
Monadic Datalog Containment on Trees

André Frochaux1, Martin Grohe2, and Nicole Schweikardt1

1 Goethe-Universität Frankfurt am Main,
{afrochaux,schweika}@informatik.uni-frankfurt.de

2 RWTH Aachen University, grohe@informatik.rwth-aachen.de

Abstract. We show that the query containment problem for monadic
datalog on finite unranked labeled trees can be solved in 2-fold expo-
nential time when (a) considering unordered trees using the axes child
and descendant, and when (b) considering ordered trees using the axes
firstchild, nextsibling, child, and descendant. When omitting the descen-
dant-axis, we obtain that in both cases the problem is Exptime-complete.

1 Introduction

The query containment problem (QCP) is a fundamental problem that has been
studied for various query languages. Datalog is a standard tool for expressing
queries with recursion. From Cosmadakis et al. [5] and Benedikt et al. [2] it is
known that the QCP for monadic datalog queries on the class of all finite rela-
tional structures is 2Exptime-complete. Restricting attention to finite unranked
labeled trees, Gottlob and Koch [8] showed that on ordered trees the QCP for
monadic datalog is Exptime-hard and decidable, leaving open the question of
a tight bound.

Here we show a matching Exptime upper bound for the QCP for monadic
datalog on ordered trees using the axes firstchild, nextsibling, and child. When
adding the descendant-axis, we obtain a 2Exptime upper bound. This, in par-
ticular, also yields a 2Exptime upper bound for the QCP for monadic datalog
on unordered trees using the axes child and descendant, and an Exptime upper
bound for unordered trees using only the child -axis. The former result answers
a question posed by Abiteboul et al. in [1]. We complement the latter result by
a matching lower bound.

The paper is organised as follows. Section 2 fixes the basic notation con-
cerning datalog queries, (unordered and ordered) trees and their representa-
tions as logical structures, and summarises basic properties of monadic datalog
on trees. Section 3 presents our main results regarding the query containment
problem for monadic datalog on trees. Due to space limitations, most techni-
cal details had to be deferred to the full version of this paper, available at
http://arxiv.org/abs/1404.0606.

2 Trees and Monadic Datalog (mDatalog)

Throughout this paper, Σ will always denote a finite non-empty alphabet.
By N we denote the set of non-negative integers, and we let N>1 := N \ {0}.

http://arxiv.org/abs/1404.0606

Relational Structures. As usual, a schema τ consists of a finite number of
relation symbols R, each of a fixed arity ar(R) ∈ N>1. A τ -structure A consists of
a finite non-empty set A called the domain of A, and a relation RA ⊆ Aar(R) for
each relation symbol R ∈ τ . It will often be convenient to identify A with the set
of atomic facts of A, i.e., the set atoms(A) consisting of all facts R(a1, . . . , aar(r))
for all relation symbols R ∈ τ and all tuples (a1, . . . , aar(R)) ∈ RA.

If τ is a schema and ` is a list of relation symbols, we write τ ` to denote the
extension of the schema τ by the relation symbols in `. Furthermore, τΣ denotes
the extension of τ by new unary relation symbols labelα, for all α ∈ Σ.

Unordered Trees. An unordered Σ-labeled tree T = (V T , λT , ET) consists
of a finite set V T of nodes, a function λT : V T → Σ assigning to each node v of
T a label λ(v) ∈ Σ, and a set ET ⊆ V T × V T of directed edges such that the
graph (V T , ET) is a rooted tree where edges are directed from the root towards
the leaves. We represent such a tree T as a relational structure of domain V T

with unary and binary relations: For each label α ∈ Σ, labelα(x) expresses that
x is a node with label α; child(x, y) expresses that y is a child of node x; root(x)
expresses that x is the tree’s root node; leaf(x) expresses that x is a leaf; and
desc(x, y) expresses that y is a descendant of x (i.e., y is a child or a grandchild
or . . . of x). We denote this relational structure representing T by Su(T), but
when no confusion arises we simply write T instead of Su(T).

The queries we consider for unordered trees are allowed to make use of at
least the predicates labelα and child. We fix the schema

τu := {child}.

The representation of unordered Σ-labeled trees as τu,Σ-structures was consid-
ered, e.g., in [1].

Ordered Trees. An ordered Σ-labeled tree T = (V T , λT , ET , orderT) has
the same components as an unordered Σ-labeled tree and, in addition, orderT

fixes for each node u of T , a strict linear order of all the children of u in T .
To represent such a tree as a relational structure, we use the same domain and

the same predicates as for unordered Σ-labeled trees, along with three further
predicates fc (“first-child”), ns (“next-sibling”), and ls (“last sibling”), where
fc(x, y) expresses that y is the first child of node x (w.r.t. the linear order of the
children of x induced by orderT); ns(x, y) expresses that y is the right sibling
of x (i.e., x and y have the same parent p, and y is the immediate successor of
x in the linear order of p’s children given by orderT); and ls(x) expresses that
x is the rightmost sibling (w.r.t. the linear order of the children of x’s parent
given by orderT). We denote this relational structure representing T by So(T),
but when no confusion arises we simply write T instead of So(T).

The queries we consider for ordered trees are allowed to make use of at least
the predicates labelα, fc, and ns. We fix the schemas

τo := {fc, ns} and τGK := τ root,leaf ,lso .

In [8], Gottlob and Koch represented orderedΣ-labeled trees as τGK,Σ-structures.

Datalog. We assume that the reader is familiar with the syntax and seman-
tics of datalog (cf., e.g., [6,8]). Predicates that occur in the head of some rule of a
datalog program P are called intensional, whereas predicates that only occur in
the body of rules of P are called extensional. By idb(P) and edb(P) we denote
the sets of intensional and extensional predicates of P, resp. We say that P is
of schema τ if edb(P) ⊆ τ . We write TP to denote the immediate consequence
operator associated with a datalog program P. Recall that TP maps a set C of
atomic facts to the set of all atomic facts that are derivable from C by at most
one application of the rules of P (see e.g. [6,8]). The monotonicity of TP implies
that for each finite set C, the iterated application of TP to C leads to a fixed
point, denoted by T ωP (C), which is reached after a finite number of iterations.

Monadic datalog queries. A datalog program belongs to monadic datalog
(mDatalog, for short), if all its intensional predicates have arity 1.

A unary monadic datalog query of schema τ is a tuple Q = (P, P) where P is
a monadic datalog program of schema τ and P is an intensional predicate of P.
P and P are called the program and the query predicate of Q. When evaluated
in a finite τ -structure A that represents a labeled tree T , the query Q results in
the unary relation Q(T) := {a ∈ A : P (a) ∈ T ωP (atoms(A)) }.

The Boolean monadic datalog query QBool specified by Q = (P, P) is the
Boolean query with QBool(T) = yes iff the tree’s root node belongs to Q(T).

The size ||Q|| of a monadic datalog query Q is the length of Q = (P, P)
viewed as a string over a suitable alphabet.

Expressive power of monadic datalog on trees. From Gottlob and
Koch [8] we know that on ordered Σ-labeled trees represented as τGK,Σ-structures,
monadic datalog can express exactly the same unary queries as monadic second-
order logic — for short, we will say “mDatalog(τGK) = MSO(τGK) on ordered
trees”. Since the child and desc relations are definable in MSO(τGK), this im-

plies that mDatalog(τGK) = mDatalog(τchild,descGK) on ordered trees.
On the other hand, using the monotonicity of the immediate consequence

operator, one obtains that removing any of the predicates root, leaf , ls from
τGK strictly decreases the expressive power of mDatalog on ordered trees (see
[7]). By a similar reasoning one also obtains that on unordered trees, repre-

sented as τ root,leaf ,descu,Σ -structures, monadic datalog is strictly less expressive
than monadic second-order logic, and omitting any of the predicates root, leaf
further reduces the expressiveness of monadic datalog on unordered trees [7].

3 Query Containment for Monadic Datalog on Trees

Let τΣ be one of the schemas introduced in Section 2 for representing (ordered
or unordered) Σ-labeled trees as relational structures. For two unary queries Q1

and Q2 of schema τΣ we write Q1 ⊆ Q2 to indicate that for every Σ-labeled
tree T we have Q1(T) ⊆ Q2(T). Similarly, if Q1 and Q2 are Boolean queries
of schema τΣ , we write Q1 ⊆ Q2 to indicate that for every Σ-labeled tree T ,
if Q1(T) = yes then also Q2(T) = yes. We write Q1 6⊆ Q2 to indicate that

Q1 ⊆ Q2 does not hold. The query containment problem (QCP, for short) is
defined as follows:

The QCP for mDatalog(τ) on trees
Input: A finite alphabet Σ and

two (unary or Boolean) mDatalog(τΣ)-queries Q1 and Q2.
Question: Is Q1 ⊆ Q2 ?

It is not difficult to see that this problem is decidable: the first step is to
observe that monadic datalog can effectively be embedded into monadic second-
order logic, the second step then applies the well-known result that the monadic
second-order theory of finite labeled trees is decidable (cf., e.g., [11,4]).

Regarding ordered trees represented as τGK-structures, in [8] it was shown
that the QCP for unary mDatalog(τGK)-queries on trees is Exptime-hard. Our
first main result generalises this to unordered trees represented as τu-structures:

Theorem 1
The QCP for Boolean mDatalog(τu) on unordered trees is Exptime-hard.

Our proof proceeds via a reduction from the Exptime-complete two per-
son corridor tiling (TPCT) problem [3]: For a given instance I of the TPCT-
problem we construct (in polynomial time) an alphabet Σ and two Boolean
mDatalog(τu,Σ)-queries Q1, Q2 which enforce that any tree T witnessing that
Q1 6⊆ Q2, contains an encoding of a winning strategy for the first player of the
TPCT-game associated with I. Using Theorem 1 along with a method of [8] for
replacing the child-predicate by means of the predicates fc,ns, we can transfer
the hardness result to ordered trees represented by τo-structures:

Corollary 2
The QCP for Boolean mDatalog(τo) on ordered trees is Exptime-hard.

Our second main result provides a matching Exptime upper bound for the
QCP on ordered trees, even in the presence of all predicates in τchildGK :

Theorem 3
The QCP for unary mDatalog(τchildGK) on ordered trees belongs to Exptime.

Proof (sketch). Consider a schema τ ⊆ τchild,descGK . By using the automata-
theoretic approach [5], a canonical method for deciding the QCP for unary
mDatalog(τ) proceeds as follows:

(1) Transform the input queries Q1 and Q2 into Boolean queries Q′1 and Q′2 on
binary trees, such that Q1 ⊆ Q2 iff Q′1 ⊆ Q′2.

(2) Construct tree automata A
yes
1 and Ano2 such that A

yes
1 (resp. Ano2) accepts

exactly those trees T with Q′1(T) = yes (resp. Q′2(T) = no).

(3) Construct the product automaton B of A
yes
1 and Ano2 , such that B accepts

exactly those trees that are accepted by A
yes
1 and by Ano2 . Afterwards, check

if the tree language recognised by B is empty. Note that this is the case if,
and only if, Q1 ⊆ Q2.

Using time polynomial in the size of Q1 and Q2, Step (1) can be achieved in a
standard way by appropriately extending the labelling alphabet Σ.

For Step (3), if Ayes1 and Ano2 are nondeterministic bottom-up tree automata,
the construction of B takes time polynomial in the sizes of Ayes1 and Ano2 , and the
emptiness test can be done in time polynomial in the size of B (see e.g. [4]).

The first idea for tackling Step (2) is to use a standard translation of Boolean
monadic datalog queries into monadic second-order (MSO) sentences: It is not
difficult to see (cf., e.g. [8]) that any Boolean mDatalog(τ)-query Q can be
translated in polynomial time into an equivalent MSO-sentence ϕQ of the form

∀X1 · · · ∀Xn ∃z1 · · · ∃z`
∨m
j=1 γj

where n is the number of intensional predicates of Q’s monadic datalog program
P, ` and m are linear in the size of Q, and each γj is a conjunction of at
most b atoms or negated atoms, where b is linear in the maximum number of
atoms occurring in the body of a rule of P. Applying the standard method for
translating MSO-sentences into tree automata (cf., e.g., [11]), we can translate
the sentence ¬ϕQ into a nondeterministic bottom-up tree-automaton Ano that

accepts a tree T iff Q(T) = no. This automaton has 2(m
′·cb
′
) states, where m′

and b′ are linear in m and b, resp., and c is a constant not depending on Q or

Σ; and Ano can be constructed in time polynomial in |Σ|·2n+`+m′·cb
′

.
Using the subset construction, one obtains an automaton Ayes which accepts

a tree T iff Q(T) = yes; and this automaton has 22
(m′·cb

′
)

states.
Note that, a priori, b′ might be linearly related to the size of Q. Thus, the

approach described so far leads to a 3-fold exponential algorithm that solves the
QCP for unary mDatalog(τ)-queries.

In case that τ does not contain the desc-predicate, we obtain a 2-fold ex-
ponential algorithm as follows: At the end of Step (1) we rewrite Q′1 and Q′2
into queries that do not contain the child-predicate , and we transform both
queries into tree marking normal form (TMNF), i.e., a normal form in which
bodies of rules consist of at most two atoms, at least one of which is unary. From
[8] we obtain that these transformations can be done in time polynomial in the
size of Q′1 and Q′2. Note that for TMNF-queries, the parameters b and b′ are
constant (i.e., they do not depend on the query), and thus the above description
shows that for TMNF-queries the automaton Ano2 can be constructed in 1-fold
exponential time, and A

yes
1 can be constructed in 2-fold exponential time.

Finally, the key idea to obtain a 1-fold exponential algorithm solving the
QCP is to use a different construction for the automaton A

yes
1 , which does not

use the detour via an MSO-formula but, instead, takes a detour via a two-way
alternating tree automaton (2ATA): We show that a Boolean TMNF-query can
be translated, in polynomial time, into a 2ATA Â

yes
1 that accepts a tree T iff

Q1(T) = yes. It is known that, within 1-fold exponential time, a 2ATA can
be transformed into an equivalent nondeterministic bottom-up tree automaton
(this was claimed already in [5]; detailed proofs of more general results can be
found in [12,10]). In summary, this leads to a 1-fold exponential algorithm for
solving the QCP for mDatalog(τchildGK) on ordered trees. ut

Since τ root,leafu ⊆ τchildGK , Theorem 3 immediately implies:

Corollary 4 The QCP for unary mDatalog(τ root,leafu) on unordered trees be-
longs to Exptime.

It remains open if the Exptime-membership results of Theorem 3 and Corol-
lary 4 can be generalised to queries that also use the descendant predicate desc.
However, the first approach described in the proof of Theorem 3 yields a 3-fold
exponential algorithm. We can improve this by using methods and results from
[8] and [9] to eliminate the desc-predicate at the expense of an exponential blow-
up of the query size. Afterwards, we apply the algorithms provided by Theorem 3
and Corollary 4. This leads to the following:

Theorem 5 The QCP for unary mDatalog(τ root,leaf ,descu) on unordered trees

and for unary mDatalog(τchild,descGK) on ordered trees can be solved in 2-fold
exponential time.

Open Question. It remains open to close the gap between the Exptime lower
and the 2Exptime upper bound for the case where the descendant-axis is in-
volved.

Acknowledgment. The first author would like to thank Mariano Zelke for
countless inspiring discussions and helpful hints on and off the topic.

References

1. S. Abiteboul, P. Bourhis, A. Muscholl, and Z. Wu. Recursive queries on trees and
data trees. In Proc. ICDT’13, pages 93–104, 2013.

2. M. Benedikt, P. Bourhis, and P. Senellart. Monadic datalog containment. In Proc.
ICALP’12, pages 79–91, 2012.

3. B. S. Chlebus. Domino-tiling games. J. Comput. Syst. Sci., 32(3):374–392, 1986.
4. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,

and M. Tommasi. Tree automata techniques and applications. Available at http:
//www.grappa.univ-lille3.fr/tata, 2008. release November, 18th 2008.

5. S. Cosmadakis, H. Gaifman, P. Kanellakis, and M. Vardi. Decidable optimization
problems for database logic programs. In Proc. STOC’88, pages 477–490, 1988.

6. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive
power of logic programming. ACM Comput. Surv., 33(3):374–425, 2001.

7. A. Frochaux and N. Schweikardt. A note on monadic datalog on unranked trees.
Technical Report, available at CoRR, abs/1310.1316, 2013.

8. G. Gottlob and C. Koch. Monadic datalog and the expressive power of languages
for web information extraction. J. ACM, 51(1):74–113, 2004.

9. G. Gottlob, C. Koch, and K. Schulz. Conjunctive queries over trees. J. ACM,
53(2):238–272, 2006.

10. S. Maneth, S. Friese, and H. Seidl. Type-Checking Tree Walking Transducers.
In D. D’Souza and P. Shankar, editors, Modern applications of automata theory,
volume 2 of IISc Research Monographs. World Scientific, 2010.

11. W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages,
volume 3, pages 389–455. Springer-Verlag, 1997.

12. M. Vardi. Reasoning about the past with two-way automata. In Proc. ICALP’98,
pages 628–641, 1998.

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

	Monadic Datalog Containment on Trees
	Introduction
	Trees and Monadic Datalog (`39`42`"613A``45`47`"603AmDatalog)
	Query Containment for Monadic Datalog on Trees

