
Optimization based framework for transforming
automotive configurations for production planning

Tilak Raj Singh 1 and Narayan Rangaraj 2

Abstract. A product (e.g. automobile, computer) can be config-
ured using different combinations of its available attributes (fea-
tures). However, selection of attributes may not be independent of
the selection of other attributes. In practice, each attribute implies a
selection rule (dependency) for other sets of attributes in order to gen-
erate a valid configuration. Due to dynamic changes in the product
design, miniaturization, legislation etc., product attributes and their
selection rules get changed. This implies that variants produced in
the past may not be valid for future product design. Nevertheless,
customer history contains important information related to customer
buying behaviour which is an essential input for future planning ac-
tivities. In order to achieve efficient adaption of past customer orders
to a changed product design, we propose a fully automated optimiza-
tion based framework. The methodology is demonstrated using an
industry size example.

1 Introduction

Manufacturing companies are currently focusing on mass customiza-
tion. In this environment customer mix and match different available
product attributes to get desired configurations. Selection of any at-
tribute implies certain conditions on other set of attributes. For exam-
ple, if driving assistance system is selected in a car then the customer
may only be able to select steering types which have required control
options. These engineering dependencies are available in the prod-
uct’s technical documentation (e.g. Bill-Of-Material) and each valid
configuration must satisfy these restrictions in order to be producible
[13]. Manufacturers enable their customers to select and order con-
structible product variants by offering sales manuals and web-based
product configurators. The product configurator guarantees that at-
tributes selected by the customer must satisfy all dependency rules
at the time configuration is created. If any combination of attributes
violates the product configuration rules (constraints), then, this will
be an invalid configuration and cannot be produced [5]. We will use
the term configurations rule (or rules in short) in the meaning of all

1 IT-Production Tools, Mercedes-Benz R & D India, Bangalore, Email:
tilak.singh@daimler.com

2 Indian Institute of Technology, Bombay, Powai Mumbai, India, email:
narayan.rangaraj@iitb.ac.in

restrictions imposed on configuration problem and by fulfilling all
rules configuration will be considered feasible for production.

In order to provide short lead time for complex engineering
products (e.g. Automobiles, Computers) often hybrid manufactur-
ing philosophies like assemble-to-order is used. The production is
setup based on forecast demand and final assembly is done for the
real customer orders. The effectiveness of this method depends upon
the quality of the forecasted demand. Most manufacturers use data
about product variants produced in the past to get suitable estimates
for the future customer demand [10]. Continuous changes in prod-
uct design and market conditions imply that product variants which
have been produced in the past may not be valid according to the
changed product. However, changes are incremental in nature which
means that past variants can be upgraded (by dropping and/or adding
some features) to new changed model once the required changes are
incorporated [4]. In this paper our aim is to develop methods to up-
grade base configuration (configuration produced in the past) in such
a way that 1) new configuration satisfies required product configu-
ration rules 2) new configuration should be as similar as possible to
the base configuration. The similarity measure can be monitored by
using some distance (e.g. Hamming distance) or cost function.

In contrast to the above problem, another requirement to trans-
form existing configuration to the new configuration arises from the
Reconfiguration problem [11]. In this case the previously selected
base configuration is still valid with respect to configuration model
however the customer may want to make some explicit changes with
respect to the earlier choice - for example, adding or dropping some
of product’s features. Most of these reconfiguration problems are
motivated by the customer’s request to change the previously se-
lected variants. This is not an uncommon situation in premium cus-
tomizable products. However, the reconfiguration problem can also
be driven from the manufacturer point of view. For example due to
capacity limitations, production of customer orders may be shifted
from one country/plant to another. Then the production feasibility
need to be checked as configuration rules may vary between produc-
tion plants and counties.

In this paper we propose an integrated solution framework where:
1) user can update any given configuration by changing configura-
tion variables (adding or removing product attributes) 2) Feasibility

of desired configuration can be checked at any point of time 3) In case
of conflicts with underlying configuration rules, the solution is com-
puted through solving an optimization model which ensures that the
modification to the base configuration is done with minimal change
cost. In section 2 and section 3 we will discuss characteristics of the
problem and the available data. Section 4 will focus on the develop-
ment of an optimization based configuration transformation model.
In section 5 the solution procedure will be discussed with initial com-
putational results.

2 The planning problem

A product can be configured using different combinations of its at-
tributes (features). In case of automobiles, attributes could be: body
style, transmission type, sunroof, parking assistance etc. If we de-
scribe a product as an exhaustive list of attributes then the product
configuration can be expressed as a 0-1 vector over the attribute set,
where 0 (zero) represents the absence of any attribute and 1 (one)
represents its presence in the configuration. A feasible configuration
can be achieve by satisfying predefined set of rules (Boolean formu-
las) monitoring interdependencies among attributes.

Let us define our product configuration problem as per [7, Defi-
nition 1]: the configuration problem C can be expressed through a
triple (X,D,F), where:

• X is a set of product attributes (configuration variables) lets say
{1, ...n}. Where n is the total number of attributes.

• D is the set of attributes finite domains d1, d2, ..., dn.
• F = {f1, f2, ..., fm} is set of propositional formulas (rules or

restrictions) over attribute set X .

In this paper the configuration variables X are boolean, hence do-
main di ∈ {0, 1}, ∀i ∈ X . A configuration is said to be feasible if
an assignment for all attributes (i ∈ X) is found which fulfils each
and every propositions in F . For configuration problem C a solution
space S(C) can be built by finding all assignment of configuration
variable X which satisfy rules F . The problem we have in hand, the
size of solution space S(C) could be in the ranges of thousands of
billion [6].

For a customizable product which changes with respect to time
(due to introduction of new attributes, discontinuation of existing at-
tributes or change in attributes dependencies) the configuration prob-
lem at any given time t can be expressed as Ct = (Xt, Dt, Ft),
where Xt,Dt and Ft are configuration variable, its domain and un-
derlying propositional formulas respectively at time t. In this pa-
per the domain Dt is fixed (boolean for all variables/attributes) so
changes in configuration problem are possible by changing configu-
ration variables X , changing rule set F or both.

In the scenario shown in Figure 1, let us assume that at time t the
manufacturer wants to make some planning estimate for time t +

T (mid to long term planning, typically T = 6 months - 3 years)
to support various planning activities such as production planning,

t

PlanninghDate

Ct T

ProductionhHistory

Ot-2 Ot-1 Ot
Ct-2 Ct-1

t-2 t-1

TargethProductionhDate

t(=t+T t(+1
Ct(+1Ct(

Transformationhofhproducth
varianthproducedhinhthehpast

hhw.r.t.hnewhconfigurationhdatahCt(

{ -hProduction
hhhPlanning
-hCapacityh
hhhPlanning
-hLogistics
-hMaterialh
hhhPlanninghetc.

TimehLine

th:hTimehinhmonth
Th:hPlanninghperiodhinhmonth
Cth:hProducthconfigurationhdatahathtimeht
Ot:hOrderhhistoryhathtimehth)producthconfigurationsh
hhproducedhinhpast)

Figure 1: Product variant produced in the past need to be transformed
w.r.t. new product design for use in future planning

capacity planning, material requirement, supplier selection. At time
t the manufacturer has information about its current and past product
configurations data (Ct, Ct−1, ..., capturing list of attributes/features
(X) and its dependencies/rules (F)) and order history Ot, which is an
0-1 assignment of attributes. At any time t the validity of the product
configurations will be checked according to rules written in Ct =

{Xt, Ft}. As the product changes with respect to time, for every
time instance we will have a corresponding product configuration
problem instance. In practice, process of engineering change starts
much before (typically 5-7 years) the start of production. This gives
possibility to know the product configuration data for future time i.e.
Ct+T = {Xt+T , Ft+T } at given time t.

Now, for given set of configurations (Ot, will also be called base
configuration) which are derived from configuration model Ct =

(Xt, Ft) we are required to validate their feasibility with respect
to Ct+T = (Xt+T , Ft+T). In case of infeasible configurations we
are required to find the new configuration in the solution space of
S(Ct+T) with the minimal change to its base configuration. As the
configurations variables are Boolean in nature, change in the config-
uration can be performed either by adding new attributes, or remov-
ing old attributes. The distance between two configurations (base and
transformed) can be expressed through sum of the changes in the at-
tribute assignment, which can be expressed through the Hamming
distance. However, changing any arbitrary attribute in the base con-
figuration in order to make them feasible may not be practically de-
sired. For example, some of the product attributes may have high
cost of change such as engine, special body style or sophisticated op-
tional equipment, and changing these attributes may be difficult to
handle as compared to changes in some simple options such as cup
holder or some alarm features. Thus, a change cost can be associated
with each attribute and transformation of base configuration to new
configuration can be sought to be achieved by minimizing the total
change cost. Change cost will only be associated to configuration if
certain attribute is either added or removed in the configuration. One
may consider two different quantities of change cost for an attribute
such as attribute addition cost and attribute removal cost.

In case of Reconfiguration problem, some attributes are fixed by
customer (attributes on which modification is asked) or may have
very high change cost as they may be customer’s most preferred at-
tributes. Then the solution is sought only by changing the remain-
ing set of attributes. The reconfiguration problem can be defined as
a special case of configuration problem where certain configuration
variables are set to predefined values (true or false). The aim is to
fix certain attributes in base configuration (either by replacing some
previously selected attribute or adding new) and then look for a new
configuration which has minimal changes with respect to the base
configuration.

In our case, the changes in the configuration can only be made
either by adding new attributes or removing previously selected at-
tributes from the configuration. As configuration changes are associ-
ated with change in attributes thus a change cost can be associated
with each attribute to measure the impact of change.

In our work we propose an optimization model for transforming
invalid configurations to valid ones as well as transforming configu-
rations with predefined settings over attributes (Reconfiguration). We
develop a framework which can incorporate information from differ-
ent data sources such as configuration rules, sales program (cost as-
sociated with attributes) and planning expert’s knowledge (to change
configuration in some guided way). As most of the information is
available or can be converted in the form of logical propositional for-
mulas, we develop an optimization based framework after a required
transformation of the logical propositions. In the next section we dis-
cuss various input data for the planning problem.

3 Input Data and its characteristics

3.1 The configuration data

A variant rich customizable product can be defined on the basis of
attributes (features) in order to facilitate aggregate level of planning
for components and modules [14]. Customer configurations can be
created by combining different attributes that are permitted by the
corresponding configuration data. It is important that while combin-
ing different attributes, we must fulfil the interdependencies between
attributes, so that a feasible product configuration can be generated
[13]. For instance, if in the USA some engines require special trans-
mission types, this condition must hold while configuring a car of
that type. A product document captures the technical, market and
legal restrictions and provides an important data source for the con-
figuration feasibility check.

Interdependencies among attributes are documented and main-
tained in the configuration data by a rule system. These rules are
basically Boolean expressions imposed against each attribute. Selec-
tion of attributes in a configuration is done through evaluating the
respective Boolean expression. Table 1 shows an example of such a
data.

A customer configuration consists of a list of attributes. Each at-
tribute is represented as a Boolean variable in the configuration data.

Attribute Name Rule Description
1 Automatic

climate
control

(2)∧ (3∨ 4) attribute 1 only when at-
tribute 2 is present and
either attribute 3 or 4 is
present

2 Air condition TRUE must be present in every
variant

3 Comfort
package

¬(4) attribute 3 is not with at-
tribute 4

4 Performance
package

¬(3) attribute 4 is not with at-
tribute 3

Table 1: Example: Rule based configuration data

The value of the attribute will be set to TRUE, if particular attribute is
selected by the customer. The selection of the attribute is controlled
by the logical rule system as shown in rule column of table 1. The
logical rule system is built from usual Boolean operators ∨(OR),
∧(AND), ¬(NOT) and an attribute serving as a proportional vari-
able. The customer order processing is controlled by evaluating the
rule’s formulae under the variable assignment induced by the cus-
tomer order and executing suitable actions based on whether the for-
mula evaluates to TRUE or FALSE.

As discussed in section 2 configuration problem (C) can be de-
fined by triple (X,D,F). For configuration data shown in table 1.
X = {1, 2, 3, 4},D ∈ {0, 1}∀X , and F = {f1, f2, f3, f4} where

f1 = {1→ (2) ∧ (3 ∨ 4)}
f2 = {2}
f3 = {3→ ¬(4)}
f4 = {4→ ¬(3)}

where a → b means attribute a implies attribute b, if a is se-
lected (or set to true) then b has to be selected in the configura-
tion. Propositional formulas in F can also be expressed as F =

{((2)∧ (3∨ 4))∨¬(1), 2,¬(4)∨¬(3),¬(3)∨¬(4)}. In the given
example, associated rule with f3 and f4 have the same boolean ex-
pression so only one can be evaluated and also f2 = {2} says that
attribute 2 will be the part of every configuration. As all rules written
in the configuration rule set F has to be satisfied. All element of F
can be combined with AND operator, ϕ = ∧f∈F f . Thus ϕ will be
the boolean formula whose Truth value will represent an configura-
tion. ϕ is also called as product overview formula [9]. Our config-
uration variable set X contains all possible attributes which can be
the part of the product configuration either from customer point of
view of manufacturer. For example, some plant and production re-
lated attribute may not be relevant to the customer but is required to
handle feasibility of production at certain planning stage. In the next
section we discuss different changes in the configuration data which
may result in modification or upgradation of configurations.

3.2 Changes in the configurations

As a customizable product can be defined based on different features
offered by the manufacturer, product changes can be studied based on

the change in the offered product attributes. In this section we will
outline various changes in product attributes which can make certain
product variants to invalid. The changes in the product attributes can
be cause by one or more of reasons described below:

1. Deletion of old attributes: All past configurations containing at-
tributes which are discontinued will become invalid according to
changed product. If discontinued attributes have no dependencies
with remaining attributes we can simply remove these attributes to
restore the validity (feasibility) of the product variant. For a com-
plex engineering product this is very unlikely. In general, product
attributes have complex dependencies among each other and mod-
ification of one attribute needs to be validated with the remaining
set of attributes.

2. Change in rule: The technical rules pertaining to an attribute
that are expressed in configuration data may get changed due to
various reasons such as design modification, legal changes. For
some practical product instances, a single attribute may depend
on hundreds of other attributes by a complex Boolean expression.
Change in some part of a rule may affect feasibility of certain at-
tribute combinations.

3. Inclusion of new attributes: As a product evolves, some new fea-
tures get added. These may not have been present in the past, but a
customer may select them in the future. As newly introduced fea-
tures may have some dependencies with other available attributes,
variants produced in the past have to be modified in such a way,
that transformed configurations also contain new features (accord-
ing the estimate of new feature).

4. Attribute fragmentation/atomization: In some cases an attribute is
split into more attributes. For example, let us assume that a car was
produced with the option off-road package which includes fea-
tures as high battery capacity, heavy duty suspension, hi-fi music
system and a sunroof. Customers were not allowed to select above
features individually but selection can be made through package.
Now, due to some change, the manufacturer has decided to divide
the off-road package into two new packages. The first package
includes the features high battery capacity and heavy duty sus-
pension, the second package includes the hi-fi music system and
sunroof. Both new packages can be selected individually, which
means that the customer has more choice than before which may
effect the distribution of packages from the past. Some input form
sales in-terms of demand estimates of new package may help here
to adapt past configurations according to new product offerings.

5. Replacement of attributes: Most often due to technology and other
changes, some old attributes are replaced by new attributes. For
example, some old telematic features are replaced by the new
generation touchscreen based systems. Therefore historic product
variants should also be upgraded to the new generation to use them
for planning of a future production system.

Apart from the above changes there also exists some desire to change
attributes of a past product variant according to new product offer-

ings. For example, due to market changes, the demand for a certain
engine type may decrease in comparison to other available engines.
In this case the changes in the engine distribution across all trans-
formed historic orders have to be considered in the transformation
process. This information is not documented in the configuration
rules but can be accessible through planning experts or through some
sales forecast. During the development of the automatic configura-
tion transformation system we try to accommodate these kinds of
requests.

3.3 Customer history

Let a product be defined by a set of 4 attributes {1, 2, 3, 4}. Accord-
ing to Table 1, the configuration can be listed as described in Table 2
and 3. As shown in Table 3, customer configuration can be presented
as a 0/1 vector over attributes, any change in the configuration can
be made by changing attributes from 0 to 1 and vice-versa. While
transforming the configuration, one objective will be to be as close
as possible to the old configuration. This can be done by minimizing
the Hamming distance between the old and new configurations.

No. Configurations
i 1,2,3
ii 1,2,4
iii 2,3
iv 2,4

Table 2: Configuration based
on attributes set

No. 1 2 3 4
i 1 1 1 0
ii 1 1 0 1
iii 0 1 1 0
iv 0 1 0 1

Table 3: Configuration as 0/1
matrix over attributes

4 Formulation of the optimization model

During the transformation of product configurations, we need to eval-
uate each rule written in the corresponding configuration data. At the
same time, we also need to ensure, that the changes in the given prod-
uct variant are done with minimal cost. Cost can vary based on de-
viation from the base configuration and the type of changes done. In
this section we explore an optimization based framework to find a so-
lution for the above problem. To create an optimization based trans-
formation procedure, all information included in the product config-
uration process need to be considered in the model. To do this, in the
following section we first transform rules from the configuration data
to the corresponding 0-1 discrete programming equivalent forms.

4.1 Transformation of logical rules to linear
inequalities

Constraint programming approach is a well-used methodology inside
the many product configuration systems [2]. Restrictions on product
configurations are modelled as constraints and a solution is a total
assignment satisfying each of the constraints. Most of the proposed
framework rely of the transformation of boolean formulas to special
structure such as conjunctive normal form (CNF) before writing the

final constraint set [3]. We developed an alternate method to avoid
the initial conversion of the input to CNF. Our formulas are so large
that naive CNF conversion by applying the distributive law failed
for lack of memory and time. Also, CNF conversion steps involves
introduction of large number of new variables which increases the
complexity of the problem.

4.1.1 Data structure for configuration rules

Using the normal precedence operators and the conventional evalua-
tion of expressions, the logical rule from configuration data (F) can
be presented in form of a tree structure. For example, let’s say selec-
tion of an attribute 1 is controlled by following Boolean expression:

f1 = (2) ∧ (3 ∨ 4) (1)

The tree representation of above expression can be shown as Figure
2. We used Stack for storing binary tree for implementation of algo-
rithm for transforming logical rules to algebraic inequalities [12].

∧

∨

43

2

Figure 2: Representation of
attribute selection rule in a
binary tree

index Elements
0 ∧
1 2

2 ∨
3 3

4 4

Figure 3: Rule in a stack

4.1.2 Transforming propositional formula’s to 0-1 LP

In this section we describe the transformation of logical propositions
to its equivalent linear integer constraint through an example. The
procedure to obtained required transformation is discussed in [12]
and [1]. Linear inequalities over Boolean variables are a widely used
modelling technique. The main task during transformation of an at-
tribute selection rule into a system of linear constraints is to maintain
the logical equivalence of the transformed expressions. The resulting
system of constraints must have the same truth table as the original
statement. For every attribute we introduce a binary decision vari-
able, denoted by xi. The connection of these variables to the propo-
sitions is defined by the following relations:

xi =

{
1 iff attribute i is TRUE
0 otherwise

(2)

Imposition of logical conditions linking the different actions in a
model is achieved by expressing these conditions in the form of lin-
ear constraints connecting the associated decision variables.

Let us assume that a product is defined by five different attributes
as shown in table 4. Our task is to write a set of linear constraints
which represents same information as described for configuration

Attribute Name Selection Rule
1 Rear-view camera 1→ ¬(4 ∨ 5) ∧ (¬6)
2 Parking assistant system 2→ (1) ∧ (¬(4 ∨ 5))

3 Cruise control 3← (1 ∨ (4 ∧ 5))

Table 4: Example: attributes and their selection rule

problem. In this example attribute 1, 2 and 3 imposes a selection rule
criteria while attribute 4 and 5 do not have explicit dependencies.

Our approach, in principle, involves identification of precise com-
pound attribute rules of the problem and then processing it with iden-
tified equations. The logical rule is represented by a tree graph (as per
Section 4.1.1), where attributes are associated with their common op-
erator node. We traverse through the tree and prune it in such a way,
that the standard transformation equation can be applied [12]. Figure
4 shows the final expression tree for configurations rule written in
Table 4.

∧

∧

1− x51− x4

1− x6

(a)

∧
∧
1− x51− x4

x1

(b)

∨
∧
x5x4

x1

(c)

Figure 4: Example: Final expression tree for (a) Attribute 1 (b) At-
tribute 2 (c) Attribute 3


3 0 0 1 1 2 0

−1 1 0 1 1 0 0

1 0 −2 0 0 0 1

0 0 0 −1 −1 0 2

0 0 0 0 1 1 −1

×



x1

x2

x3

x4

x5

x6

x7


≤


4

2

0

0

1


B× [x] ≤ b (3)

Where: B = Coefficient matrix over attributes and b is the right-hand
side values. In order to transform the given Boolean expressions to
liner constraints we introduced new variable x7 corresponding to at-
tribute 3. Attribute x7 controls boolean expression 4 ∨ 5. Resulting
constraint system is shown in Eq. 3.

4.2 The configuration transformation model

In this section we present a mathematical model for the transfor-
mation of a base configuration (configuration produced in past)
to the new configuration. The new configuration should satisfy
all restrictions imposed by product document and should have
maximum correlation with its base configuration.

Let
i be ith attribute, i ⊆ {1...n}, where n is the total number of
attributes

Data

ai =

{
1 if ith attribute is present in base configuration
0 otherwise

ci = Change cost associated with attribute i. We assume that ci
is given as input either from user or derived from sales
planning data (e.g. cost of attribute)
Decision variables

xi =

{
1 if ith attribute is in transformed configuration
0 otherwise

Objective Function

Z = Minimize
∑
i

ci × |ai − xi| (4)

Subject to
B[x] ≤ b (5)

The Hamming distance between base and new configuration for
attribute i calculated by |ai−xi|. Constraints in Eq. 5 is the set of lin-
ear inequalities derived from configurations rules (restrictions). Ob-
jective function Z is used to minimize the mismatch cost associated
with each attribute so that the transformed configuration will match
the base (old) configuration as close as possible. Change cost asso-
ciated with each attribute is assumed here as an input data provided
either by planning experts (sales) or by user. Usually for automobile
change cost for complex attributes such as power train, production
country is high compare to other attributes. In this case user can spec-
ify relative cost (such as weight factor or priorities) among attributes.
Constraint 5 is a set of linear constraints originating by transforming
logical conditions written in the product document to linear inequal-
ities using the procedure described in Section 4.1. Any new config-
uration [x] from the above optimization model will guarantee that
the configuration is feasible according to the product document and
the objective function will ensure its minimum cost deviation from
the base configuration. As the configuration transformation model
transforms one configuration at a time, for every transformation of
non-feasible (according to given product document) configuration,
this model needs to be run. A typical practical instance of this prob-
lem contains around 500-1000 decision variables and some tens of
thousands of constrains.

5 Solution framework

Our aim is to provide an automated system which can interpret in-
formation from configuration data and planning experts. The system
should consider given information in the best possible way while
transforming the base (given) product variants to new (upgraded)
variants. For this, we will create a knowledge database, where in-
formation from planning experts can be stored and used during the
configuration transformation. The term planning experts is used to

present collective information/rules specified by engineers/product
managers or the user of the our application. For the reconfiguration
problem, change information can be described by the customer and
same can be applied during updating the base configuration. The ex-
pert database will collect the changes of attributes from one stage of
product to another. Table 5 shows an excerpt of such a knowledge
database. In the expert database we want to maintain an explicit set
of rules which can be applied in a guided way to base configura-
tion. For example, in the past, a car was produced only with one type
of entertainment system. Due to some enhancement in the product,
the manufacturer now provides three different entertainment systems.
The challenge will be to distribute new entertainment systems over
configurations produced in the past. In this case, the knowledge of
the planning expert plays an important role in achieving a realistic
transformation of past products.

Situation in Past in Future
An old attribute is replaced
by new attribute (one to
one mapping)

i j

An attribute has been re-
placed by number of new
attributes (one to many
mapping)

i i = j for 70% config-
urations produced in
past; i = k for 30%
configurations

Group of individual at-
tribute replaced by new
Package (many to one
mapping)

i, j, k p = [i, j, k] add
package p if at least
two attribute from
{i, j, k} is present

An old package is divided
in more than one packages

p = [i, j, k, l] p1 = [i, j], p2 =

[k, l]

Table 5: An excerpt of expert’s knowledge database

Knowledge from the expert database is applied to every configu-
ration that we want to transform. It may happen that the modifica-
tions from the expert database do not suffice to meet all the config-
uration rules. In that case, we use the configuration transformation
model presented in section 4.2. A solution is sought automatically
that is valid under the new model, but which differs minimally (in
the ”Hamming distance”) from the ”old” configuration. The flow di-
agram in Figure 5 shows the solution framework.

The configuration transformation process starts with analyzing the
product configuration rules. In this step, we can get the list of all
available attributes and attribute dependencies in terms of logical
rules. These rules can be converted into a set of linear inequalities
as discussed in Section 4.1. Once the configuration rules are mod-
elled as constraints, we will look into the expert database and apply
all possible attribute mappings described in the expert database. All
discontinued attributes will be removed from the base configuration
because they will not be valid for the new model. At this stage, we
will check if this configuration is feasible according to given config-
uration rules. If the answer is YES, we proceed with transforming
the next configuration. If the answer is NO, we call the configuration
transformation model as defined in Section 4.2. We repeat the above

procedure till all configurations are transformed.

Removexall
discontinuedxattributes

fromxbasexconfiguration

Updatexthexoptimization
modelxforxconfiguration

transformation
1Sectionx4.2Y

Solvexthexmodel

Nextxorder?

Stop

updatexbasexconfiguration
asxperxexpertsxknowledgex

basex

Feasibility
check?

Notxfeasible

Transformxlogicalxrules
toxlinearxinequalitiesxas

discussedxinx inxSectionx4.1

Storextransformed
order

No

Yes

Productxconfigurationxrules

Readxbasexconfiguration

Figure 5: Flow diagram for transformation of product variants from
past to given document information

5.1 Computational Experiments

We have tested our solution approach with various industry size prob-
lems. In this section, we will present two different experiments cre-
ated out of practical scenarios in the automotive industry.

Sr Scenario total at-
tributes

total base
configura-
tions

Exp1 Transforming past config-
urations as per changes in
configuration rules

695 2200

Exp2 Upgrading base configura-
tions with new Engine

705 1000

Table 6: Excerpt of computational scenarios

Table 6 shows the computational set up for two experiments. In
the first experiment (Exp1) our aim is to utilize customer orders pro-
duced in the past for future production planning. For this, 2200 past
configurations are taken which are 6 months old from new produc-
tion date. As the product has undergone engineering changes, our
aim is to upgrade the given configurations as per the new configu-
ration rules. The new configurations are defined with 695 different
attributes.

Figure 6 shows the plot of time versus Hamming distance
for transformed configurations. The transformation is done after
analysing new configurations rules which results in information such

0 5 10 15

0.
02

0.
05

0.
08

Exp. 1: Hamming distance from base−configuration

T
im

e
(s

ec
)

Figure 6: Experiment1 Transforming base configurations as per
new configuration rules

as discontinuation of some old attributes. Removing of barred at-
tributes and application of information from expert’s knowledge as
discussed in section 5, we found that a large number of configu-
rations become feasible (Hamming distance zero in figure 6) . For
other configurations, solutions are found by solving the optimization
model as discussed in section 4.

4 5 6 7 8 9 10

0.
06

0.
08

0.
10

Exp. 2: Hamming distance after upgrading engine type

T
im

e
(s

ec
)

Figure 7: Experiment2 Hamming distance vs time plot of engine
upgradation problem

In experiment 2, we solved the reconfiguration problem by up-
grading the engine type. Given 1000 configurations were upgraded to
a new engine type. First, attributes related to the old engine type were
replaced with the new engine and some related attribute replacements
were done through expert’s knowledge base. For example, associat-
ing the right gear box for the new engine. After user’s modification,
we transformed the given configurations as per the model shown in
Figure 7. A large number of given configurations are transformed
with minimal changes (4-8 attributes) to its original values. The op-
timization model out of configuration rules has a few thousand deci-
sion variables and thousands of linear constraints.

We used the optimization solver IBM Ilog Cplex 12.2 to solve the
order transformation model. For simplicity, the following assump-
tions were made: 1) the attribute change cost is assumed to be one
in Experiment1. 2) In Experiment2 we used a relatively high
change cost for new engine and in all transformed configurations, the
attributes related to new engine remained unchanged. On applying
expert knowledge and the mathematical model that we have devel-
oped, the initial computational results shows that the given configu-
rations can be transformed as per the desired objective in reasonable
computation time (a few seconds).

6 Related work

Product configuration systems have been a key enabler for mass cus-
tomization. One main contribution of configurations system is to sup-
port mass customization at various key processes such as product
configuration, product data management (PDM) and customer rela-
tionship management (CRM) for effective product and process vari-
ety management [5]. The effect of configuration process can be seen
on the customization responsiveness when information from sources
such as customer requirements, product characteristics, production
process and logistics network are considered in the configuration sys-
tems [8].

In a variant rich customizable product, finding customer focused
configurations out of enormous choices is a challenging task [16].
Failing to access market needs has an adverse effect in product qual-
ity of product configurators [15]. Enabling production planning with
customer historical demand (configurations produced in the past)
may help to retain aspects of customer buying behaviour. However,
to use past configurations for future production planning, an upgra-
dation is required. Fichter et. al. [4] considered some of the product
change conditions in their work of transforming configurations be-
tween two different product document rules. They proposed a knowl-
edge based framework to transform invalid product variants accord-
ing to change of rules in a configurator. However, in their heuristic
approach it is not clear whether the transformed configuration has
small deviation (minimal cost/distance) from original configuration.
Walter et. al. [17] have discussed MaxSAT based approach for recon-
figuration problem. In our paper we translated configurations propo-
sitional rules to set of linear constraints and the configuration trans-
formation problem. An optimization based model has some advan-
tages and the results of this formulation can be extended to support
the generation or the transformation of sets of configurations [12].

7 Conclusion

In order to adapt the customer configurations produced in the past
to the latest engineering design and market conditions we have dis-
cussed an optimization based framework. Design related changes
are captured in our optimization model by transforming the prod-
uct configuration rules to a set of linear inequalities. Market and
expert knowledge during configuration transformation are captured
by maintaining a knowledge database to transform configurations
according to the best available information. The method will facil-
itate future planning activities based on consistent and constructible
configuration sets (order sets), which will have maximum correla-
tion with the past customer demand. For a complex product which
changes dynamically with respect to time, production planning ac-
tivities will improve gradually with the effective adaption of design
and market changes.

REFERENCES
[1] Egon Balas, ‘Logical constraints as cardinality rules: Tight representa-

tion’, Journal of Combinatorial Optimization, 8(2), 115–128, (2004).
[2] Caroline Becker and Hélène Fargier, ‘Maintaining alternative values

in constraint-based configuration’, in IJCAI, ed., Francesca Rossi. IJ-
CAI/AAAI, (2013).

[3] Hachemi Bennaceur, ‘A comparison between sat and csp techniques’,
Constraints, 9(2), 123–138, (2004).

[4] Michael Fichter, Michael Klein, and Andreas Schmidt, ‘Transforma-
tion of product between various version of the rule world of a product
configurator’, IEA/AIE, Springer-Verlag Berliun Heidelberg, 5579(1),
721 – 730, (2009).

[5] C. Forza and F. Salvador, ‘Application support to product variety man-
agement’, International Journal of Production Research, 46(3), 817–
836, (2008).

[6] H. Graf, ‘Innovative logistics is a vital part of transformable facto-
ries in the automotive industry’, in Reconfigurable Manufacturing Sys-
tems and Transformable Factories, ed., AnatoliI. Dashchenko, 423–
457, Springer Berlin Heidelberg, (2006).

[7] T. Hadzic, S. Sathiamoorthy, R. M. Jensen, H. R. Andersen, J. Møller,
and H. Hulgaard, ‘Fast backtrack free product configuration using pre-
compiled solution space representations’, in Proceedings of the Interna-
tional Conference on Economic, Technical and Organisational aspects
of Product Configuration Systems, (2004).

[8] P.T. Helo, Q.L. Xu, S.J. Kyllnen, and R.J. Jiao, ‘Integrated vehicle con-
figuration systemconnecting the domains of mass customization’, Com-
puters in Industry, 61(1), 44 – 52, (2010).

[9] Wolfgang Küchlin and Carsten Sinz, ‘Proving consistency assertions
for automotive product data management’, Journal of Automated Rea-
soning, 24(1-2), 145–163, (2000).

[10] Andrew Kusiak, M. R. Smith, and Zhe Song, ‘Planning product config-
urations based on sales data’, IEEE Transactions on Systems, Man, and
Cybernetics, Part C, 37(4), 602–609, (2007).

[11] Peter Manhart, ‘Reconfiguration - A problem in search of solutions’, in
IJCAI’05 Configuration Workshop, eds., Dietmar Jannach and Alexan-
der Felfernig, pp. 64–67, (2005).

[12] Tilak Raj Singh and Narayan Rangaraj, ‘Generation of predictive con-
figurations for production planning’, in 15 th International Configura-
tion Workshop, p. 79, (2013).

[13] C. Sinz, A. Kaiser, and W. Küchlin, ‘Formal methods for the valida-
tion of automotive product configuration data’, Artificial Intelligence
for Engineering Design, Analysis and Manufacturing, 17(1), 75–97,
(JAN 2003). Special issue on configuration.

[14] R. Srinivasan and J. M. Swaminathan, ‘Managing configurable prod-
ucts in the computer industry: Planning and coordination issues’, vol-
ume 22, pp. 33–43. Sadhna:Academy Proceedings in Engineering Sci-
ences, (February 1997).

[15] Alessio Trentin, Elisa Perin, and Cipriano Forza, ‘Product configurator
impact on product quality’, International Journal of Production Eco-
nomics, 135(2), 850 – 859, (2012). Green Manufacturing and Distribu-
tion in the Fashion and Apparel Industries.

[16] Alessio Trentin, Elisa Perin, and Cipriano Forza, ‘Sales configurator ca-
pabilities to avoid the product variety paradox: Construct development
and validation’, Computers in Industry, 64(4), 436 – 447, (2013).

[17] Rouven Walter, Christoph Zengler, and Wolfgang Küchlin, ‘Applica-
tions of maxsat in automotive configuration’, in 15 th International
Configuration Workshop, volume 1, p. 21, (2013).

