
InVis: An EDM Tool For Graphical Rendering And Analysis
Of Student Interaction Data

Vinay Sheshadri
North Carolina State

University
Raleigh, NC

vshesha@ncsu.edu

Collin Lynch
North Carolina State

University
Raleigh, NC

collin@pitt.edu

Dr. Tiffany Barnes
North Carolina State

University
Raleigh, NC

tmbarnes@ncsu.edu

ABSTRACT
InVis is a novel visualization tool that was developed to
explore, navigate and catalog student interaction data. In-
Vis processes datasets collected from interactive educational
systems such as intelligent tutoring systems and homework
helpers and visualizes the student data as graphs. This vi-
sual representation of data provides an interactive environ-
ment with additional insights into the dataset and thus en-
hances our understanding of students’ learning activities.
Here, we demonstrate the issues encountered during the
analysis of large EDM data sets, the progressive features of-
fered by the InVis tool in order to address these issues and
finally establish the effectiveness of the tool with suitable
examples.

Keywords
EDM, visualization, graphs, student interaction data

1. INTRODUCTION
One of the central goals of Educational Datamining (EDM)
is to translate raw student data into useful pedagogical in-
sights. That is, educational dataminers seek to analyze stu-
dent interaction data such as user-system logs with the goal
of identifying: common errors, typical solutions and key
conceptual challenges among other things. This research
is of interest to learners, educators, administrators and re-
searchers [17]. In recent years, the increased adoption of
web-based tutoring systems, learning management tools and
other interactive systems has resulted in an exponential in-
crease in available data and increased demand for novel an-
alytical tools. The Pittsburgh Science of Learning Center’s
DataShop, for example, currently stores over 188 datasets,
encompassing 42 million student actions and 150,000 student
hours [19]. With the increase in available data has come a
corresponding increase in the insights EDM can provide and
in making analytical tools available to expert instructors.

EDM researchers have generally relied on statistical analy-
ses (see [14, 2, 1], formal rule induction (e.g. [12]), or other
modeling methods to extract these insights. While these an-
alytical methods are robust and have led to great progress in
model development and evaluation, the increased interest in
EDM by non-statisticians and practitioners has accentuated
the need for ”good visualization facilities to make their re-
sults meaningful to educators and e-learning designers” [16].

InVis was initially developed by Johnson, Eagle and Barnes
[11]. The present version has been expanded to include
changes to the visual editing system, export functions and
other features. An example graph is shown in Figure 1. The
graphical structure of InVis is designed to facilitate direct
exploration of student datasets and easy comparison of in-
dividual solution paths. InVis can render individual student
solutions or display the work of an entire class thus enabling
educators to identify and draw insights from common stu-
dent strategies and repeated mistakes [11]. InVis was in-
spired by the work of Barnes and Stamper [3] on the use of
graphical representations for logic problems. Similar work
has been done by Chiritoiu, Mihaescu and Burdescu who
developed the EDM Visualization tool. This tool generates
the student clustering models using k-means clustering algo-
rithm [5]. However unlike InVis, the resulting visualization
is non-interactive and non-graphical.

EDM researchers generally seek to answer questions such as:
What actions can predict student success? Which strategy
or solution path is more or less efficient and educationally
effective? What decisions indicate student progress? And
what are the features of a learning environment that pro-
mote learning? (see [15]). In a programming tutor, for
example, students might be given the task of implement-
ing an array-sorting algorithm for a large vector of integers.
The particular choice of algorithm and the implementation
details are left to the students to formulate using a vari-
ety of existing tools. This resulting code will proceed in
several stages including reading data from disk, sorting the
contents in memory, and returning the result. Our goal as
researchers is to classify the successful students, identify the
most commonly-chosen algorithms and flag individuals who
faced difficulties or failed to complete the assignment. In a
logic tutor such as Deep Thought [7] or a Physics tutor such
as Andes [20] we would like to make similar determinations
by focusing on the solutions chosen by the students and the
individually-critical steps.



The graph representation provided by InVis allows us to
answer these questions by constructing and exploring inter-
active visualizations of the student dataset. By rendering a
graph of a class or key subgroup (e.g. low-performing stu-
dents), we can visually identify garden-path solutions over
long isolated chains, identify critical states through which
most students traversed and so on. These visualizations can
also be used to guide, or evaluate the output of automatic
analysis such as MDP models or path-detection algorithms.
In the remainder of this paper we will discuss the tool, de-
scribe key features of it in detail and illustrate the type of
insights it can provide.

2. DATA
We will illustrate the operation of InVis on a typical dataset.
For the purposes of the present paper we will use student
data collected from the Deep Thought tutor [6, 7]. Deep
Thought is a graph-based tutor for first-order logic. Stu-
dents using the system are presented with a problem defined
by a set of given components (e.g. ”A ∧ ¬B ∧C ⇒ B”) and
are tasked with proving some goal state (e.g. ¬C). Problem
solving proceeds through forward or backward-chaining with
students applying rules such as Modus Ponens or Modus
Tolens to draw new conclusions. For example, given the
conclusion B, the student could propose that B was derived
using Modus Ponens (MP) on two new, unjustified proposi-
tions: A → B,A. This is like a conditional proof in that, if
the student can justify A → B and A, then the proof is com-
plete. At any time, the student can work backwards from
any unjustified components, or forwards from any derived
statements or the premises [8].

The DT data thus has a number of key characteristics that
make it amenable to graphical display. The data is grouped
into fixed problems covered by many students. Each prob-
lem is defined by a static set of given information and a
clear goal. And the solutions are constructed via iterative
rule applications drawn from a fixed library. As a conse-
quence it is possible to define a fixed, albeit large, space of
solution states and to efficiently map the traversal between
them. While this seems restrictive this set of criteria applies
to data collected from many if not most Intelligent Tutoring
Systems. Andes, for example, defines problems by a set of
given values (e.g. ”Mcar = 2kg”) sets fixed variable goals
(e.g. ”Scar−t0”: speed of the car at t0) and groups student
actions into a fixed set of rule applications. Similar state rep-
resentations have also been applied to other datasets such
as code-states in the SNAP programming tutor [4].

The figures shown below are drawn from two InVis datasets.
We will focus in detail on a small dataset comparing the
work of three students on a single problem with a fixed set
of givens and two alternate goals. Such a small dataset is
designed to allow for efficient illustration but is not an upper
limit for analysis. We will also present some qualitative
discussion of larger scale analysis with a larger DT dataset
as shown in Figure 3.

3. FEATURES OF INVIS
InVis was developed with the Java Netbeans Framework and
employs the JUNG libraries for the rendering of the graphs
[13]. It provides an assortment of features that allow the
end user to interact with the visualizations and draw obser-

Figure 1: Network Display and Viewer

vations from the data set. The Network Display, Network
Viewer, Visual Editor and Export Dot Data are some of the
prominent features of InVis which will be illustrated with ex-
amples in the upcoming sections. InVis also supports MDP
calculation, between-ness calculation and frequency reduc-
tion which currently are under development and test phases.

3.1 Network Display and Viewer
The front-end of InVis is the The Network Display compo-
nent. It displays the interaction network generated by the
engine in a graphical format. The user is presented with a
cumulative overview of the processed input data. The var-
ious logic states of the DT tutor are represented by nodes
and the applied propositional logic transformations are rep-
resented by edges of the graph. Intermediate states are rep-
resented by blue circular nodes while the goal states are
represented by green square nodes. Error states in the DT
dataset are defined by logical fallacies and are represented
by red octagons for easy identification. The sample display
shown in Figure 1 contains 16 intermediate nodes arrayed
from the top to bottom of the network, one error state lo-
cated in the center, and two goal states at the bottom.

The Network Viewer component represents the InVis input
data in the form of a tree structure known as case-set. Each
primary node in the case-set represents a student and each
sub-node under it represents a transition state executed by
the student sequentially. Selecting a student in the Net-
work Viewer window highlights the corresponding path in
the Network Display window. Selecting a sub-node high-
lights the corresponding nodes and edges that were involved
in the transformation. Expanding a sub-node will cause the
system to display the pre-state and post-state information
from the nodes involved in that transition.

The path taken by a student to solve the given problem
can be detected by selecting the appropriate student in the
Network Viewer window. This will fade the non-path nodes
to bring the chosen path to the foreground. An example of
this highlighting is shown in Figure 2 where we have selected
a single student path within the demo dataset.



Figure 2: Tracing the path of a student

One common use of InVis is to identify frequently-occurring
error states. The system can also be used to analyze the dif-
ferent paths taken by students in order to achieve a common
goal and isolate the areas where the students face difficul-
ties in solving the given problem or took a garden path. A
garden path is an inefficient path from one target state to
another with many nonessential intermediate states. From
Figure 1, in the current data set, for example, one student
performed 11 transitions to achieve the goal, due in part
to cycles, whereas a separate student reached the goal with
5 transitions. Each transition is marked by an arc from
one state to another in the graph. Thus the Network Dis-
play provides an instructor with a cumulative analysis of
the input data and aids the instructor in identifying areas
of difficulty faced by students during the course of problem
solving.

Figure 3 shows the visualization generated by InVis for a
sample large dataset. The bold edges indicate the common
paths employed by the students in order to solve a given
problem. The graph also highlights the garden paths and
the succeeding action taken by students towards achieving
the goal states. From the rendered visualization it is clear
that the cloud space comprises of students who achieved the
goal, indicated in green and students who failed to reach the
final goal states. InVis can thus be employed to congregate
useful observations on large EDM datasets.

3.2 Visual Editor
The Visual Editor component of InVis controls the various
visual aspects of the graph displayed in the Network Display
window. The visual editor provides options for displaying
the node and edge data of the graph. InVis renders graphs
with the DAG tree layout as the default layout. The visual
editor provides options for rendering the graph in different
layouts. An ISOM layout of the originally generated graph
is shown in Figure 4.

Figure 3: InVis and large data sets

The Visual Editor also provides an option for normalizing
the edge widths based on the case frequencies. Case fre-
quencies are defined by the number of students who used the
same transition between the given set of states. When the
Normalize Width option is selected, InVis reloads the graph
with width of edges proportional to the case frequency. This
feature helps instructors in identifying the logic states and
transitions which are most used by the students.

The Visual Editor can be launched by clicking on the Visual
Editor icon in the toolbar. Options are provided in the Vi-
sual Editor window to control the display of node and edge
labels. A notable option provided by the visual editor is the
option to normalize edge widths. Normalizing edge widths
results in the modification of the edge widths of the graph
in proportion to the case frequencies.

Figure 5 displays the zoomed in version of the graph with
normalized edges. Edges with case frequency of 2 have
thicker connecting lines compared to the edges with case
frequency of 1. Thus the thickness of the edge offers a vi-
sual cue to the instructor in identifying the most commonly
traversed paths by students when achieving the given goal.

3.3 Exporting InVis Data
Graphviz is a heterogeneous collection of graph drawing tools
[9]. The software is available under open source license. The
input to the Graphviz tool is a description of the required
graph in a simple text language such as DOT. The tool pro-
cesses the input and renders output graphs in useful formats,
such as images and SVG for web pages; PDF or Postscript
for inclusion in other documents; or display in an interactive
graph browser [10]. Graphviz has many useful features for
concrete diagrams, options for colors, fonts, tabular node
layouts, line styles, hyperlinks, and custom shapes.

In order to leverage the graph design features offered by
Graphviz, InVis now features a new export option which



Figure 4: Different graph layouts

Figure 5: Normalized width - Zoomed in

renders the input Deep thought data into a DOT format file.
The DOT file can be directly imported by Graphviz to gener-
ate static images such as PNG, JPEG or interactive formats
such as SVG. These visualizations will match those gener-
ated by the Network Display tool. Figure 6 shows a graph
generated by Graphviz using exported InVis data. Here the
arcs are annotated via a static ID number that helps in man-
ually identifying the states and transition information. This
data is captured as part of the export process.

4. DISCUSSION
The graphical rendering of EDM data via InVis can yield
unique insights into the student interaction data. Romero
and Ventura classified EDM objectives depending on the
viewpoint of the final user as learner, educator, administra-
tor and researcher [17]. InVis supports learners by provid-
ing visual feedback and recommendations to improve perfor-
mance. Students can compare their approach with that of
other students graphically. This can promote real time self-
assessment and adoption of better approaches to problem
solving.

Figure 6: Exported data loaded in Graphviz

Educators can use the tool to identify good and poor student
solutions and to better understand the students’ learning
processes which can, in turn, reflect on their own teaching
methods. The graphical summary presented by InVis gives
an overview, and allows for detailed exploration of, the paths
taken by students in achieving a solution to a given problem.

The presence of garden paths, loops and error states illus-
trate areas where the students have encountered difficulties
in deriving a solution to a given problem. This empowers re-
searchers with visual data to model suitable hint generation
techniques that can deploy automatic corrective actions [18].
InVis can assist administrators to reorganize institutional re-
sources based on visual evaluation of the effectiveness of a
teaching method adopted in a particular course.

In the case of the sorting example introduced in the earlier
section, by normalizing the edge width, we can identify the
most commonly used sorting algorithm. We can also identify
the optimal solution to the given problem comparing the
number of transition states between the start and end goal



for each student. Finally the presence of error states, garden
paths can be visually identified and corrective actions can
be taken to aid students in achieving the goal. Thus the
visualizations help in the generation of real time feedback
and provides hints for modeling of dynamic hint generation
strategies.

InVis is currently limited to the analysis of deep thought
tutor data. We are actively working on InVis to extend its
capabilities to analyze data sets generated from fields such
as: state based games, feedback back based hint generation
and others. We are also actively improving the efficiency,
user interface, and automatic analysis features of the tool.
The InVis project provides the EDM community with a visu-
alization tool for enhanced and accelerated understanding of
education based systems. New features will be added to In-
Vis in future to support and sustain this goal. We solicit the
EDM community to provide us with additional suggestions
for, the InVis tool and help us to enhance the functionality
and usability of InVis for EDM applications.

Acknowledgments
This work was supported by NSF-IIS 0845997 “CAREER:
Educational Data Mining for Student Support in Interactive
Learning Environments” Dr. Tiffany Barnes PI.

5. REFERENCES
[1] R. Baker, A. Corbett, I. Roll, and K. Koedinger.

Developing a generalizable detector of when students
game the system. User Modeling and User-Adapted
Interaction, 18(3):287–314, 2008.

[2] R. Baker and K. Yacef. The state of educational data
mining in 2009: A review and future visions. Journal
of Educational Datamining, 1(1):3–17, 2009.

[3] T. Barnes and J. Stamper. Toward the extraction of
production rules for solving logic proofs. In
Proceedings of the 13th International Conference on
Artificial Intelligence in Education, Educational Data
Mining Workshop, AIED2007, pages 11–20, 2007.

[4] A. H. Barry Peddycord III and T. Barnes, editors.
Generating Hints for Programming Problems Using
Intermediate Output. International Educational
Datamining Society IEDMS, 2014. In Press.

[5] M. S. Chirioiu, M. C. Mihaescu, and D. D. Burdescu,
editors. Students Activity Visualization Tool.
International Educational Datamining Society
IEDMS, 2013.

[6] M. J. Croy. Graphic interface design and deductive
proof construction. Journal of Computers in
Mathematics and Science Teaching, 18(4):371–385,
1999.

[7] M. J. Croy. Problem solving, working backwards, and
graphic proof representation. Teaching Philosophy,
2(23):169 – 187, 2000.

[8] M. J. Eagle and T. Barnes. Evaluation of
automatically generated hint feedback. EDM 2013,
2013.

[9] J. Ellson, E. Gansner, L. Koutsofios, S. North, and
G. Woodhull. Graphviz - open source graph drawing
tools. In P. Mutzel, M. JÃijnger, and S. Leipert,
editors, Graph Drawing, volume 2265 of Lecture Notes
in Computer Science, pages 483–484. Springer Berlin

Heidelberg, 2002.

[10] E. Gansner, E. Koutsofios, and S. North. Drawing
graphs with dot. Technical report, Technical report,
AT&T Research. URL http://www. graphviz.
org/Documentation/dotguide. pdf, 2006.

[11] M. W. Johnson, M. Eagle, and T. Barnes. Invis: An
interactive visualization tool for exploring interaction
networks. Proc. EDM 2013, 65, 2013.

[12] C. F. Lynch, K. D. Ashley, N. Pinkwart, and
V. Aleven. Argument graph classification with genetic
programming and c4.5. In R. S. J. de Baker,
T. Barnes, and J. E. Beck, editors, EDM, pages
137–146. www.educationaldatamining.org, 2008.

[13] J. O’Madadhain, D. Fisher, P. Smyth, S. White, and
Y.-B. Boey. Analysis and visualization of network
data using jung. Journal of Statistical Software,
10(2):1–35, 2005.

[14] P. I. Pavlik, H. Cen, and K. R. Koedinger.
Performance factors analysis - a new alternative to
knowledge tracing. In V. Dimitrova, R. Mizoguchi,
B. du Boulay, and A. C. Graesser, editors, AIED,
volume 200 of Frontiers in Artificial Intelligence and
Applications, pages 531–538. IOS Press, 2009.

[15] A. Pena-Ayala. Educational Data Mining:
Applications and Trends. Springer, 2014.

[16] C. Romero and S. Ventura. Educational data mining:
A survey from 1995 to 2005. Expert Syst. Appl.,
33(1):135–146, July 2007.

[17] C. Romero and S. Ventura. Data mining in education.
Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 3(1):12–27, 2013.

[18] J. Stamper, T. Barnes, L. Lehmann, and M. Croy.
The hint factory: Automatic generation of
contextualized help for existing computer aided
instruction. In Proceedings of the 9th International
Conference on Intelligent Tutoring Systems Young
Researchers Track, pages 71–78, 2008.

[19] J. Stamper, K. Koedinger, R. S. J. d. Baker,
A. Skogsholm, B. Leber, J. Rankin, and S. Demi. Pslc
datashop: A data analysis service for the learning
science community. In Proceedings of the 10th
International Conference on Intelligent Tutoring
Systems - Volume Part II, ITS’10, pages 455–455,
Berlin, Heidelberg, 2010. Springer-Verlag.

[20] K. Vanlehn, C. Lynch, K. Schulze, J. A. Shapiro,
R. Shelby, L. Taylor, D. Treacy, A. Weinstein, and
M. Wintersgill. The andes physics tutoring system:
Lessons learned. International Journal of Artificial
Intelligence in Education, 15(3):147–204, 2005.


