
A Multi-Level Didactical Approach to Build up
Competencies in Requirements Engineering

Yvonne Sedelmaier, Dieter Landes
Faculty of Electrical Engineering and Informatics

University of Applied Sciences and Arts
96450 Coburg, Germany

{ yvonne.sedelmaier, dieter.landes }@hs-coburg.de

Abstract— Requirements engineering education at universities
is a fairly difficult issue for various reasons. Among the most
prominent causes is a lack of authenticity, i.e. too artificial
settings that do not adequately mirror the complexity of real-
world situations. We present an approach to requirements
engineering education that tries to avoid some of these
shortcomings, in particular by including requirements elicitation
with real customers into an integrated didactic step-by-step
approach. As it turns out, requirements engineering education is
far more than assembling technical knowledge, but rather
involves many non-technical skills that obtain a specific context-
sensitive flavor in requirements engineering. Our didactic
approach also addresses these skills, while resting on a sound
pedagogical underpinning. Indications for the success of our
approach are visible, e.g., in self-evaluations of the participants
which are also summarized in the paper.

Index Terms—requirements engineering, problem awareness,
methodological skills, competencies, personal skills, real
customers.

I. INTRODUCTION

It is commonly accepted that requirements are top success
factor in software engineering projects, but, conversely, also a
major reason for project failures. Therefore, providing IT
students with solid requirements engineering skills is of
paramount importance. In practice, however, teaching and
learning requirement engineering is not too easy. Part of the
problem is the fact that good requirements are essential in
complex real-life projects, but time and resource restrictions
prohibit instructors from running many such projects –
typically, there is only one such project during university
education. Often, such a project comes late as a capstone
project that ties together everything that should have been
learned before. Unfortunately, learning requirements
engineering only theoretically does not work well either.
Students tend to view many important issues in requirements
engineering as commonplaces and fail to see their importance.

It seems to be one of the big challenges for instructors to
make requirements engineering education as descriptive as
possible to make the matter more tangible for students. In
particular, this encompasses mapping the complexity of real-
world projects at least in part to a university context in such a

way that the associated problems become evident for the
intended audience.

In this contribution, we present the didactical approach that
we developed for requirements engineering education at
Coburg University of Applied Sciences. Core ingredients of
our approach are a realistic and integrated setting, which
includes writing a requirements document for a complex
application and, as of late, eliciting requirements from real
customers. In our specific setting, customers play a double role:
in addition to simply providing requirements, they also act as
external experts for communication issues. Another main
characteristic of our approach is the extensive active
involvement of students in the learning process. In particular
the latter aspect has a solid theoretical underpinning in
constructivist didactics. An additional characteristic of our
approach is a strong emphasis on non-technical skills which are
particularly relevant for requirements engineering, but also gain
a very specific, context-sensitive shape in this particular
domain.

The didactical approach that we conceived at Coburg seems
to be quite successful since students value the importance of
requirements engineering to a much higher extent and view
themselves well equipped to deal with requirements
engineering in practice. This finding is substantiated by a series
of evaluations that we performed.

In the remainder of this paper, we will first analyze
difficulties in teaching requirements in more detail before we
characterize key features of our didactical approach and their
pedagogical foundation. We discuss lessons learned both from
the perspective of instructors and of students, before we give a
short summary and an outlook to future work. Teaching
Requirements Engineering

A. Challenges in Teaching Requirements Engineering

Although requirements engineering is a core ingredient of
software engineering, it is fairly difficult to teach and to learn.
Teaching and learning software engineering is generally
restricted to small toy projects which mirror real world
problems only to a limited extent. This is due to several
reasons:

Early on, software engineering education often focuses on
teaching and learning how to program a computer rather than

on requirements. Typically, programming assignments are
small and clearly defined. Students design small pieces of
software, often in small groups or even on their own.
Assignments typically focus on a specific problem, e.g. specific
element of the programming language such as arrays or loops,
or particular algorithms. This means, software development
assignments primarily focus on the technical aspects of
programming and specific programming languages in a domain
that is pretty familiar to students. As a consequence,
requirements are supplied by the instructor, expressed clearly,
and easy to understand since no unfamiliar terminology or
unusual domain concepts are involved. This easily makes
students believe that there is no need to bother with
requirements since they generalize their programming
experiences to real software development projects: There is no
such thing like fuzzy requirements of stakeholders that use an
unfamiliar terminology since students never came across such
stakeholders. Consequently, there is a danger that students
underrate the importance of requirements engineering since
requirements engineering techniques do not solve any problem
in their world. Often, students cannot even imagine problems
that are rooted in insufficient requirements. And they do not
believe instructors who report on their own practical
experiences with what can go wrong with requirements.
Students often think instructors exaggerate. Techniques they
should learn in requirements engineering seem to be boring and
useless since students mostly do not know why they need these
techniques.

Furthermore, programming assignments tend to be isolated
without relationship to other tasks. Even if there is more than
one possible way to solve a problem the chosen approach will
not have any consequences on following tasks. Students do not
really need to balance reasons for or against alternative
solutions. So, it would not matter if requirements were wrong
or incomplete since students would not suffer from the
consequences.

Even if, at a later stage, the focus shifts from programming
to software engineering, and in particular to requirements
engineering, the situation remains somewhat problematic: Due
to time or capacity restrictions, the complexity of real world
problems can hardly be reproduced in university education.

As one consequence, students usually do not perceive
interdependences between requirements. They often suffer
from the misconception that complexity scales up linearly.
While a single use case is fairly easy to specify, dozens of use
cases are not. If the number of requirements grows, so do the
interdependencies between them.

In addition, students are in general given precise
assignments and only need to apply known methods to solve a
given problem. In university education students do not need to
think about what the nature of the current problem actually
might be. Students tend to take clear requirements for granted.
For instance, it is quite easy for students to model a business
process and extract use cases from it when the given example is
very simple and clearly delimited. In “real” requirements
engineering, requirements engineers first have to clarify the
problem and then understand and solve it. They first have to

elicit requirements before there is any point in thinking about
technical solutions. Coming back to the example above, this
means that there must be information on business processes in
an organization before these processes can be modeled and
taken as a basis for use cases. Frequently, this information is
not readily available, but must rather be elicited from a range of
appropriate stakeholders which frequently are not easy to
identify. Students rarely face the problem of eliciting
requirements from multiple groups of occasionally
uncooperative stakeholders. Therefore, they do not see a
problem in eliciting requirements.

All these challenges trace back to an insufficient match
between scenarios in requirements engineering education and
in real life. Given a restricted amount of time, it is quite
difficult to expose students to examples which reflect real
problems in requirements engineering. Requirements depend
massively on the software that should be developed. Software
engineering in university education mostly deals with
developing a toy solution that will not be used in daily life.
This also applies to requirements in university education:
Requirements tend to be simple, and therefore requirements
engineering seems to be unnecessary in students’ opinions. Due
to the lack of real customers students cannot imagine the
complexity of and interrelationships between requirements
within a large software engineering project.

B. Didactical Approach in 2013

At Coburg University, requirements engineering is a major
issue in an elective course called “Software Modeling” which
is offered in the second year of a bachelor program in
informatics. Before enrolling into that course, students are
required to take a compulsory introduction to software
engineering in the preceding semester.

“Software Modeling” has been offered for several years and
has been continuously evolving, including its didactical
approach. The 2013 revision of the didactical approach aimed
at improving students’ understanding of requirements
engineering and has been described in detail in [1].

For this approach we defined several intended learning
outcomes in detail:

 Students shall acquire a more tangible impression of
the term “requirements”.

 Students shall understand the importance of
requirements and shall be able to act accordingly.

 Students shall understand characteristic approaches to
the specification of functional and non-functional
requirements and their prioritization.

 Students shall understand the role of communication
with other involved parties in requirements
engineering.

 Students shall understand the role of business
processes as a source of requirements.

 Students shall be able to collaboratively apply
appropriate methods and notations in order so specify
requirements for a sample software application.

 Students shall understand popular approaches to
complexity and cost estimation for software systems.

Based upon the intended learning outcomes, the sequence
of topics was restructured in order to focus on the given
problem first before presenting solutions, relevant issues were
illustrated on the basis of a continuous example, additional
practical exercises were introduced, and predominantly passive
learning settings shifted towards more active ones. The course
emphasizes business process models as a source of
requirements. Modeling processes puts software engineers in a
position to extract requirements indirectly from an
organizational workflow instead of, or in addition to, asking
future users which functional and non-functional features the
new software should exhibit.

This didactical approach includes the assignment to develop
a requirements specification in teams of four or five students.
To this end, students are exposed to a problem setting that they
were sufficiently familiar with. For instance, the problem
setting in 2013 was the derivation of requirements for a system
to support the application, approval, and reimbursement for
business trips. As a first step, students were required to develop
business process models for the problem setting. The basic
input for students consisted of an official leaflet which is used
as a guideline for university members whenever they are about
to go on a business trip. This brochure contains detailed rules
for the application and reimbursement of a business trip and
provides some details of how the process works. The teams of
students extract distinct steps of the process before modeling
them in a notation of their choice.

The business process models were subjected to a peer
review. The process models of a peer group then served as a
basis to extract use cases and fine-grained requirements.

Although this approach was successful from the
perspectives of instructors as well as students, it still revealed
some potential for improvement. Even though the assignment
used a real world scenario, there is still no real customer from
whom requirements must be elicited. And even though students
obviously learned a lot in this course, not all teaching goals
were completely achieved.

To sum up, in 2013 we applied several fundamental
changes to our previous teaching approach in order to achieve
our intended learning outcomes. Due to the fact that this new
course design helped students to achieve these aforementioned
goals, we decided to retain this didactical approach at large,
and to refine it here and there.

So, in the 2014 iteration, we first refined our intended
learning outcomes. So far, they were a little too abstract and we
adapted the importance of some teaching goals again. While,
for example, writing down given requirements is not the main
focus any more, we now emphasize eliciting requirements form
customers before writing them down.

C. Intended Learning Outcomes

The course “Software Modelling” aims at three main goals
in addition to the existing intended learning outcomes:

 Students should understand the role and importance of
requirements for their future careers. Students should
develop problem awareness with respect to
requirements engineering and recognize the importance

of requirements and the difficulties in eliciting
requirements. This teaching goal is assumed to be
achieved if students are capable of eliciting
requirements from future users, modeling business
processes, and writing a requirements document.

 Students should enhance specific communication skills
that are needed in requirements engineering. Students
should be enabled to conduct a customer meeting in a
goal-orientated way to elicit requirements. How can
students elicit requirements which they did not
“invent” themselves but are to be provided by a real
customer? How can customers be prompted for
information which may serve as a basis for
requirements? How can requirements be documented
and written down? How can students pass this
challenge within a team (allocation of roles, etc.)?

 A third teaching goal is to strengthen self-reflection,
self-organization, and self-responsibility of students.
This is the basis for competence development [2].

As a consequence of the new prioritization of intended
learning outcomes, a gap between them and the didactical
design became evident so that some didactical fine adjustments
became necessary.

II. CHARACTERISTICS AND PEDAGOGICAL UNDERPINNING OF

A NEW DIDACTICAL APPROACH FOR TEACHING

REQUIREMENTS ENGINEERING

Based upon the experiences with the 2013 approach, we
retained the structure of contents, activating learning elements,
and a continuous example which culminates in writing a
requirements document. Since active learning elements are
commonly considered as a good approach for understanding
abstract topics, we enhanced these aspects in the 2014 iteration.
Students should play an active role in nearly every lesson
instead of just listening to the instructor. During the lessons
activation comes in by, e.g., small tasks that students need to
deal with or by discussions between students and instructors.

One main weakness of the 2013 approach is the lack of
eliciting requirements from a real future user or customer. So
we refined our didactical setting mainly with respect to the
following aspects.

A. Eliciting Requirements from Real Customers

One of the major drawbacks of our 2013 didactic approach
was the fact that it did not address requirements elicitation.
Several years back, we had tried to include this issue by having
students elicit requirements from a peer team. Although this
approach provided some insights with respect to difficulties of
eliciting requirements, the whole setting was still artificial –
students tended to be too cooperative in the role of a customer
since they had no precise impression how real customers might
act.

Therefore, we decided to bring in a real customer in 2014.
Since we had chosen a system for managing offered training
courses as application domain, we got in touch with a training
provider in order to convince them to act as customers, a plan
to which they happily agreed. We contacted a training and

consulting company with particular expertise in intra-project
communication. This gave us an opportunity to include an
additional aspect: Besides acting as a customer and reproducing
typical behavioral patterns of customers in doing so, we had the
chance to move to a meta-level right after the elicitation
session. On this meta-level, the “customers”, now in their role
as communication experts, were to initiate a joint reflection
with the student team on what had just happened in the
elicitation session in terms of (un)successful communication.

In addition to being more realistic, students were expected
to take the whole exercise more serious since they would not
like to disgrace themselves in the face of externals.
Furthermore, credibility was expected to increase since
statements of external experts, based on their immediate
practical experience, were deemed to have more weight than
those of the instructor, who is latently alleged to exaggerate
and, after more than ten years at university, to have lost
immediate contact to what’s happening in practice.

Students were split in two groups of approximately ten
individuals and devoted a three-hour block for each team’s
elicitation session. About half of the session was planned for
the actual elicitation of requirements from two customer
representatives, and the other half, without the students
knowing before, for an on-the-spot reflection of what went well
and what did not. Students were asked to prepare for the
elicitation meeting by pondering about good questions to ask,
e.g. for identifying and clarifying business processes at the
customers’ site, and agree on an allocation of responsibilities
and tasks within their team.

B. Multi-level Teaching Approach

When students enter this course, they already have some
theoretical knowledge about specifying functional requirements
through use cases [3].

We started the course with a first assignment that should be
accomplished in teams of four students:

Exercise 1: Bidding for a software project
A seminar provider intends to purchase a software system

to manage his offered seminars. Imagine you as director of a
software development company are asked to make an offer for
such a software system.

1. Think about your next four to five steps you would do, to
prepare an offer. What would you do?

2. How would you proceed? Give reasons why you decided
for exactly this methods and approaches.

3. Which problems might appear? What do you need to
prepare that offer?

Write down your results on a flipchart.
(Working time: 30 minutes)

Present your results in class.

Students were supposed to take an active part in the course

right from the start. This first exercise mainly aimed at raising
awareness of requirements as an absolutely necessary
prerequisite for bidding for a software project. Students should

arrive at this insight by thinking about this exercise by
themselves.

In a next step, students got an introduction to modeling
business processes by using BPMN or event-driven process
chains (EPCs).

Then students were split in two groups of, by and large, ten
members each. Student teams were given a second assignment,
namely they were supposed to elicit requirements from a real
stakeholder, exchange their results, and build business process
models on the information they received from the customer
(see sec. III.A.). Process models were developed in a two-step
approach: first, each team member developed an individual
model before these individual models were merged and
consolidated into a joint team model.

In the first exercise a lack of working techniques became
evident. Therefore, we modified our second task by giving
more precisely formulated briefings. For example, we added
the following passage:

Exercise 2: Conduct a customer meeting
[…]In preparation of the elicitation meeting with the

customer, find an agreement on your intended course of action
(among other things, your strategy to ask questions) and
distribution of tasks. Clarify in the run-up the questions, you
want to ask, the allocation of roles within your team, and the
exchange of results at the end of the meeting. […]

As an additional reaction to the two phases of the customer

meeting (see sec. III.A.), which already included
communication analyses on a meta-level, instructors decided to
add a lecture session in order to further address communication
and working techniques. In particular, this lesson put a focus on
working techniques including allocation of roles and goal-
orientation, approaches for preparing and conducting a
customer meeting [4], question strategies, and communication
techniques such as active listening [5]. This lesson was given in
a pair-teaching format: the responsible instructor for this course
with expertise in informatics acted jointly with an instructor
with pedagogical background. As its main advantage, such a
format offers the possibility to adapt and combine technical and
non-technical knowledge and highlights inter-relationships
between two disciplines to students. The customer meetings
were analyzed again in a group discussion together with the
students. Central questions were: “What went well? What
would you do better next time?” Students realized by
themselves that they should better prepare a meeting. Thus,
they received information about structuring, preparing, and
chairing a meeting. Furthermore, they learned about types of
questions and question strategies to elicit needed information.
This seems to be a good pedagogical approach because
possible solutions are only presented after the need had actually
arisen, i.e. students had already experienced a problem before
they learned about possible solutions. Instead of teaching
abstract and theoretical stockpiling knowledge, for which
students typically do not know any use case, they could directly
transform and apply the “newly acquired” knowledge.

As a preparation for the following session, students were
also taught how to provide and to accept feedback, especially
in a review process.

In parallel to the meta-analysis of the customer meeting,
students got an assignment to model a business process in a
notation of their choice. This task should be performed at home
by each student individually. Following this, students should
merge their individual business process models and derive a
joint group model. The third exercise was to review their
merged processes between teams of four or five students. To
this end, they needed to remember and apply feedback rules.
Without a-priori information about feedback and review
processes students might feel accused and criticized.

Business process models are intended to serve as a source
for requirements. Thus, students should now learn how to
extract requirements from a business process model and write a
requirements document. For this reason, a metaplan technique
was used to activate students and collect contents of a
requirements document as a first overview. Then several
specific topics were worked out in class. During the following
weeks, students were guided through several tasks which are
necessary for writing a requirements document. Now that they
know the context of single components they were gradually led
to a complex document which contains all topics they learned
before. Combining elements they develop over the time by
themselves leads to a complete requirements document.
Students had to work on individual and group exercises to
repeat the learned contents in active work. Furthermore, they
should apply theoretical learned knowledge and transform it
into usable action knowledge.

In order to increase students’ motivation, various exercises
were associated with microcredits, i.e. a small bonus that may
be used to improve the final grade in the exam.

C. Pedagogical Underpinning

There are indications that we learn
“- 10 % of what we read,
- 20 % of what we hear,
- 30 % of what we see,
- 50 % of what we hear and see,
- 70 % of what we say,
- 90 % of what we both say and do” [6] [7].
We choose this didactical multi-level approach to gradually

build up students’ competencies without overburdening them.
Apparently, students are not used to structure their own
working processes. With our approach we want to foster their
self-organization and self-responsibility, and develop their
communication skills and working techniques step by step.
Students’ previous knowledge and level of competence must be
taken into account. This is a precondition to give students the
possibility to further develop their competencies.

Designing an appropriate learning environment should be
based upon constructivist principles. According to
constructivist didactics, teachers act as coaches and can only
give students room for their individual learning experience.
Learning in this theory depends on the individual world and on
the things a person learned before. Understanding arises from

the interaction between the learner and the environment [8]. [8]
conclude that “cognitive conflict or puzzlement is the stimulus
for learning and determines the organization and nature of what
is learned. […] Knowledge evolves through social negotiation
and through the evaluation of the viability of individual
understandings.” It is necessary that the learner ties up his
already existing knowledge and expertise to further develop it
in his own way. Therefore, each student learns individual
things according to his previous understandings, skills, and
knowledge even if they experience the same learning situation.

Successful learning happens in learning situations which
are adapted to students’ previous skills and knowledge.
Therefore, one of the main challenges in constructivist
didactics lies in recognizing students’ prior knowledge, then
create appropriate learning environments, and adapt them
specifically to the prior knowledge of students. In our
didactical approach we gradually build up students’
competencies by leading them through consecutive exercises,
and strengthen their analytical skills as well as their self-
organization by activating self-reflection processes.

Learning takes place when students consider the topics as
relevant for their purposes [2]. As a consequence, they are
interested in the issues and motivation for learning arises.
Instead of teaching solutions for problems which students
cannot even imagine, we make them see and understand the
problems right at the beginning. After recognizing the problem
they learn possible solutions to solve it and apply their new
knowledge (learning by doing). In educational psychology
these principles are main factors for successful learning [2].

III. EVALUATION AND LESSONS LEARNED

A. Instructors’ Perspectives on Lessons Learned

As instructors, we were surprised by the lack of students’
work techniques we observed. Initially, we assumed that
students had already exercised basic work techniques or basic
communication skills at school. Yet, apparently this was not
the case: The first given task turned out to be too complicated.
This became evident during group work. While it was no
problem for students to assemble in a group, they seemed to
have severe difficulties to organize themselves within the
group. Instructors expected that there would be a team leader,
one student who writes down the results, one who presents
them, one student as time keeper, etc. But teams started to work
without structuring themselves, let alone assign roles to
individuals. Even though instructors, at least from their
perspective, provided a precisely formulated work assignment,
results were fairly unstructured. Students read the assignment
once at the beginning of the lesson, and then started to work
without having a second look on the assignment. As a result,
the results did not accurately fit the assignment. Teams should
write down their final results on a flipchart and present them in
class. Although students were advised to better use two sheets
of a flipchart, some of them used both sides of a single sheet.

A severe lack of work techniques became also visible in the
requirements elicitation session: students neither succeeded in
allocating roles and tasks within their team, nor did they agree
on question strategies before the meeting even though they

were provided with some advice what they were supposed to
do. The provided hints were already a reaction to the perceived
shortcomings in the first group assignments. As a consequence,
we made our second exercise more precise and tried to give
students more advice on what they could do to master the
challenge. However, it was not enough and obviously did not
help students at all. They were not able to prepare themselves
for the meeting with the customers as we expected. Even
though nearly all students were interested in participating in a
customer meeting, some of them appeared completely
unprepared. They neither had thought about possible questions
they could ask, nor had they decided about team roles etc. All
in all, these and several other observations led us to the
assumption of lacking working techniques.

As a consequence, we added a teaching goal during the
term that students should improve personal working techniques
such as time management, endurance, self-organization, and
structured course of action. Apparently, instructors’ original
intention to concentrate on fostering context-sensitive non-
technical competencies in requirements engineering was too
ambitious since prerequisites were missing.

Obviously, providing theoretical information about writing
on a flipchart or organizing a team has no effect on students’
learning processes. Rather, they need to experience some
situations by themselves before learning becomes possible,
including the possibility to make mistakes and learn from them.
Apparently, students must reverse a flipchart sheet during the
presentation of their work to recognize room for improvement.
There is no point in telling them solutions before they
experience the problem.

As instructors, we draw the conclusion to supply even
clearer task assignments with very precise descriptions of what
to do in future courses. Exercises should even be fairly fine-
grained including precisely formulated steps what to do next.

Therefore, according to constructivist didactics, the third
task was not simply “Write a requirements document”. Instead
of giving students a complex problem in one big chunk, we
took our students by the hand and guided them through the
process. The large task “requirements document” was
partitioned into several smaller exercises, such as “Develop a
use-case diagram”, “Specify use cases”, or “Derive functional
requirements”. Each week students got a new small task.

Adapting microdidactical elements during the lesson is
based on the didactical principle of participant orientation
(“Teilnehmerorientierung”) [9] which is perfectly in line with
constructivist didactics. [10] describes it as “reading“ and
„flexing“. Reading means attentively observing students, while
flexing concerns reacting on recognized requirements and
needs. This generates an iterative process of adapting teaching
and learning.

In constructivist didactical theory, teachers act as coaches
for students and foster technical skills in combination with non-
technical skills. Therefore, in future courses problem
statements must be considered in more depth. It is necessary to
work them out in more detail, and the nature of tasks in
assignments needs to be well thought-out. Due to the fact that
university cannot change students’ previous knowledge and

skills they bring into their studies, university teachers have to
change their view on students’ competencies and their learning
processes.

Moreover, students often do not have any idea which
methods and tools may help to elicit requirements from
stakeholders. They do not know basic techniques to conduct a
conversation which gives them needed information about
processes in companies and the resulting requirements. During
this course, instructors recognized that even if students knew in
principle how to cope with the tasks, they looked helpless on it
and had no idea what to do. Therefore, in addition to specifying
assignments, instructors added a lesson to follow up on the
customer meetings. Topics of this lesson were - in addition to
methodological aspects - communication skills, such as
questioning, and self-organization, such as preparing a meeting.
As described above, pair teaching was chosen as didactical
approach. In this lesson, students should get more action
knowledge how they could master the given challenges. Course
evaluation shows that students found this follow-up helpful.
Several students appreciated this particular lesson when they
were asked for things they considered necessary and important
in an evaluation.

B. Student Evaluation

An intermediary evaluation of the course was conducted
using the Software Engineering Competence Assessment Tool
(SECAT) which was developed to evaluate students’
competencies from multiple perspectives such as teachers,
lecturers, or other students [11]. In this case, we used a self-
estimation of students’ competencies. SECAT also allows
focusing on the assessment of one or more of nine criteria
which are allocated to three levels of competence (see fig.1).

Non-technical skills are high-level competencies in contrast

to functional technical knowledge or the ability to present some
content. In this case, we focus on problem awareness, context-
sensitivity, and personal skills. Our teaching goals, namely
improving problem awareness with respect to the importance
of requirements engineering, fostering communication skills in
context of customer meetings, and strengthening self-reflection
as a basis of competence development are reflected in these
three criteria. Each criterion was evaluated by means of 4 to 10

Fig. 1. Levels of competence in SECAT

questions, according to the importance of the teaching goal (see
tab. 1).

TABLE I. NUMBER OF SECAT QUESTIONS ACCORDING TO IMPORTANCE
OF THE TEACHING GOAL

Criterion Number of Questions

Problem awareness 4

Context sensitivity 10

Personal competencies 8

Creativity 2

Total 24

Each criterion is adapted to the specific situation and

weighted by the number of questions per competence within
the criterion. In this case, the main focus lies on context
sensitivity which depicts in the competence “conducting a
customer meeting”. Table 2 shows the competencies which
describe each criterion.

TABLE II. COMPETENCIES PER CRITERION

Criterion Competencies

Problem awareness Problem awareness / ability to abstract

Context sensitivity

 Moderation / Presentation
 Conducting a customer

meeting
 Integrating in a team
 Empathy
 Endurance

Personal competencies

 Working techniques
 Self-organization
 Role allocation
 Time management
 Personal engagement
 Goal orientation
 Self-reflection

Creativity  Creativity / Variety of methods

82 percent of a total of 20 students took part in the customer

meeting, 88 percent modelled a business process on their own,
and also 88 percent took part in the review process.

82 percent of our students find requirements engineering
more interesting in comparison to the beginning of the term
(see fig. 2). In the following figures, the left end of the scale
means “Completely disagree”, the right end means
“Completely agree”.

In last year’s evaluation only 66 percent of our students
agreed.

During the course, most of our students recognized the
importance of requirements engineering for their future work
(see fig. 3).

As a result of the course nearly all students feel able to

conduct a customer meeting for eliciting requirements (see fig.
4).

Due to the course, students feel now able to reflect on

situations and analyze them (see fig. 5).

As a result of students’ self-estimation with SECAT,
competencies in the three main criteria, namely problem
awareness with respect to the importance of requirements
engineering, communication skills in customer meetings, and
self-reflection, increased significantly (see fig. 6).

Fig. 2. Due to the course, I now view requirements elicitation more

interesting than before the course

Fig. 3. Due to the course, I can now better appreciate the relevance of
requirements for my work

Fig. 4. Due to the course, I can now better conduct customer meetings.

Fig. 5. Due to the course, I am now better equipped to analyze and

understand specific conversations.

All in all, the evaluation showed a particular increase of

competencies related to addressed intended learning outcomes
(see fig.6 and fig. 7).

Fig. 7 shows the largest increase of competence in
“conducting a customer meeting”, followed by “self-reflection”
and “problem awareness”. All values for these criteria are on a
fairly high level of approximately 3 points.

Three out of 17 students (number 3, 5, and 10) did not take
part in the customer meeting. Student nr. 10 with value 2.00
neither took part in the customer meeting, nor in the review of
process models.

Evaluation results suggest that the chosen teaching
approach allocated at constructivist didactics with
consideration of psychological learning principles works well.
Evaluation results indicate that the approach fosters students’
competencies as explained in sec. II.C. Even intended learning
outcomes which were added during the semester, such as
working techniques, methodological skills, personal
engagement, role allocation, or goal orientation, benefitted
significantly. All students improved their competencies
according to their self-estimation with values of at least 2 (see
fig. 8).

Also, even after being reluctant to be exposed to activating

forms of learning, students seem to appreciate this format. In
addition to statements in the evaluation which support this
claim, this hypothesis is further substantiated by other
indicators: 20 out of the 22 students who initially enrolled in
the course actively participated in the course continuously, only
2 dropped out early. In addition, we had a regular physical
attendance of 17 to 18 students in class throughout the
complete semester, which is an unusually high rate. Since the
course is an elective one without compulsory attendance,
students would certainly have been scared away if they had not
seen a real benefit in getting actively involved in the teaching
and learning activities that we devised for the course.

IV. SUMMARY AND OUTLOOK

We developed a didactical approach for requirements
engineering education. Core ingredients of our approach are a
realistic and integrated setting, which includes writing a
requirements document for a complex application and, as of
late, eliciting requirements from real customers. In our specific
setting, customers play a double role: in addition to simply
providing requirements, they also act as external experts for
communication issues. Another main characteristic of our
approach is the extensive active involvement of students in the
learning process. In particular the latter aspect has a solid
theoretical underpinning in constructivist didactics. An
additional characteristic of our approach is a strong emphasis
on non-technical skills which are particularly relevant for

Fig. 7. Average increase of competencies over all students

Fig. 6. Average increase of competence criteria

Fig. 8. Average increase of competencies per student

requirements engineering, but also gain a very specific,
context-sensitive shape in this particular domain.

Self-evaluations of participating students indicate
significant increases in competencies that are relevant for
requirements engineering and that we particularly targeted in
the course. Currently, a final self-evaluation of students based
at the end of the course is under way. In addition, we are just
about to supplement and contrast the perspective of students
with a SECAT-based evaluation from the instructor’s
perspective. Since the written examination associated with the
course will be held shortly, we shall be in a position to
correlate evaluation and examination results.

Although evaluation results so far indicate that the
approach worked well, we still found potential for further
enhancing our didactical approach.

It would be desirable to keep the meeting with a real
customer on a regular basis for future courses. This seems to be
the best way to make students understand the impact of
requirements engineering. Unfortunately, organizational and
financial difficulties have to be tackled before future students
may be offered the opportunity for a real customer meeting. In
a similar vein, it would be helpful if customers were not only
available for an elicitation session, but also for, e.g., a review
of business process models or requirements documents since
this might uncover additional communication problems and
expose potential for further competence development.

In future iterations of the course personal competencies
such as working techniques and methodological skills should
be taken into consideration right from the start. Instructors
gained new insights into the level of basic skills of students. On
this basis, they should adapt the didactical design to these
additional intended learning outcomes, following the line of
participant-orientation (see sec. IV). Our experiences indicate
that university education must begin to foster basic skills at a
much earlier point of time in bachelor programs.

Furthermore, it would be interesting to collect data from
several cohorts of students. This would allow testing the
hypothesis that this approach works well for similar groups of
students.

ACKNOWLEDGMENT

We thank Ewa Sadowicz and Rainer Alt of
EinfachStimmig, Nuremberg, for their active support.

The research project EVELIN is funded by the German
Ministry of Education and Research (Bundesministerium für
Bildung und Forschung) under grant no. 01PL12022A.

REFERENCES

[1] Y. Sedelmaier and D. Landes, “Using Business Process Models
to Foster Competencies in Requirements Engineering,” in Proc.
27th International Conference on Software Engineering
Education and Training (CSEE&T), 2014, pp. 13–22.

[2] C. R. Rogers, Freedom to learn: A view of what education
might become. Columbus, Ohio: Charles E. Merrill, 1969.

[3] A. Cockburn, Writing effective use cases. Boston: Addison-
Wesley, 2001.

[4] J. W. Satzinger, R. B. Jackson, and S. D. Burd, Introduction to
systems analysis and design: An agile, iterative approach, 6th
ed. Mason, Ohio: Course Technology, 2012.

[5] U. Vigenschow, B. Schneider, and I. Meyrose, Soft Skills für
Softwareentwickler: Fragetechniken, Konfliktmanagement,
Kommunikationstypen und -modelle, 2nd ed. Heidelberg:
dpunkt-Verlag, 2011.

[6] N. Green and K. Green, Kooperatives Lernen im Klassenraum
und im Kollegium: Das Trainingsbuch, 3rd ed. Seelze-Velber:
Kallmeyer, 2007.

[7] W. Niggemann, Praxis der Erwachsenenbildung. Freiburg:
Herder, 1975.

[8] J. R. Savery and T. M. Duffy, “Problem Based Learning: An
Instructional Model and Its Constructivist Framework,” in
Constructivist learning environments: case studies in
instructional design, B. G. Wilson, Ed. 2nd ed, Englewood
Cliffs N.J: Educational Technology Publications, 1998, pp. 135–
148.

[9] U. Holm, Teilnehmerorientierung als didaktisches Prinzip der
Erwachsenenbildung - aktuelle Bedeutungsfacetten. Available:
http://www.die-bonn.de/doks/2012-teilnehmerorientierung-
01.pdf (2014, May. 31).

[10] D. E. Hunt, “Lehreranpassung: 'Reading' und 'Flexing',” in
Berichte, Materialien, Planungshilfen / Pädagogische
Arbeitsstelle, Deutscher Volkshochschul-Verband,
Sensibilisierung für Lehrverhalten: Reaktionen auf D.E. Hunts
„Teachers' adaption - 'reading' and 'flexing' to students“, A.
Claude, Ed, Frankfurt (Main): Pädag. Arbeitsstelle, Dt.
Volkshochschul-Verb, 1986, pp. 9–18.

[11] Y. Sedelmaier and D. Landes, A Multi-Perspective Framework
for Evaluating Software Engineering Education by Assessing
Students’ Competencies. In Proc. 44th Frontiers in Education
Conference (FIE 2014), Madrid, Spain, to appear.

