) indicates text from position x1 to position y1 of size s1 in the source
document, and (a1, b1, s

′
1
) indicates the corresponding text from position a1 to b1 of

size s′
1

in the suspicious document. In order to merge these pairs in each of the source
and suspicious documents, we identify four categories of matches as follows:

1. Containment: Containment is the relationship between two matches within the
same document when the text-positions of one match are fully contained within
the text-positions of the other. More formally, the match (x2, y2, s2) is contained
within (x1, y1, s1) if x2 ≥ x1, y2 ≤ y1 and the size s1 ≥ s2.

2. Overlap: Two matches (x1, y1, s1) and (x2, y2, s2) overlap if some, but not all text-
positions of the first one are contained within the text-positions of second match.
More formally, the match (x1, y1, s1) overlaps (x2, y2, s2) if y2 ≥ y1 ≥ x2 ≥ x1

i.e., x2 lies between x1 and y1, y1 lies between x2 and y2.

3. Near-Disjoint: Two matches are near-disjoint, if they are close enough to be com-
bined into a single chunk of text, i.e. separated by a small number of characters, but
have no overlapping text-positions. More formally if (x1, y1, s1) and (x2, y2, s2)
are two matches such that 0 ≤ x2 − y1 ≤ gap, where the parameter gap depends
on the particular features of the training corpus, then the matches may be catego-
rized as near-disjoint.

4. Far-Disjoint: Two matches (x1, y1, s1) and (x2, y2, s2) are far-disjoint if they are
separated by such a large number of characters that they cannot be adequately
merged into a single chunk of text. In this case x2 − y1 > gap.

x1 y1

x2 y2

Containment:
x2 >= x1, y2 <= y1

x1 y1

x2 y2

Overlap:
y2 >= y1 >= x2 >= x1

x1 y1

x2 y2

Near-disjoint:
x2 - y1 <= gap

gap
x1 y1

x2 y2

Far-disjoint:
x2 - y1 > gap

gap

Figure 3. Classes of Matching pairs

942

Strategy for Merging The overall strategy for merging is based on the idea that two
matching pairs that have either one of the containment, overlap or near-disjoint rela-
tionship can be merged towards forming a larger 3-tuple. 3-tuples that are far-disjoint
cannot be merged. Furthermore, if two mapping pairs of 3-tuples have a different re-
lationship in the source and suspicious documents then these tuples may be combined
according to their respective categories. However, in a particular case of 3-tuples, i.e.,
when the 3-tuples have a near-disjoint relationship in one document and overlap or con-
tainment relationship in the other document, then no merging may be carried out. This
is because it is a likely case of term-repetition, a situation in which a term is repeated
within one of the documents, but it may mistakenly map to a large portion of text in the
other document.

Figure 3 shows the four categories, while Table 1 gives a case-by-case listing of the
merging strategies that we used for merging.

2.4 Filtering

After seeding and merging, the next step is filtering. For PAN-2014 training corpus, it
was observed that short passages, typically less than 200 characters resulted in a lot of
false positives. Hence all passages which were less than 200 characters in the source
document aligned with passages less than 100 characters in the suspicious document
were removed. The final output was then written to the XML files.

Table 1. Strategies for Merging Various Cases

Relationship in Source Relationship in Suspicious Replacement Action
(x1, y1, s1), (x2, y2, s2) (a1, b1, s

′
1), (a2, b2, s

′
2) Replacement 3-tuple

Containment (x1, y1, s1) → (a1, b1, s
′
1)

Containment: (x1, y1, s1) Overlap (x1, y1, s1) → (a1, b2, b2 − a1)

contains (x2, y2, s2) Near-disjoint No change (Term Repetition likely)
Far-disjoint Merging not possible

Containment (x1, y2, y2 − x1) → (a1, b1, s
′
1)

Overlap: (x1, y1, s1) Overlap (x1, y2, y2 − x1) → (a1, b2, b2 − a1)

overlaps (x2, y2, s2) Near-disjoint No change (Term Repetition likely)
Far-disjoint Merging not possible

Containment No change (Term Repetition likely)
Near-disjoint: Overlap No change (Term Repetition likely)
x2 − y1 ≤ gap Near-disjoint (x1, y2, y2 − x1) → (a1, b2, b2 − a1)

Far-disjoint Merging not possible

Containment
Far-disjoint Overlap Merging not possible

x2 − y1 > gap Near-disjoint
Far-disjoint

943

3 Results

3.1 Setup

The first step before testing was to select the values of the parameters n and gap for
character-n-grams and the gap size. Since this was a first time participation for us, one
of the goals of our approach was to ensure at least a 90% precision while getting a
high value of recall. After testing through a range of values, n = 20, gap = 200 was
found to be the most suitable since, this set of values ensured at least 90% precision on
all training corpora, while giving the highest values for the overall plagdet score and
recall.

3.2 Training Corpora

We tested our approach on three corpora [7] for training: PAN-2014 training corpus,
PAN-2013 test corpus 1 and PAN-2013 test corpus 2. Figure 4 gives a graphical repre-
sentation of the results on the three corpora. The scores ranges obtained were as follows:

(a) Overall plagdet scores: 0.6 – 0.7 for each corpus,
(b) No-plagiarism scores: approximately full score ≈ 1.0 for each corpus,
(c) No-obfuscation scores: > 0.9 for each corpus,
(d) Random obfuscation scores: 0.4 – 0.5 for each corpus,
(e) Translation obfuscation scores: 0.5 – 0.6 for each corpus,
(f) Summary obfuscation scores: < 0.1 for each corpus.
These results imply that our approach based on hashing and merging heuristics gives

very good plagdet scores for no plagiarism and no obfuscation cases, mid-range scores
for random and translation obfuscations, and marginal scores for summary obfuscation.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

2014 Training Corpus 2013 Test Corpus 1 2013 Test Corpus 2

Overall No Plagiarism No Random Translation Summary

 Obfuscation Obfuscation Obfuscation Obfuscation

Figure 4. Results on Training Corpora

944

3.3 Test Corpora

For the final testing, the final software was uploaded on 30/April/2014 and test runs on
all three test corpora were done on 16/May/2014. No errors were found during the runs,
and hence exactly a single run was done on each of the test corpora. Results of runs
on test corpora 2 and 3 have been published and are listed in Table 2, while results of
test corpus 1 runs were made available to the participants only (as it was the early bird
corpus). It can be observed from Table 2 that the overall plagdet scores are inline with
those obtained for the training corpora earlier.

Currently, performance results of the software according to various obfuscation
types are not available on the test corpora. However, it is expected that these results
will be in agreement with the training corpora results too.

Table 2. Results on Test Corpora

Test Corpus 2 Test Corpus 3

Plagdet 0.65954 0.73416

Precision 0.93375 0.90081

Recall 0.55068 0.67283

Granularity 1.07111 1.06943

Runtime 4m 57s 4m 17s

Documents 5185 4800

4 Conclusion and Future Work

In this work, we used hashing and merging heuristics on character n-grams for text
reuse detection. Our approach scored a mid-range performance on PAN-2014 test cor-
pora. From the training corpora, it was obvious that while the approach scored very well
in no plagiarism and no obfuscation types, there was room for improvement for trans-
lation and random obfuscations. Furthermore, a completely new approach may need to
be devised for the marginal summary obfuscation scores.

Several directions of future work arise from here. For the current approach, a better
detection with improved recall can be achieved if a more fine-grained merging mecha-
nism is adopted with further sub-cases. Likewise, an improved granularity would also
help in improvising detection score, by confining matches to only the necessary number.

On a different level, we can devise new approaches by using a variety of mecha-
nisms such as character skip grams [1] or other natural language processing mecha-
nisms for a more indepth processing. This could provide new insights into text reuse
detection, especially on random, translation and summary obfuscations.

Acknowledgements. Faisal Alvi would like to acknowledge the support provided for
this work by the Deanship of Scientific Research at King Fahd University of Petroleum
& Minerals (KFUPM) under Research Grant RG-1113-1 & 2.

945

References

1. Järvelin, A., Järvelin, A., Järvelin, K.: s-grams: Defining Generalized n-grams for
Information Retrieval. Information Processing Management 43(4), 1005–1019 (Jul 2007)

2. Karp, R.M., Rabin, M.: Efficient Randomized Pattern-Matching Algorithms. IBM Journal of
Research and Development 31(2), 249–260 (March 1987)

3. Moraru, I., Andersen, D.G.: Exact Pattern Matching with Feed-forward Bloom Filters.
Journal of Experimental Algorithmics 17, 3.4:3.1–3.4:3.18 (Sep 2012)

4. Muth, R., Manber, U.: Approximate Multiple Strings Search. In: 7th Annual Symposium,
Combinatorial Pattern Matching. pp. 75–86. Lecture Notes in Computer Science, Springer
(1996)

5. Potthast, M., Gollub, T., Hagen, M., Graßegger, J., Kiesel, J., Michel, M., Oberländer, A.,
Tippmann, M., Barrón-Cedeño, A., Gupta, P., Rosso, P., Stein, B.: Overview of the 4th
International Competition on Plagiarism Detection. In: Forner, P., Karlgren, J.,
Womser-Hacker, C. (eds.) Working Notes Papers of the CLEF 2012 Evaluation Labs (Sep
2012)

6. Potthast, M., Gollub, T., Hagen, M., Tippmann, M., Kiesel, J., Rosso, P., Stamatatos, E.,
Stein, B.: Overview of the 5th International Competition on Plagiarism Detection. In: Forner,
P., Navigli, R., Tufis, D. (eds.) Working Notes Papers of the CLEF 2013 Evaluation Labs
(Sep 2013)

7. Potthast, M., Stein, B., Barrón-Cedeño, A., Rosso, P.: An Evaluation Framework for
Plagiarism Detection. In: 23rd International Conference on Computational Linguistics
(COLING ‘10). pp. 997–1005 (Aug 2010)

946

