
R43ples: Revisions for Triples

An Approach for Version Control in the Semantic Web

Markus Graube
Chair for Process Control

Systems Engineering
Technische Universität

Dresden, Germany
markus.graube@tu-

dresden.de

Stephan Hensel
Chair for Process Control

Systems Engineering,
Technische Universität

Dresden, Germany
stephan.hensel@tu-

dresden.de

Leon Urbas
Chair for Process Control

Systems Engineering,
Technische Universität

Dresden, Germany
leon.urbas@tu-

dresden.de

ABSTRACT
For most use cases, the Semantic Web provides essential
mechanisms to interlink data in a fast and efficient way.
However, it is still not widely accepted in industry since some
important features are not mature enough. Requirements
include easier model transformation and access to dynamic
data. One of the most missing important features is version
control which would make it possible to record changes in
a way that they can be rolled back at any time. Recent
version control system are not very well integrated into the
Semantic Web.

This paper shows a novel way of dealing with version control
for Linked Data. It presents R43ples as an approach using
named graphs to semantically store the differences between
revisions. Furthermore it allows direct access and manip-
ulation of revisions with SPARQL. Thus, the access is al-
most transparent for the clients which can still use known
SPARQL queries enhanced with some additional keywords.
A prototypical implementation of the system shows a proof
of concept and performance considerations.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query lan-
guages; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software—Information networks; H.3.5 [Information
Storage and Retrieval]: Online Information Services—
Web-based services

General Terms
Linked Data, Versioning, SPARQL, Revision, Query, Named
Graphs

1. INTRODUCTION
The explosion of the Semantic Web in recent years [9] has
provided the opportunity to develop advanced technology

Copyright is held by the author/owner(s).
LDQ 2014, 1st Workshop on Linked Data Quality Sept. 2, 2014, Leipzig,
Germany.

enablers to support new inter-organisational collaboration
models for the creation of virtual enterprises. The Com-
Vantage1 project explores the capabilities of Linked Data
(LD) as a flexible and rapidly unifying way to provide access
to the data vaults of all stakeholders of a virtual enterprise
by creating a product-centred collaboration space. However,
the almost unlimited openness and flexibility of Linked Data
may also involve disadvantages. Industrial applications re-
quire reliability, security and stability. Thus, they need to
keep control over the process of data manipulation. In fact,
version control is an essential requirement for them to adapt
this technology.

Section 2 of this paper states the need for version control
systems in the Semantic Web and provides an overview of
related work and our contributions. In section 3, the ver-
sion control concept of R43ples is presented. Section 4 de-
scribes the prototypical implementation. Section 5 evaluates
the concept and gives some metrics of the implementation.
Section 6 discusses the concept further before the paper is
concluded with an outlook of possible enhancements.

2. BACKGROUND
2.1 Linked Data
Linked Data is a set of best practices for modelling and
interconnecting information in a widely accepted semantic
way. It is becoming more and more important in the world
of Linked Open Data. It uses the Resource Description
Framework (RDF) as the base model. RDF handles informa-
tion as a semantic network of single statements consisting
of subject, predicate and object. LD information entities
are referenced by URIs. A named graph is a collection of
RDF statements grouped together and identified by a URI.
Named graphs are a kind of transformation of quads (a triple
with a fourth element). SPARQL (SPARQL Protocol And
RDF Query Language) is the dominant query language in
the Semantic Web. It uses a graph-based matching mecha-
nism with powerful filter and aggregating functionality and
additional support for named graphs. Nevertheless, Linked
Data might also be a useful technology for industrial envi-
ronments [6]. This requires controlled write mechanisms to
the Linked Data cloud as stated by Berners-Lee and O’Hara
[2]. Version control could be one way to achieve such a con-
trolled read-write mechanism.
1EU FP7 Integrated Project “Collaborative Manufacturing
Network for Competitive Advantage”: www.comvantage.eu

www.comvantage.eu

2.2 Version Control for Triples
The major function of version control systems is to record
changes in the information model in order to get back to
a prior version when needed. Furthermore, version control
makes it possible to merge changes of different authors into
one common information base. Obviously, this functional-
ity is not only needed for software engineering but for data
in general. This includes Linked Data which has a special
demand for version control because of its very open nature
and the number of possible contributors to a data set.

Current version control systems are usually either text-based
(changes can be localised in lines) or completely binary (no
localisation of changes possible). However, Linked Data
is graph-based and thus in this case the existing systems
don’t meet the localisation mechanisms which is necessary
for merging revisions. Additionally, one can differentiate be-
tween distributed systems and central systems. In a central
system like Subversion2 the whole repository is stored on
a central server and the clients have local working copies.
In distributed systems like Git3, every client holds the full
repository and can re-synchronise with other clients.

2.3 Related Work
2.3.1 Model Versioning

There has been a lot of previous work on versioning of mod-
els. For example, Watkins and Nicole [16] started with an
ontology for modelling the provenance of documents defin-
ing a set of meta information for versioning. Taentzer et
al. [12] distinguish between state-based and operation based
versioning systems which have different mechanisms for con-
flict detecting and handling. However, although versioning
of models is a key technique in model driven engineering, it
is not supported by a widely accepted concept. Most models
described in the literature use entities with identifiers and
don’t rely on any order in a collection. Thus, they can be
easily handled as graphs, which fits the base model in the
Semantic Web.

2.3.2 Temporal RDF
Another interesting approach which allows tracking of infor-
mation over time in Linked Data is the use of temporal RDF
suggested by [7]. However, we think that versioninghas the
advantage over time labelling that related changes are bun-
dled in semantic way and not only by the same time stamp.
Furthermore, there is no query for temporal RDF available
that has a good compatibility with SPARQL.

2.3.3 Semantic Web Versioning
Most authors who handle version control systems for the Se-
mantic Web follow an operation based approach which relies
on specific operations and are thus not well integrated in the
current Semantic Web environment. Auer and Herre [1] base
their concept on atomic changes to RDF graphs which are
annotated in reified statements4 of the original data. The
approach of Cassidy and Ballantine [3] uses context infor-
mation in order to store information about patches. The
changed triples are on the other hand modelled as reified

2http://subversion.apache.org/
3http://git-scm.com/
4http://www.w3.org/TR/rdf-mt/#Reif

statements. Im et al. [8] use a delta-based approach for
versioning RDF triples and introduce an aggregated delta
approach which leverages the construction of a version by
storing additional deltas not only to the prior version but to
all other versions.

Some Semantic Web applications support synchronising be-
tween different users, e.g. OntoWiki Mobile [4]. This is close
to a version control system. However, this feature is deeply
integrated into the specific application and its stack.

The concept of Vander Sande et. al. [13], based on [14], for
version control seems to meet almost all requirements for
the Semantic Web. Unfortunately, only parts of the system
are modelled semantically, e.g. other parts may use hash
tables to get relations between revisions and difference sets.
Furthermore, the distributed nature of Git is not utilised
despite of the promising title of the article.

2.4 Contributions
R43ples offers a completely semantic approach for version-
ing RDF data sets in named graphs and accessing them via
SPARQL. The concept is based partly on the work of Vander
Sande et. al. [13]. However, our approach has no need for
additional languages since we use the SPARQL 1.1 features
for updating data. This can be done with adding a few
keywords to SPARQL. Furthermore, we propose a model
of revision information describing both commits as well as
changes in a purely semantic way using named graphs in-
stead of additional look-up tables. Finally, we provide a
performance evaluation of a prototypical implementation.

3. CONCEPT
3.1 Graph Based Version Control
We use a central repository since no local working copy in
a traditional sense can be checked out in the Semantic Web
and held on the client. The complete graph could be ex-
tremly large and every piece of information is potentially
connected with other information spread over the global
Linked Data cloud. This also excludes conventional Lock-
Modify-Unlock mechanisms. This would imply that the
whole network has to be locked. Thus we use a Copy-
Modify-Merge mechanism where clients get their informa-
tion via SPARQL (copy), work with this in their local mem-
ory (modify) and commit their updates to the server via
SPARQL again (merge). This makes it possible for users
to keep on working with the well-known SPARQL interface
while providing fast and flexible revisions management.

R43ples handles version control on a graph level and not the
instance level. Thus, a specific version of a whole named
graph is the unit under version control. It is stored as a
revision which can be queried and used as a base for further
changes. Unlike in file-based systems (e.g. Subversion or
Git) where a revision contains a set of files representing a
specific point in time, a revision in R43ples contains only
one single named graph.

3.2 Semantic Revision Model
3.2.1 Data Model of Revisions

The whole approach uses semantics in order to avoid hidden
meanings which makes it hard for other clients to access the

http://subversion.apache.org/
http://git-scm.com/
http://www.w3.org/TR/rdf-mt/#Reif

information. Thus, revisions are modelled as Linked Data.
The data model uses PROV-O [15] as base ontology and is
extended by some attributes. The vocabulary is called Re-
vision Management Ontology (RMO). Figure 1 shows an ex-
cerpt of a graph revision model, with one commit generating
a new revision for a specific named graph (marked in grey).
The revisions are linked to the named graph http://test (via
the property rmo:revisionOf) and contain a revision num-
ber (rmo:revisionNumber) for a simple human friendly rep-
resentation. The property prov:wasDerivedFrom connects
two revisions and describes the revision graph. The commit
between two revisions is modelled as standard prov:Activity
connected via prov:used and prov:generated attributes. It
holds meta information about commit time (prov:atTime),
commit message (dcterms:title) and the actor committing
the changes (prov:wasAssociatedWith).

3.2.2 Naming Graphs for Storing Revisions
The named graph with the URI of the revisioned graph holds
the MASTER revision representing the terminal revision of
the default branch in the revision graph. The information
about other revisions and their connections and further re-
visioned graphs is stored in an additional named graph for
each revisioned graph called <r43ples-revisions>. All revi-
sion control systems have to provide information of all re-
visions while handling the number of storage. Since “97,3%
of the entire data in each version remains unchanged” [8] it
is necessary to compress this data. Delta-based storage is
the approach of choice here. According to [10] RDF triples
are the smallest unit of change and are thus the basis for
calculating the differences as deltas between revisions. The
differences of revisions are again a set of triples and can be
stored in additional named graphs. Every revision consists
of one ADD set and one DELETE set assigned with the
properties rmo:deltaAdded and rmo:deltaRemoved. Apply-
ing these delta sets to the prior revision will lead to the
current revision.

3.2.3 Tags and Branches
The R43ples approach supports tags as references to specific
revisions via the property rmo:references (as shown in fig-
ure 2). They are of type rmo:Tag and have a unique name
(rmo:tagName) as well as a description (rdfs:description).
Similarly, different branches are supported by allowing dif-
ferent successors of one revision via prov:isDerivedFrom. Each
terminal revision of the generated branches is referenced by
a rmo:Branch entity. The rmo:Master is a subclass pointing
to the default graph. All these references point to copies of
a full graph of this revision via rmo:fullGraph property.

The centralised approach of R43ples can easily achieve the
necessary uniqueness of the revision numbers. The revision
numbers can follow different schemes, for example just or-
dinals or using a hash. We decided for a more complex
naming scheme which indicates the position of a revision in
the graph. For the system these are just strings for provid-
ing a human-friendly identifier without semantic meaning
(although the revision number, not shown in figure 2, is also
part of the URI, e.g. “3.1-22”). The users need to be able to
retrieve the whole revision graph including the numbers of
the revisions. With R43ples it is possible to receive this in-
formation like any other data via SPARQL queries directly
on the revision graph <r43ples-revisions>.

3.3 Dynamic Handling of Revisions
3.3.1 Querying Revisions

Information from the MASTER revision is instantly avail-
able since the whole data set exists in the specified named
graph. It is used when the client does not specify a revision.
Therefore, it is likely that it will be accessed very often.

However, other revisions must be generated dynamically as
only the delta information is stored between two revisions.
With respect to the revision to be generated, all triples of
the add set must be added to the the previous revision and
all triples of the delete set must be removed from the pre-
vious revision. R43ples accepts slightly enhanced SPARQL
queries which allow to add the revision number for each spec-
ified graph in the SPARQL query. For each named graph g
specified in a query, a temporary graph TGg, r is generated
for the specified revision r according to equation 1 (gx = full
materialised revision x of graph g):

TGg,r = gnearestBranch+

nearestBranch∑
revision i=r

(deleteSetg,i−addSetg,i)

(1)

This simple formula can be mapped to a series of SPARQL
queries as presented in the pseudo code below. It firsts cre-
ates a graph <graph -rev_g > merging all change sets. Af-
terwards it rewrites the query so it uses this new tempo-
rary graph instead of the specified one. The result of the
SPARQL query on that graph is returned after cleaning up
the temporary graph.

def select_query(query):

for (graph,rev_g) in query.graphs_and_revs():

sparql("COPY GRAPH <graph > \

TO GRAPH <graph -rev_g >")

for rev in graph.path_to_revision(rev_g):

sparql("REMOVE GRAPH <rev.add_set_graph >

FROM GRAPH <graph -rev_g >")

sparql("ADD GRAPH <rev.delete_set_graph >

TO GRAPH <graph -rev_g >")

query.replace(graph, "graph -rev_g ")

result = sparql(query_string)

for (graph,rev_g) in query.graphs_and_revs():

sparql("DROP GRAPH <graph -rev_g >")

return result

When considering the merging of revisions, it does not mat-
ter which previous revision is used to generate the merged re-
vision due to the properties of SPARQL. An INSERT state-
ment of an existing triple does not insert it a second time
and a DELETE statement of a non-existing triple does not
end in an error message. The add set A and delete set D of
a revision with the set of triples Rm merged from revision
with sets of triples R1 and R2 must comply with the rules
from equations 2 and 3.

A = (Rm\R1) ∪ (Rm\R2) (2)

D = (R1\Rm) ∪ (R2\Rm) (3)

Figure 1: Data Model of a revision graph with ontology RMO

Figure 2: Model of master, branches and tags

3.3.2 Updating Revisions
Clients update revisions via the established SPARQL UP-
DATE command. This updates the revision graph with a
new revision node which references the new change sets. The
changes are both reflected in the new add and delete sets as
well as in the updated full graph. However, updates can
only be performed on the terminal sibling of a branch.

If a client wants to update a revision which is not referenced
by a branch, the commit is rejected. The client has to merge
its local changes with the most recent information of the
branch. Merging is the application of two different change
sets to one entity. If the local merge is possible, the client
can recommit these merged changes. The other option is to
explicitly create a new branch for the local changes.

The client cannot usually merge if it is unable to reconcile
the changes. These conflicts have to be resolved afterwards
in order to get a common consolidated data model in the
revision control system. Thus, the changes have to be com-

bined or one change has to be selected in preference to the
other. This is performed via an additional administrator
interface on the server.

3.4 SPARQL extension for R43ples
In a SPARQL query it has to be possible to determine the re-
vision of the involved named graphs. Furthermore, update
queries should contain information about the author and
a commit message. Partly, this information could be em-
bedded into the name of the graph. However, we strongly
believe that loading identifiers with semantics would be a
violation of the basic principles of Linked Data. Another
option are new keywords or specifying this information as
part of the WHERE clause as triple patterns like ?revision

rmo:revisionOf <sampleGraph> ; rmo:revisionNumber "43".
However, the latter one has the disadvantage that there is
no clear distinction between the specification of revision in-
formation and SPARQL query pattern.

We decided to introduce the additional keyword REVISION

SELECT ? s ?p ?o
FROM <sampleGraph> REVISION ”43”
WHERE {

? s ?p ?o .
}

Listing 1: SELECT query for revision 43 of graph

USER <mgraube>
INSERT DATA INTO <sampleGraph> REVISION ”

MASTER” MESSAGE ”Small change ”
{ <a> <c>. }

Listing 2: Update query building on top of revison
42

to SPARQL to add the necessary semantic. Furthermore,
the update mechanisms need some meta information about
the commit introduced by the keywords USER and MES-
SAGE. Finally, the creation of tags and branches is solved
by the keywords BRANCH and TAG.

In a SELECT query the user can define the revision number
by applying the FROM clause with the keyword REVISION.
It can be a number representing a revision, a string repre-
senting a branch or tag (e.g. “master”) or empty. When it
is empty or the keyword REVISION is missing, the MAS-
TER revision will be used as default. An exemplary query
is shown in listing 1.

Updates (INSERT or DELETE queries) can only be exe-
cuted on a branch specified by the branch name or the num-
ber of a revision referenced by a branch. In INSERT and
DELETE queries the performing user must first be defined.
Therefore the keyword USER is reserved. After the FROM
respectively the INTO clause the keyword REVISION iden-
tifies the graph revision following the same approach as in
a SELECT query. Furthermore, there could be attached a
commit message following the keyword MESSAGE as shown
in listing 2.

The REVISION parameter is necessary for the SPARQL
endpoint to check to which branch revision a client wants to
apply its changes. If the client wants to update a revision
that is not directly referenced by a branch, the server will
reject the commit. Then, the client needs to check if its data
model is consistent with the new information from a branch
revision. If so, it can resubmit its changes, or it can open
a new branch if there is a conflict the client is not able to
handle. If the branch revision of the server matches that
of the client, the server will accept the change and create
a new revision with the information provided. Then, the
responding branch reference will be forwarded to this new
revision.

Listing 3 depicts a SPARQL query for generating a new
branch. In the example, a new branch is created with the
information from revision 42. The same interface is avail-
able for creating a tag using the keyword TAG instead of
BRANCH.

USER <mgraube>
BRANCH <sampleGraph> REVISION ”42” TO ”

Feature xyz ”

Listing 3: Query for branching from revision 42

HTTP Parameter Description
graph-revision-number Revision of graph of

last query
graph-revision-number-of-master Current MASTER

revision number of
graph

Table 1: HTTP header parameters

The clients are kept aware of the recent MASTER revision
in every SPARQL response. The HTTP response header is
extended by additional fields which specify the current MAS-
TER revision number and the revision number on which the
query was executed for every named graph involved. Table 1
describes the construction of the parameter names. All un-
derlined sub strings are replaced with the current named
graph under version control. This information is not needed
by the client for querying. Yet it provides the new revision
number after a commit and is thus very useful for the client.

4. IMPLEMENTATION
The concept was implemented as proof of concept and its
source code is publicly available via GitHub5. The prototype
is realised as a SPARQL proxy rather than a modification of
an existing open-source SPARQL endpoint. The implemen-
tation works as a Java application. Jersey6 is used as REST-
ful (Representational State Transfer) Web service framework
and grizzly7 as the web server while Virtuoso8 acts as triple
store and SPARQL endpoint. A live demonstration sys-
tem is running on http://eatld.et.tu-dresden.de:8890/

r43ples/sparql.

Figure 3 shows the system structure. If a client wants to
use the revision control features of R43ples it has to send
the SPARQL queries to R43ples’ SPARQL endpoint instead
of the triplestore’s endpoint. Furthermore there is an ad-
ministrator interface which acts as a test bed for functions
that don’t yet have a proper REST interface. These func-
tions are controlled by a command line interface and perform
complex management of the graphs under version control.

Figure 3: System Structure

R43ples stores no information about the revisions itself but

5https://github.com/plt-tud/r43ples
6https://jersey.java.net/
7https://grizzly.java.net/
8http://virtuoso.openlinksw.com/

http://eatld.et.tu-dresden.de:8890/r43ples/sparql
http://eatld.et.tu-dresden.de:8890/r43ples/sparql
https://github.com/plt-tud/r43ples
https://jersey.java.net/
https://grizzly.java.net/
http://virtuoso.openlinksw.com/

CONSTRUCT {? s ?p ?o} WHERE {
GRAPH <NEW−REV−TEMP> { ? s ?p ?o }
FILTER NOT EXISTS { GRAPH <LAST−REV> { ? s

?p ?o } }
}

Listing 4: Get all added triples

uses a configured triplestore which is accessed by the triple
store interface. The communication is based on SPARQL
queries. To ensure the integrity of the data, only the SPARQL
proxy should have access to the different graphs which it cre-
ates. Access rights are defined in the triple store. The clients
need to know if the endpoint supports R43ples features in
addition to standard SPARQL. Hence, R43ples copies the
SPARQL 1.1 Service Description9 of the connected endpoint
and adds sd:r43ples as further sd:Feature.

The implemented proxy SPARQL endpoint can also handle
standard SPARQL queries. Of course, this raises the re-
quirement that the revisioned graph shall be only edited by
R43ples and its specific queries. Otherwise inconsistencies
would be generated. Virtuoso supports such access policies
for the SPARQL endpoint, prohibiting write access to the
<r43ples-revisions> graph and all graphs which are related
to R43ples.

The generation and update of the version system informa-
tion is completely implemented with the help of SPARQL
queries. R43ples performs a SPARQL update on a tem-
porary copy of the full graph of the specified branch. Af-
terwards, it retrieves all added triples with the SPARQL
query from listing 4 which returns all triples which are in
NEW-REV-TEMP but not in LAST-REV. After the same
concept was used for the removed triples, the ADD and
DELETE sets are constructed with the help of a SPARQL
CONSTRUCT query. Then the new revision information is
inserted in <r43ples-revisions> and the actual full graph is
updated with the help of INSERT and DELETE queries.

The administrator interface offers an additional way for in-
teracting with R43ples for those features which don’t have
a friendly REST interface yet. Those tasks are currently:

• Put an existing graph under revision management

• Import a new graph under version control

• Generate visualisation of the revision graph (yEd ex-
port)

• Set a new MASTER revision

• Merge two revisions

The admin interface currently supports turtle serialisation10

for the export and import of RDF data. The visualisation
of the revisions, their connections and branches is done by
creating a GraphML file which can be viewed with yEd11.

9http://www.w3.org/TR/sparql11-service-description/
10http://www.w3.org/2007/02/turtle/primer/
11http://www.yworks.com/de/products_yed_about.html

The merging feature is still under construction while we are
investigating different approaches for a user friendly inter-
face.

5. EVALUATION
5.1 Response Time
An important metric for evaluating the usability of this con-
cept is the response time of the service for R43ples queries
in various configurations. Therefore, we have measured the
time between the request sent by the client and the response
received using Apache jMeter12. We evaluated the operation
time of R43ples in a complex setup on a 4 GB RAM system
running a Virtuoso 7 as SPARQL endpoint connected to
R43ples. We generated random data sets with sizes of 100,
1000, 10000 and 100000 triples. Then we created ten revi-
sions for each data set with changes of 10 to 100 triples. Fi-
nally, we measured the response time for a simple SPARQL
query (querying all triples and limiting them to ten results)
dependent on all data sets, all revisions and all different
change sizes. The measurement was repeated 20 times to
capture random effects such as computing load.

Figure 4 presents some results showing the response time
in comparison to variations of the three variables around a
specific setup (1000 triples in the data set, going back five
commits into the past with 50 triples changing in every com-
mit). The left plot shows that the response time increases
linearly with the number of commits plus a constant bias of
some milliseconds. The size of the commit seems also to be
almost linear to the response time as suggested by the mid-
dle plot. Even the size of the data set has linear influence
(note the logarithmic scale in the right plot).

A deeper analysis shows that the structure of the data set
is not significant. The overhead for querying a revision that
is available as full graph is about 10 ms in comparison to a
direct SPARQL query and is thus almost negligible. How-
ever, if the revision has to be generated by R43ples, the
dominant factors are the overall size of changes to be re-
versed and the size of the data set. Equation 4 lists a sim-
ple linear model which almost exactly reflects these findings
(R2 = 0.98) with the variables T as R43ples response time
in milliseconds, SDS as data set size, SC as change size and
P as path length to a full graph revision. Thus, in many
application T would be of order O(SDS).

T = 100 + 0.06 ∗ SDS + 0.7 ∗ (P ∗ SC) (4)

The results makes sense since the algorithm has to duplicate
the graph and then apply all changes. Both efforts are pro-
portional to the size. As minor result R43ples can perform
few revisions and big changes in each revision step better
than lots of small changes assuming that the overall num-
ber of changed triples is the same. Furthermore, UPDATE
query time increases linearly with the size of the committed
change set.

5.2 Storage
The costs for a new revision S∆,Revision (in additional triples)
are almost proportional to the size of changes and indepen-
dent from the complexity of previous revisions and the re-
vision graph (S∆,Revision = SC + 12). The additional fixed

12http://jmeter.apache.org/

http://www.w3.org/TR/sparql11-service-description/
http://www.w3.org/2007/02/turtle/primer/
http://www.yworks.com/de/products_yed_about.html
http://jmeter.apache.org/

Figure 4: R43ples response time in comparison to the revision path length (left), the change size of the single
commits (middle), and the size of the data set (right)

triples in <r43ples-revisions> (six for a revision; six for the
commit) are negligible. The creation of a branch or a tag
copies the full graph besides the addition of a fixed number
of triples (S∆,Tag = SDS + 11; S∆,Branch = SDS + 15).

6. DISCUSSION
Although the approach presented here solves most of the
versioning problems, there are also some drawbacks.

Named graphs are used extensively, mainly for storing differ-
ences between revisions. This means that the use of named
graphs for other purposes cannot be guaranteed. Those pur-
poses could be structuring of information, access control or
additional provenance information. One might ask if we
need an additional context attribute as a fifth element ex-
plicitly declared for revision control.

The concept is fully transparent for SPARQL clients which
are not aware of the R43ples version control system. They
can use the prototype as common SPARQL endpoint with-
out additional features always working on the master re-
vision. Clients can easily check if an endpoint supports
R43ples query by evaluating the service description of the
endpoint.

Clients will usually work on MASTER or other branches in
order to get the most recent information. However, there
could be situations when clients should continuously work
on a specific revision of a graph. Then, this revision of the
graph should be tagged in order to store a full copy. A
possible solution would be the automatic detection of such
frequently used revisions and triggering of tag generation.

Another drawback is the lack of support for blank nodes in
the current implementation. You can’t assume that blank
nodes from different graphs with the same blank node iden-
tifiers are the same. For example, the blank nodes in the

change sets are not equal to the ones in the full graph, pro-
hibiting a correct application of the changes when gener-
ating an old revision. This can of course be solved by a
prior Skolemization which should ideally be performed by
the client or could also be achieved by an enhanced version
of R43ples before executing a SPARQL query.

Currently, the generation of uncached revision follows a sim-
ple approach applying all changes from the first successor
until reaching the leaf of a branch. However, if there are
many tags in the revision graph, it could be more efficient
to use another revision path to generate this revision. Thus,
one has to solve a shortest-path-problem.

Another point of discussion is the way of transferring the
necessary additional information. Currently, the R43ples
SPARQL server transports the MASTER revision as well as
the relevant revisions of all involved graphs in the HTTP
header. On the other hand, the R43ples clients transport
information about the graph revisions in the HTTP body.
An alternative would be to transfer both information in the
HTTP body and thus on the same level. This would need
an extension of the SPARQL result model.

The integration of version control into the existing Semantic
Web tool environment is not easy. A basic requirement is
that these tools don’t work on a file basis but on a triplestore
with SPARQL interface. Under these circumstances it would
be no big problem to exchange the SPARQL interface with
the slightly enhanced R43ples interface.

The performance of the prototype limits the application to
medium sized data sets. Queries on data sets with more
than a few thousand triples take longer than most users
are willing to wait. This can be solved by splitting large
data sets into smaller ones and by directly implementing the
concept into the SPARQL endpoint which should improve

performance considerably. Another promising approach we
are currently working on is the use of enhanced SPARQL
rewriting in order to perform the query taking into account
the full graph and all change sets in one request Hence, the
generation of the whole graph for the specified revision is
not necessary which really takes long time for big datasets.

Finally, security is a crucial point for all industrial appli-
cations. We rely on the adaptable security mechanisms of
existing triple stores and SPARQL endpoints. These should
only provide information about the revision tree and the
revisioned data sets to authenticated and authorised users.
This could be achieved for example by the approach sug-
gested by [11, 5].

7. CONCLUSIONS
We have presented a concept for a semantic revision con-
trol system for Linked Data which uses the capabilities of
SPARQL. The implemented prototype works well for query-
ing cached graphs. The generation of uncached graphs is suf-
ficient for small to medium sized data sets. The advantage
of our approach is that it is completely based on semantics
and thus the information about revisions can be retrieved via
SPARQL. Furthermore, SPARQL is used as access mecha-
nism with only slight adaptations in order to ensure the se-
mantic use of revision information while keeping the query
compatible to standard SPARQL.

However, this concept still needs further research. Our next
steps will involve investigating different merging approaches
and an intensive consideration of how this concept can be
integrated into existing tools.

8. ACKNOWLEDGEMENTS
This research was partly funded by the European Commis-
sion on the grant number 284928 (ComVantage).

9. REFERENCES
[1] S. Auer and H. Herre. A versioning and evolution

framework for RDF knowledge bases. In Perspectives
of Systems Informatics, page 55–69. Springer, 2007.

[2] T. Berners-Lee and K. O’Hara. The read-write linked
data web. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering
Sciences, 371(1987):20120513–20120513, Feb. 2013.

[3] S. Cassidy and J. Ballantine. Version control for RDF
triple stores. ICSOFT (ISDM/EHST/DC), 7:5–12,
2007.

[4] T. Ermilov, N. Heino, S. Tramp, and S. Auer.
Ontowiki mobile–knowledge management in your
pocket. In The Semantic Web: Research and
Applications, page 185–199. Springer, 2011.

[5] M. Graube, P. Ortiz, M. Carnerero, O. Lazaro,
M. Uriarte, and L. Urbas. Flexibility vs. security in
linked enterprise data access control graphs. In Proc.
of 9th IEEE Int. Conf. on Information Assurance and
Security, 2013.

[6] M. Graube, J. Pfeffer, J. Ziegler, and L. Urbas. Linked
data as integrating technology for industrial data.
International Journal of Distributed Systems and
Technologies (IJDST), 3(3):40–52, 2012.

[7] C. Gutierrez, C. Hurtado, and A. Vaisman.
Introducing time into RDF. IEEE Transactions on
Knowledge and Data Engineering, 19(2):207–218, Feb.
2007.

[8] D.-H. Im, S.-W. Lee, and H.-J. Kim. A version
management framework for RDF triple stores.
International Journal of Software Engineering and
Knowledge Engineering, 22(01):85–106, Feb. 2012.

[9] J. Murdock, C. Buckner, and C. Allen. Containing the
semantic explosion. In Procedings of PhiloWeb, Lyon,
2012.

[10] D. Ognyanov and A. Kiryakov. Tracking changes in
RDF(S) repositories. In Knowledge Engineering and
Knowledge Management: Ontologies and the Semantic
Web, page 373–378. Springer, 2002.

[11] P. Ortiz, O. Lazaro, M. Uriarte, and M. Carnerero.
Enhanced multi-domain access-control for secure
mobile collaboration through linked data cloud in
manufacturing. In Proceedings of IEEE World of
Wireless Mobile and Multimedia Networks
(WoWMoM) conference 2013, 2013.

[12] G. Taentzer, C. Ermel, P. Langer, and M. Wimmer. A
fundamental approach to model versioning based on
graph modifications: from theory to implementation.
Software & Systems Modeling, page 1–34, 2012.

[13] M. Vander Sande, P. Colpaert, R. Verborgh,
S. Coppens, E. Mannens, and R. Van de Walle.
R&Wbase: git for triples. In Proceedings of the 6th
Workshop on Linked Data on the Web, 2013.

[14] M. Völkel and T. Groza. SemVersion: an RDF-based
ontology versioning system. In Proceedings of the
IADIS international conference WWW/Internet,
volume 2006, pages 195—202. Citeseer, 2006.

[15] W3C. PROV-O: the PROV ontology, Apr. 2013.

[16] E. R. Watkins and D. A. Nicole. Version control in
online software repositories. In Proceedings of the 2005
International Conference on Software Engineering
Research and Practice, volume 2, page 550–556, 2005.

	1 Introduction
	2 Background
	2.1 Linked Data
	2.2 Version Control for Triples
	2.3 Related Work
	2.3.1 Model Versioning
	2.3.2 Temporal RDF
	2.3.3 Semantic Web Versioning

	2.4 Contributions

	3 Concept
	3.1 Graph Based Version Control
	3.2 Semantic Revision Model
	3.2.1 Data Model of Revisions
	3.2.2 Naming Graphs for Storing Revisions
	3.2.3 Tags and Branches

	3.3 Dynamic Handling of Revisions
	3.3.1 Querying Revisions
	3.3.2 Updating Revisions

	3.4 SPARQL extension for R43ples

	4 Implementation
	5 Evaluation
	5.1 Response Time
	5.2 Storage

	6 Discussion
	7 Conclusions
	8 Acknowledgements
	9 References

