
A computational model for MapReduce job flow

Tommaso Di Noia, Marina Mongiello, Eugenio Di Sciascio

Dipartimento di Ingegneria Elettrica e Dell’informazione
Politecnico di Bari

Via E. Orabona, 4 – 70125 BARI, Italy
{firstname.lastname}@poliba.it

Abstract. Massive quantities of data are today processed using parallel
computing frameworks that parallelize computations on large distributed
clusters consisting of many machines. Such frameworks are adopted in big
data analytic tasks as recommender systems, social network analysis, le-
gal investigation that involve iterative computations over large datasets.
One of the most used framework is MapReduce, scalable and suitable for
data-intensive processing with a parallel computation model character-
ized by sequential and parallel processing interleaving. Its open-source
implementation – Hadoop – is adopted by many cloud infrastructures as
Google, Yahoo, Amazon, Facebook.
In this paper we propose a formal approach to model the MapReduce
framework using model checking and temporal logics to verify properties
of reliability and load balancingof the MapReduce job flow.

1 Introduction and motivation

During the last decades the phenomenon of “Big Data” has steadily increased
with the growth of the amounts of data generated in academic, industrial and
social applications. Massive quantities of data are processed on large distributed
clusters consisting of commodity machines. New technologies and storage mech-
anisms are required to manage the complexity for storage, analyzing and pro-
cessing high volumes of data. Some of these technologies provide the use of
computing as utility – cloud computing – and define new models of parallel and
distributed computations. Parallel computing frameworks enable and manage
data allocation in data centers that are the physical layer of cloud comput-
ing implementation and provide the hardware the cloud runs on. One of the
most known framework is MapReduce. Developed at Google Research [1] it has
been adopted by many industrial players due to its properties of scalability and
suitability for data-intensive processing. The main feature of MapReduce with
respect to other existing parallel computational model is the sequential and par-
allel computation interleaving. MapReduce computations are performed with
the support of data storage Google File System (GFS). MapReduce and GFS
are at the basis of an open-source implementation Hadoop1 adopted by many
cloud infrastructures as Google, Yahoo, Amazon, Facebook.

1 http://hadoop.apache.org

335

In this paper we propose a formal approach to model the MapReduce frame-
work using model checking and tempora l logics to verify some relevant properties
as reliability, load balancing, lack of deadlock of the MapReduce job flow. To
the best of our knowledge only two works have combined MapReduce and model
checking with a di↵erent aim from ours: in [2] MapReduce is adopted to com-
pute distributed CTL algorithms and in [6] MapReduce is modeled using CSP
formalism. The remaining of the paper is organized as follows. In Section 2 we
recall basics of model checking and temporal logics, the formalism used to define
and simulate our model. Section 3 provides a brief overview of the main features
of MapReduce. Section 4 proposes our formal model of job flow in Mapreduce
computation while Section 5 proposes an analytical model in the Uppaal model
checker language with properties to be checked. Conclusion and future works are
drawn in the last section.

2 Model Checking and Temporal Logics

The logical language we use for the model checking task is the Computation
Tree Logic (CTL), a propositional, branching, temporal logic [5].

The syntax of the formulae can be defined, using Backus-Naur form, as fol-
lows (where p is an atomic proposition): �, ::= p | � ^ | � _ | ¬� | � !
 | � $ | EF� | EX� | EG� | E(�U) | AG� | AF� | AX� | A(�U). An
atomic proposition is the formula true or a ground atom CTL formulae can also
contain path quantifiers followed by temporal operators. The path quantifier E
specifies some path from the current state, while the path quantifier A specifies
all paths from the current state. The temporal operators are X, the neXt-state
operator; U , the Until operator; G, the Globally operator; and F the Future
operator. The symbols X, U , G, F cannot occur without being preceded by the
quantifiers E and A.

The semantics of the language is defined through a Kripke structure as the
triple (S, !, L) where S is a collection of states, ! is a binary relation on S ⇥S,
stating that the system can move from state to state. Associated with each state
s, the interpretation function L provides the set of atomic propositions L(s) that
are true at that particular state [3]. The semantics of boolean connectives is as
usual. The semantics for temporal connectives is as follows: X� specifies that
� holds in the next state along the path. �U specifies that � holds on every
state along the path until is true. G� specifies that � holds on every state
along the path. F� specifies that there is at least one state along the path in
which � is true. The semantics of formulae is defined as follows: EX�: � holds
in some next state; EF�: a path exists such that � holds in some Future state ;
EG�: a path exists such that � holds Globally along the path; E(�U): a path
exists such that � Until holds on it; AX�: � holds in every next state; AF�:
for All paths there will be some Future state where � holds; AG�: for All paths
the property � holds Globally; A(�U): All paths satisfy � Until . The model
checking problem is the following: Given a model M , an initial state s and a CTL
formula �, check whether M, s |= �. M |= � ehen the formula must be checked
for every state of M .

T. di Noia, M. Mongiello, E. Di Sciascio. A computational model for MapReduce job flow

336

3 MapReduce Overview and proposed model

MapReduce is a software framework for solving large-scale computing problems
over large data-sets and data-intensive computing. It has grown to be the pro-
gramming model for current distributed systems, i.e. cloud computing. It also
forms the basis of the data-center software stack [4].

MapReduce framework was developed at Google Research as a parallel pro-
gramming model with an associated implementation. The framework is highly
scalable and location independent. It is used for the generation of data for
Google’s production web search service, for sorting, for data-intensive appli-
cations, for optimizing parallel jobs performance in data-intensive clusters. The
most relevant feature of MapReduce processing is that computation runs on a
large cluster of commodity machines [1]; while the main feature with respect
to other existing parallel computational models is the sequential and parallel
computation interleaving.

The MapReduce model is made up of the Map and Reduce functions, which
are borrowed from functional languages such as Lisp [1]. Users’ computations are
written as Map and Reduce functions. The Map function processes a key/value
pair to generate a set of intermediate key/value pairs. The Reduce function
merges all intermediate values associated with the same intermediate key. In-
termediate functions of Shu✏e and Sorting are useful to split and sort the data
chunks to be given in input to the Reduce function. We now define the computa-
tional model for MapReduce framework. We model jobs and tasks in MapReduce
using the flow description as shown in Figure 1.

Definition 1 (MapReduce Graph (MRG)). A MapReduce Graph (MRG) is
a Direct Acyclic Graph G = {N,E}, where nodes N in the computation graph are
the tasks of computation – N = M[S[SR[R (M = map,S = shuffle,SR =
sort,R = reduce) – and edges e 2 E are such that:

1. E ✓ (M ⇥ S) [(S ⇥ SR) [(SR ⇥ R), i.e. “edges connect map with shu✏e,
shu✏e with sort and sort with reduce tasks”;

2. e 2 M ⇥ S breaks input into tokens;
e 2 S ⇥ SR sorts input tokens by type;
e 2 SR ⇥ R gives sort tokens to reducer.

3. Reduce sends input data for cluster allocation to the file system

Definition 2 (MapReduce Task). A MapReduce task t is a token of compu-
tation such that t 2 (M [S [SR [R).

Definition 3 (MapReduce Job). A MapReduce Job is the sequence t1 !
t2 . . . ! tn of MapReduce tasks where

t1j = (Mi, .., Mi+p) ! t2j = Sk ! t3j = SRk ! t4j = Rk

with Mi 2 M, i = 1 . . . n, Sj 2 S, SRj 2 SR, Rj 2 R, j = 1 . . . m.

T. di Noia, M. Mongiello, E. Di Sciascio. A computational model for MapReduce job flow

337

Fig. 1. MapReduce job flow model

4 Uppaal simulation model

In this Section we briefly describe the implemented model in the Uppaal2 model
checker’s formalism. Uppaal model is described in XML data format of model
checker description language and shown in the graphical interface of the tool as
a graph model.

The analytical model is made up of three templates: job, mapper and Google
File System (GFS). Figure 2 shows only the Uppaal graph model of the job
described using the statechart notation. Main states of the job template are Map,
Shu✏e, Sort and Reduce as defined in the theoretical model in Section 3. Other
states manage the flow of the job: Starvation models the state in which the task
waits for unavailable resource, Middle state manages exceptions, receiving input
and receiving keyval manage data during job flow. Finally medium level checks
input data for the Shu✏e state. Mapper template is made up of states: Prevision
that checks the behavior of the mappers working for the given job. The Prevision
state is followed by Error and out of order state in case of wrong behavior of
the mapper, or Work state in case of correct behavior of the mapper. Finally
the GFS template only manages the job execution.

To test the validity of the approach we simulated the model by instantiating a
given number of jobs with relative mappers. We checked the two main properties
of MapReduce framework, i.e. load balancing and fault tolerance.

Load Balancing. This property checks that the load of the Job J will be
distributed to all tasks of the Mapper Mi with given map and reduce tasks.
Hence when the job enters the state Map all the previson state of the mapper
are veryfied, this means that the load is balanced between all the mappers.

EG(J.Map) ^ AG(Mi.P revision)

Fault Tolerance. If the Mi map is out of service the job mapper schedules
an alternative task to perform the missed function that belongs to remaining

2 http://www.uppaal.org/

T. di Noia, M. Mongiello, E. Di Sciascio. A computational model for MapReduce job flow

338

Fig. 2. Uppaal simulation model

Mi. In the simulation model, mappercount is the counter of the total number of
mappers and mappersched is the variable that counts the scheduled mappers.
The assigned value, m is the number of mappers.

EF (M.Out of order) ^ AG(mapper count = m ^ mapper sched = m)

From the simulation results we checked that the model ensures load balancing
and fault tolerance.

5 Conclusion and future work

We proposed a formal model of MapReduce framework for data-intensive and
computing-intensive environment. The model introduces the definition of MapRe-
duce graph and MapReduce job and task. At this stage of the work we imple-
mented and simulated the model with Uppaal model checker to verify basics
properties of its computation as fault tolerance, load balancing and lack of dead-
lock. We are currently modeling other relevant features as scalability, data lo-
cality and extending the model with advanced job management activities such
as job folding and job chaining.

We acknowledge support of project “A Knowledge based Holistic Integrated
Research Approach” (KHIRA - PON 02 00563 3446857).

T. di Noia, M. Mongiello, E. Di Sciascio. A computational model for MapReduce job flow

339

References

1. Je↵rey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters, OSDI04: Sixth symposium on operating system design and implementation,
san francisco, ca, december, 2004. S. Dill, R. Kumar, K. McCurley, S. Rajagopalan,
D. Sivakumar, ad A. Tomkins, Self-similarity in the Web, Proc VLDB, 2001.

2. Feng Guo, Guang Wei, Mengmeng Deng, and Wanlin Shi. Ctl model checking
algorithm using mapreduce. In Emerging Technologies for Information Systems,
Computing, and Management, pages 341–348. Springer, 2013.

3. M.R.A. Huth and M.D. Ryan. Logic in Computer Science. Cambridge University
Press, 1999.

4. Krishna Kant. Data center evolution: A tutorial on state of the art, issues, and
challenges. Computer Networks, 53(17):2939–2965, 2009.

5. Edmund M.Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. Cam-
bridge, Massachusetts, USA: MIT press., 1999.

6. Fan Yang, Wen Su, Huibiao Zhu, and Qin Li. Formalizing mapreduce with csp.
In Engineering of Computer Based Systems (ECBS), 2010 17th IEEE International
Conference and Workshops on, pages 358–367. IEEE, 2010.

T. di Noia, M. Mongiello, E. Di Sciascio. A computational model for MapReduce job flow

340

