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ABSTRACT 
Gesture authoring tools enable the rapid and experiential 
prototyping of gesture-based interfaces. We survey visual 
authoring tools for mid-air gestures and identify three 
paradigms used for representing and manipulating gesture 
information: graphs, visual markup languages and 
timelines. We examine the strengths and limitations of 
these approaches and we propose a novel paradigm to 
authoring location-based mid-air gestures based on space 
discretization. 
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INTRODUCTION 
The recent proliferation of commercial input devices that 
can sense mid-air gestures, led by the introduction of the 
Nintendo Wii and the Microsoft Kinect, has enabled both 
professional developers and end-users to harness the power 
of full-body gestural interaction. However, despite the 
availability of the hardware, applications that leverage 
gestural interaction have not been thriving. A striking fact is 
that while the Kinect has broken records as the fastest-
selling consumer electronics device in history, sales of 
games that utilize the Kinect have been poor [5]. This has 
been associated with design and user experience issues 
stemming from difficulties in designing and developing 
software [7]. Specifically, for both adept programmers and 
comparatively non-technical but creative users such as 
students, designers, artists and hobbyists, the amounts of 
time, effort and domain-specific knowledge required to 
implement custom gestural interactions is prohibitive.  

Ongoing research aims to support gestural interaction 
design and development with gesture authoring tools. These 
tools aim at enabling rapid and experiential prototyping, 
which are essential practices for creating compelling 
designs [2]. However, few projects have gained widespread 

adoption. One issue that contributes to the low rate of 
adoption is the difficulty of balancing the trade-offs 
between complexity and expressive power of the paradigm 
used to represent and manipulate gesture information: 
Interfaces employed for gesture authoring may become 
convoluted and difficult to use in order to fully tap into the 
expressive power of human gesture; or they may omit 
useful features as they aim for usability and rapidity. 

In this paper, we survey existing paradigms for visually 
authoring mid-air gestures and present a provocation, a 
novel gesture authoring paradigm, which we have 
implemented in the form of an end-to-end application for 
introducing gesture control to existing software and novel 
prototypes.  

The rest of this paper is organized as follows: We first 
present three user interface paradigms – graphs, visual 
markup languages and timelines – used in current visual 
gesture authoring tools. Existing implementations of each 
paradigm are examined and discussed in terms of their 
capabilities and limitations. Results from evaluations with 
real users, if published, are emphasized. We then present a 
provocation in the form of a novel user interface paradigm 
for authoring mid-air gestures, based on space discretization 
and influenced by existing paradigms. We discuss future 
work and conclude by presenting a summary of our results. 

PARADIGMS FOR AUTHORING MID-AIR GESTURES 
Authoring tools for mid-air gestural interfaces are still in 
their infancy. Development tools provided by vendors of 
gesture-sensing input devices are focused on textual 
programming. Ongoing research suggests a set of diverse 
approaches to the problem of how to represent and 
manipulate three-dimensional gesture data. Existing works 
approach the issue in three ways that constitute distinct 
paradigms. These are: 

1. using 2-dimensional graphs of the data from the 
sensors that detect movement; 

2. using a visual markup language; and, 

3. representing movement information using a timeline of 
frames. 

These paradigms often interact with two programming 
approaches: Demonstration and declaration. Programming 
by demonstration enables developers to describe behavior 
by example. In the case of gestures, many examples of the 
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same behavior are often provided in order to account for the 
differences in gesturing between users and over time. 
Declarative programming of gestures involves describing 
behavior using a high-level specification language. This 
specification language may be textual or graphical. 

The paradigms we list above do not have to be used 
exclusively, and nor do demonstration and declarative 
programming. Aspects of different paradigms may find 
their place within the same authoring tool. A popular 
approach to authoring gestures is to introduce gestures by 
demonstration, convert gesture data into a visual 
representation, and then declaratively modify it  

In this section, we describe the above approaches in detail, 
with examples from the literature. We comment on their 
strengths and weaknesses based on evaluations conducted 
with software that implement them. 

Using Graphs of Movement Data 
Visualizing and manipulating movement data using 2-
dimensional graphs that represent low-level kinematic 
information is a popular approach for authoring mid-air 
gestures. This approach is often preferred when gesture 
detection is performed using inertial sensors such as 
accelerometers and gyroscopes. It also accommodates other 
sensors that read continuously variable data such as 
bending, light and pressure. Commonly the horizontal axis 
of the graph represents time while the vertical axis 
corresponds to the reading from the sensor. Often a “multi-
waveform” occupies the graph, in order to represent data 
coming in from multiple axes of the sensor. Below, we 
study three software tools that implement graphs for 
representing gesture data: Exemplar, MAGIC and GIDE. 

Exemplar 
Exemplar [3] relies on demonstration to acquire gesture 
data and from a variety of sensors - accelerometers, 
switches, light sensors, bend sensors, pressure sensors and 
joysticks. Once a signal is acquired via demonstration, on 
the resulting graph, the developer marks the area of interest 
that corresponds to the desired gesture. The developer may 
interactively apply filters on the signal for offset, scaling, 
smoothing and first-order differentiation. (Figure 1) 
Exemplar offers two methods for recognition: One is 
pattern matching, where the developer introduces many 
examples of a gesture using the aforementioned method and 
new input is compared to the examples. The other is 
thresholding, where the developer manually introduces 
thresholds on the raw or filtered graph and gestures are 
recognized when motion data falls between the thresholds. 
This type of thresholding also supports hysteresis, where 
the developer introduces multiple thresholds that must be 
crossed for a gesture to be registered. 

 
Figure 1: The Exemplar gesture authoring environment. [3] 
From left to right, the interface reflects the developer’s 
workflow: Data from various sensors connected to the system 
is displayed as thumbnails and the sensor of interest is 
selected; filters are applied to the incoming signal; areas of 
interest are marked for pattern recognition or thresholds are 
set; and the resulting gesture is mapped to output events. 

Exemplar’s user studies suggest that this implementation of 
the paradigm is successful in increasing developer 
engagement with the workings and limitations of the 
sensors used. Possible areas of improvement include a 
technique to visualize multiple sensor visualizations and 
events and finer control over timing for pattern matching. 

System for Multiple Action Gesture Interface Creation 
(MAGIC) 
Ashbrook and Starner’s MAGIC [1] is another tool that 
implements the 2-dimensional graphing paradigm. The 
focus of MAGIC is programming by demonstration. It 
supports the creation of training sets with multiple 
examples of the same gesture. It allows the developer to 
that keep track of the internal consistency of the provided 
training set; and check against conflicts with other gestures 
in the vocabulary and an “Everyday Gesture Library” of 
unintentional, automatic gestures that users perform during 
daily activities. MAGIC uses the graph paradigm only to 
visualize gesture data and does not support manipulation on 
the graph. (Figure 2) 

One important feature in MAGIC is that the motion data 
graph may be augmented by a video of the gesture example 
being performed. Results from user studies indicate that this 
feature has been highly favored by users, during both 
gesture recording and retrospection.  Interestingly, it is 
reported that the “least-used visualization” in MAGIC “was 
the recorded accelerometer graph;” with most users being 
“unable to connect the shape of the three lines” that 
correspond to the 3 axes of the accelerometer reading “to 
the arm and wrist movements that produced them.” 
Features preferred by developers turned out to be the 
videos, “goodness” scores assigned to each gesture 
according to how they match gestures in and not in their 
own class, and a sorted list depicting the “distance” of a 
selected example to every other example. 
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Figure 2: MAGIC’s gesture creation interface. [2] 

 

Gesture Interaction Designer (GIDE) 
More recently, GIDE [8] features an implementation of the 
graph paradigm for authoring accelerometer-based mid-air 
gestures. GIDE leverages a “modified” hidden Markov 
model approach to learn from a single example for each 
gesture in the vocabulary. The user interface implements 
two distinct features: (1) Each gesture in the vocabulary is 
housed in a “gesture editor” component which contains the 
sensor waveform, a video of the gesture being performed, 
an audio waveform recorded during the performance, and 
other information related to the gesture. (2) A “follow” 
mode allows the developer to perform gestures and get real-
time feedback on the system’s estimate of which gesture is 
being performed (via transparency and color) and where 
they are within that gesture. (Figure 3) This feedback on the 
temporal position within a gesture is multimodal: The 
sensor multi-waveform, the video and the audio waveform 
from the video are aligned and follow the gestural input. 
GIDE also supports “batch testing” by recording a 
continuous performance of multiple gestures and running it 
against the whole vocabulary to check if the correct 
gestures are recognized at the correct times. 

User studies on GIDE reveal that the combination of multi-
waveform, video and audio was useful in making sense of 
gesture data. Video was favored particularly since it allows 
developers to still remember the gestures they recorded 
after an extended period of not working on the gesture 
vocabulary. Another finding from the user studies was the 
suggestion that the “batch testing” feature where the 
developer records a continuous flow of many gestures to 
test against could be leveraged as a design strategy – 
gestures could be extracted from a recorded performance of 
continuous movement.  

 
Figure 3: The “follow” mode in the GIDE interface. [8] 

 

Discussion 
Graphs that display acceleration data seem to be the 
standard paradigm for representing mid-air gestures tracked 
using acceleration sensors. This paradigm supports direct 
manipulation for segmenting and filtering gesture data, but 
manipulating acceleration data directly to modify gestures 
is unwieldy. User studies show that graphs depicting 
accelerometer (multi-)waveforms are not effective as the 
sole representation of a gesture, but work well as a 
component within a multimodal representation along with 
video. 

Visual Markup Languages 
Using a visual markup language for authoring gestures can 
allow for rich expression and may accommodate a wide 
variety of gesture-tracking devices, e.g. accelerometers and 
skeletal tracking, at the same time. The syntax of these 
visual markup languages can be of varying degrees of 
complexity, but depending on the sensor(s) used for gesture 
detection, making use of the capabilities of the hardware 
may not require a very detailed syntax. In this section we 
examine a software tool, EventHurdle, that implements a 
visual markup language for gesture authoring; and we 
discuss a gesture spotting approach based on control points 
which has not been implemented as a gesture authoring 
tool, but provides valuable insight. 

EventHurdle 
Kim and Nam describe a declarative hurdle-driven visual 
gesture markup language implemented in the EventHurdle 
authoring tool [6]. The EventHurdle syntax supports gesture 
input from single-camera-based, physical sensor-based and 
touch-based gesture input. In lieu of a timeline or graph, 
EventHurdle projects gesture trajectory onto a 2-
dimensional workspace. The developer may perform the 
gestures, see the resulting trajectory on the workspace, and 
declaratively author gestures on the workspace by placing 
“hurdles” that intersect the gesture trajectory. Hurdles may 
be placed in ways that result in serial, parallel and/or 
recursive compositions. (Figure 4) “False hurdles” are 
available for specifying unwanted trajectories. While an 
intuitive way to visualize movement data from pointing 
devices, touch gestures and blob detection; this approach 
does not support the full range of expression inherent in 3-
dimensional mid-air gesturing. 
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Figure 4: EventHurdle's visual markup language allows for a 
variety of compositions: (from top left) a simple gesture with 
one hurdle; serial and parallel compositions; combinations of 
serial and parallel compositions; recursive gesturing. [6] 

 

Gestures defined in EventHurdle are configurable to be 
location-sensitive or location-invariant. By design, 
orientation- and scale-invariance are not implemented in 
order to avoid unnecessary technical options that may 
distract from “design thinking.” 

User studies on EventHurdle comment that the concept of 
hurdles and paths is “easily understood” and it “supports 
advanced programming of gesture recognition.” Other than 
this, supporting features, rather than the strengths and 
weaknesses of the paradigm or comparison with other 
paradigms, have been the focus of user studies. 

Control Points 
Hoste, De Rooms and Signer describe a versatile and 
promising approach that uses spatiotemporal constraints 
around control points to describe gesture trajectories [4]. 
While the focus of the approach is on gesture spotting (i.e. 
segmentation of a continuous trajectory into discrete 
gestures) and not gesture authoring, they do propose a 
human-readable and manipulable external representation. 
(Figure 5) This external representation has significant 
expressive power and support for programming constructs 
such as negation (for declaring unwanted trajectories) and 
user-defined temporal constraints. While the authors’ 
approach is to infer control points for a desired gesture from 
an example, the representation they propose also enables 
the manual placement of control points.  

The authors do not describe an implementation that has 
been subjected to user studies. However, they discuss a 
number of concepts that add to the expressive power of 
using control points as a visual markup language to 
represent and manipulate gesture information. The first is 
that it is possible to add temporal constraints to the markup; 
i.e. a floor or ceiling value can be specified for the time 
taken by the tracked limb or device to travel between 
control points. This is demonstrated not on the graphical 
markup (which can be done easily), but on textual code 
generated to describe a gesture – another valuable feature. 
The second such concept is that the control points are 

surrounded by boundaries whose size can be adjusted to 
introduce spatial flexibility and accommodate “noisy” 
gestures. Third, boundaries can be set for negation when the 
variation in the gesture trajectory is too much. The authors 
discuss linear or planar negation boundaries only, but 
introducing negative control points into the syntax could 
also be explored. Finally, a “coupled recognition process” is 
introduced, where a trained classifier can be called to 
distinguish between potentially conflicting gestures; e.g. a 
circle and a rectangle that share the same control points. 

One limitation of this approach is the lack of support for 
scale invariance. One way of introducing scale invariance 
may be to automatically scale boundary sizes and temporal 
constraints with the distance between control points. 
However, it is likely that the relationship between optimal 
values for these variables is nonlinear, which could make 
automatic scaling infeasible. 

Discussion 
The expressive power and usability of a visual markup 
language may vary drastically depending on the specifics of 
the language and the implementation. The general 
advantage of this paradigm is that it is suitable for 
describing and manipulating location-based gesture 
information (rather than acceleration-based information 
commonly depicted using graphs). This makes using a 
visual markup language suitable for mid-air gestures 
detected by depth-sensing cameras, where the interaction 
space is fixed and the limbs of the users move in relation to 
each other. Either the motion sensing device or certain parts 
of the skeletal model could be used to define a reference 
frame and gesture trajectories could be authored in a 
location-based manner using a visual markup language. 

Timelines 
Timelines of frames are commonly used in video editing 
applications. They often consist of a series of ordered 
thumbnails and/or markers that represent the content of the 
moving picture and any editing done on it, such as adding 
transitions. 

 

 
Figure 5: Using control points to represent gestures [4]. (Left) 
A “noisy” gesture still gets picked up due to relaxed 
boundaries around control points. (Right) Negation is 
introduced via vertical boundaries so that large movements in 
the vertical axis are distinguished from the desired gesture. 
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System UI Paradigm Programming Approach Insights from user studies 

Exemplar [3] Graphs Demonstration Increases engagement with sensor 
workings and limitations. 

MAGIC [1] Graphs (multi-waveform) Demonstration 
Users unable to connect waveform 
to physical movements. Optional 
video is favored. 

GIDE [8] Graphs (multi-waveform 
with video) Demonstration Multimodal representation helps 

make sense of gesture data. 

EventHurdle [6] Visual markup language Declaration Easily understood. Supports 
“advanced” programming. 

Control Points [4] Visual markup language Declaration / Demonstration Not implemented. 
Gesture Studio 1 Timeline Demonstration Not published. 

Table 1: Summary of studies on systems that exemplify three user interface paradigms for visually authoring mid-air gestures.

Gesture Studio 
One application that implements a timeline to visualize 
gesture information is the commercial Gesture Studio.1 The 
application works only with sensors that detect gestures 
through skeletal tracking using an infrared depth camera. 
Developers introduce gestures in Gesture Studio by 
demonstration, through performing and recording 
examples. The timeline is used to display thumbnails for 
each frame of the skeleton information coming from the 
depth sensor. The timeline is updated after the developer 
finishes recording a gesture, while during recording a 
rendering of the skeletal model tracked by the depth sensor 
provides feedback. After recording, the developer may 
remove unwanted frames from the timeline to trim gesture 
data for segmentation. Reordering frames is not supported 
since gestures are captured at a high frame rate (depending 
on the sensor, usually around 30 frames per second), which 
would make manual frame-by-frame editing inconvenient. 
The process through which these features have been 
selected is opaque, since there are no published studies that 
present the design process or evaluate Gesture Studio in 
use. 

Discussion 
In gesture authoring interfaces, timelines make sense when 
gesture tracking encompasses many limbs and dynamic 
movements that span more than a few seconds. Spatial and 
temporal concerns for gestures in 2 dimensions, such as 
those performed on surfaces, can be represented on the 
same workspace. The representation of mid-air gestures 
requires an additional component such as a timeline to 
show the change over time.  

Discussion 
We have presented a number of systems that exemplify 
three user interface paradigms for visually authoring mid-
air gestures for computing applications (see Table 1 for a 
summary). For sensor-based gesturing, the standard 
                                                             
1 http://gesturestudio.ca/ 

paradigm used to represent gesture information appears to 
be projecting the sensor waveforms onto a graph. Graphs 
appear to work well as components that represent sensor-
based gestures, allow experimentation with filters and 
gesture recognition methods, and support direct 
manipulation to some extent.  User studies show that while 
the graphs alone may not allow developers to fully grasp 
the connection between movements and the waveform [1], 
they have been deemed useful as part of a multimodal 
gesture representation [8]. Using hurdles as a visual markup 
language offers an intuitive and expressive medium for 
gesture authoring, but it is not able to depict fully 3-
dimensional gestures. Using spherical control points may be 
more conducive to direct manipulation while still affording 
an expressive syntax, but no implementation of this 
paradigm exists for authoring mid-air gestures. Finally, 
timelines of frames may come in handy for visualizing 
dynamic gestures with many moving elements, such as in 
skeletal tracking; but used in this fashion they allow only 
visualization and not manipulation. 

There are paradigms that allow for the authoring of sensor-
based gestures both declaratively and through 
demonstration. For skeletal tracking interfaces, tools based 
on demonstration exist, but we have not come across visual 
declarative programming tools for skeletal tracking 
interfaces. In the next section, we propose a user interface 
paradigm for declaratively authoring mid-air gestures for 
skeletal tracking interfaces. 

PROVOCATION: SPACE DISCRETIZATION AS A NOVEL 
PARADIGM FOR AUTHORING MID-AIR GESTURES 
The paradigms that we surveyed above each have their 
strengths and weaknesses. We wish to propose a novel 
paradigm for declaratively authoring mid-air gestures, 
which we will call space discretization. This paradigm 
conceptually supports both declaration and demonstration 
as ways to introduce gestures, and direct manipulation to 
edit them. The paradigm is adaptable for sensor-based 
interactions and touch gestures. We will present a rendition 
aimed at authoring gestures for skeletal tracking interfaces. 
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Figure 6: A 2-dimensional “Z” gesture defined using ordered 

hotspots in discretized space.  

Overview and Implementation 
We have implemented this paradigm as part of an 
application called Hotspotizer. The application has been 
developed as an end-to-end suite to facilitate rapid 
prototyping of gesture-based interactions and adapting 
arbitrary interface for gesture control. Collections of 
gestures can be created, saved, loaded, modified and 
mapped to a keyboard emulator within the application. The 
current version is configured to work with the Microsoft 
Kinect sensor and is available online as a free download.2 

The paradigm we implemented works by partitioning the 
space around the tracked skeletal model into discrete spatial 
compartments. In a manner that is similar to the use of 
control points in Hoste, De Rooms and Signer’s approach, 
these discrete compartments can be marked and activated to 
become “hotspots” that register movement when a tracked 
limb enters them. (Figure 6) Our approach may be likened 
to modifying the control points paradigm to use cubic 
instead of spherical boundaries and allow the placement of 
control points only at discrete locations in space. This is 
due to the difficulty of manipulating continuously moveable 
control points in 3 dimensions. Furthermore, using discrete 
hotspots instead of control points allows for the boundaries 
of the control points to be in custom shapes rather than 
spheres only. Considering the precision of current skeletal 
tracking devices, the difficulty of manipulating free-form 
regions rather than discrete compartments does not pay off. 

In Hotspotizer, the compartments are cubes that measure 15 
cm on each side and the workspace is a cube, 300 cm on 
each side, the centroid of which is fixed to the tracked 
skeleton’s “hip center” joint returned by the Kinect sensor. 
(Figure 7) The workspace has been sized to accommodate 
larger users, and the compartments have been sized, 
through empirical observations, to reflect the sensor’s 
precision. The alignment of the workspace to the user’s 
body results in gestures being location-invariant with 
respect to the user’s position relative to the depth camera.  

                                                             
2 http://designlab.ku.edu.tr/design-thinking-research-
group/hotspotizer/ 

 
Figure 7: A 3-dimensional “swipe” gesture to be performed 
with the right hand, implemented in Hotspotizer. The front 
view (A) and the side view (B) depict the third frame, selected 
from the timeline (C). The 3D viewport (D) depicts all three 
frames, using transparency to imply the order. 

However, gestures in Hotspotizer are always location-
dependent with respect to the gesturing limb’s position 
relative to the rest of the body. Scale- and orientation-
invariance are not automatically supported, but it is possible 
to arrange hotspots in creative ways that allow the same 
gesture to be executed on different scales. 

Splitting gesture data into frames, which are navigated 
using a timeline, supports authoring dynamic movements. 
The side view and front view grids only display hotspots 
that belong to one frame at a time, since placing all of the 
hotspots that belong to different frames of a gesture on the 
same grids results in a convoluted interface. During gesture 
tracking, if the tracked limb enters any one of the hotspots 
that belongs to a frame, the entire frame registers a “hit.” 
For a gesture to be registered, its frames must be hit in the 
correct order and the time that elapses between subsequent 
frames registering a hit must not exceed a pre-defined 
timeout. Conceptually the timeout could be adjustable; in 
the current implementation, for the sake of a simple user 
interface, it is hard-coded to 500ms in Hotspotizer. 

In essence, we propose a design for an expressive user 
interface paradigm for authoring mid-air gestures detected 
through skeletal tracking. Aspects of this design are based 
on the control points paradigm described in [4]. We 
modified the paradigm to confine the locations of the 
control points to discrete pre-defined locations and use 
cubic control point boundaries of fixed size, which can be 
added together to create custom shapes. We also introduce a 
timeline component so that spatial and temporal constraints 
can be manipulated unambiguously. 

Future Work 
Future work includes features to enrich the expressiveness 
of the paradigm and evaluating its performance in use. 

The current implementation of the paradigm in Hotspotizer 
supports only declaration – manually specifying hotspots by 
selecting relevant areas on a grid. The interface may be 
extended to allow the introduction of gestures through 
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demonstration, by inferring hotspots automatically from 
recorded gestures. 

“Negative hotspots” to mark compartments that should not 
be crossed when gesturing are a possibility for future 
iterations on Hotspotizer. So is supporting gestures 
performed by multiple limbs; possibly by using a multi-
track timeline and coupling keyframes where movements of 
the limbs should be synchronized. 

In order to describe more complex gestures, it may make 
sense to introduce classifier-coupled gesture recognition. 
One shortage of the paradigm is that it does not 
accommodate the repeated usage of hotspots within 
different frames of a gesture well. If a gesture requires that 
a certain hotspot be hit twice, for example, the current 
implementation does not afford a way of detecting whether 
the first or the second hit is registered as a user performs the 
gesture. 

Finally, as the precision of skeletal tracking devices 
increases and in order to accommodate devices that track 
smaller body parts such as the hands, adjustable workspace 
and compartment sizing may be introduced. 

Formative evaluations have been conducted throughout the 
development Hotspotizer, focusing on prioritizing features 
and the visual design of the interface. Results of these, 
along with summative evaluations that compare the 
application to existing solutions and uncover user strategies 
for using the tool will be published in the future. 

CONCLUSION 
We reviewed existing paradigms for authoring mid-air 
gestures and discussed how graphs of sensor waveforms are 
suitable components that represent acceleration-based 
gesture data; how visual markup languages are better suited 
for location-based gesture data; and how timelines are used 
to communicate dynamic gesturing. We presented a novel 
gesture authoring paradigm for authoring mid-air gestures 
sensed by skeletal tracking: a visual markup language based 
on space discretization supported by a timeline to visualize 
temporal aspects of gesturing. Future work may build 

supporting features onto this paradigm and evaluate its 
performance in use by developers. 
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